搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非线性强度任意二聚的非线性链的透射性质

胡冬生 张艳玲 尹小刚 徐江

引用本文:
Citation:

非线性强度任意二聚的非线性链的透射性质

胡冬生, 张艳玲, 尹小刚, 徐江

Transport properties of nonlinear chains with random dimer nonlinearity parameters

Hu Dong-Sheng, Zhang Yan-Ling, Yin Xiao-Gang, Xu Jiang
PDF
导出引用
  • 用离散的非线性薛定谔的递推关系研究了非线性强度任意二聚的非线性链的透射性质. 结果表明该链存在一个共振透射态,共振态的能量为非线性强度与入射波振幅模平方的乘积; 取出射波振幅为定值和取入射波振幅模为定值来计算透射系数,其结果在非共振态有明显的差别: 取出射波振幅为定值时电子的透射随能量为单值函数,而取入射波振幅模为定值时电子的透射呈现多稳态. 并指出只有取入射波振幅模为定值时才能真正反映非线性强度对电子透射性质的影响.
    By using the recursion relation of discrete Schrödinger equation we investigate the transport properties of nonlinear chains with random dimer nonlinearity parameters. It is shown that there is a resonance state, which is just the product of the nonlinearity and the square of the incident wave amplitude modulus. The transmission coefficients are calculated in two conditions. One is that the transmission wave amplitude is a certain value, the other is that the incident wave amplitude modulus is a certain value. There are obvious differences in non-resonant states between the two kinds of conditions. The transmission is a single value function of the electronic energy for the former. However, it will be multi-stability for the latter. It is pointed out that the influence of the nonlinearity parameters on the transport properties can be exactly reflected only when the modulus of incident wave is set to be a certain value.
    • 基金项目: 国家自然科学基金 (批准号: 51175245);江苏省自然科学基金(批准号: BK2010073)和南京航空航天大学基金(批准号: NS2010207)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51175245), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK2010073), and NUAA research foundation (Grant No. NS2010207).
    [1]

    Anderson P W 1958 Phys. Rev. 109 1492

    [2]

    Abrahams E, Anderson P W, Licciardello D C, Ramakrishnan T V 1979 Phys. Rev. Lett. 42 673

    [3]

    Dunlap D, Wu H L, Philips P W 1990 Phys. Rev. Lett. 65 88

    [4]

    Xiong S J 1993 Appl. Phys. Lett. 63 81

    [5]

    Ojeda P, Huerta-Quintanilla R, Rodríguez-Achach M 2002 Phys. Rev. B 65 233102

    [6]

    Sedrakyan T 2004 Phys. Rev. B 69 085109

    [7]

    de Moura F A B F, Lyra M L 1998 Phys. Rev. Lett. 81 3735

    [8]

    Zhang G P, Xiong S J 2002 Eur. Phys. J. B 29 491

    [9]

    Kivshar Y S, Gredeskul S A, Sánchez A, Vásquez L 1990 Phys. Rev. Lett. 64 1693

    [10]

    Hu D S, Lu X J, Zhang Y M, Zhu C P 2009 Chin. Phys. B 18 2498

    [11]

    Hu D S, Zhu C P, Zhang Y M 2011 Chin. Phys. B 20 017104

    [12]

    Molina M I, Tsinoris G P 1994 Phys. Rev. Lett. 73 464

    [13]

    Kottos T, Weiss M 2004 Phys. Rev. Lett. 93 190604

    [14]

    Davids P S 1995 Phys. Rev. B 52 4146

    [15]

    Liu X L, Xu H, Ma S S, Song Z Q 2006 Acta Phys. Sin. 55 2949 (in Chinese) [刘小良, 徐慧, 马松山, 宋招权 2006 55 2949]

    [16]

    Bellani V, Diez E, Hey P, Toni L, Tarńcone L, Parravicini G B, Dominguez-Adame F, Gómez-Alcala R 1999 Phys. Rev. Lett. 82 2159

    [17]

    Hostein T 1959 Ann. Phys. (N. Y.) 8 325

    [18]

    Trombettoni A, Smerzi A 2001 Phys. Rev. Lett. 86 2353

    [19]

    Hopkins V A, Keat J, Meegan G D, Zhang T M, Maynard J D 1996 Phys. Rev. Lett. 76 1102

    [20]

    Molina M I 1998 Phys. Rev. B 58 12547

    [21]

    Senouci K, Zekri N 2000 Phys. Rev. B 62 2987

    [22]

    Cota E C, José J V, Maytorena J, Monsivais G 1995 Phys. Rev. Lett. 74 3302

    [23]

    Senouci K, Zekri N, Bahlouli H, Sen A K 1999 J. Phys.: Condens. Matter 11 1823

    [24]

    García-Mata I, Shepelyansky D L 2009 Phys. Rev. E 79 026205

    [25]

    Zhang Z J, Tong P Q, Gong J B, Li B W 2011 Phys. Rev. E 83 056205

    [26]

    Delyon F, Lévy Y E, Souillard B 1986 Phys. Rev. Lett. 57 2010

    [27]

    Cota E, José J V, Maytorena J, Monsivais G 1995 Phys. Rev. Lett. 74 3302

    [28]

    Shadrivov I V, Bliokh K Y, Bliokh Y P, Freilikher V, Kivshar Y S 2010 Phys. Rev. Lett. 104 123902

    [29]

    Datta P K 2007 Phys. Rev. B 75 205127

    [30]

    Senouci K 2007 J. Phys.: Condens. Matter 19 076202

    [31]

    Senouci K 2010 Physica B 405 694

  • [1]

    Anderson P W 1958 Phys. Rev. 109 1492

    [2]

    Abrahams E, Anderson P W, Licciardello D C, Ramakrishnan T V 1979 Phys. Rev. Lett. 42 673

    [3]

    Dunlap D, Wu H L, Philips P W 1990 Phys. Rev. Lett. 65 88

    [4]

    Xiong S J 1993 Appl. Phys. Lett. 63 81

    [5]

    Ojeda P, Huerta-Quintanilla R, Rodríguez-Achach M 2002 Phys. Rev. B 65 233102

    [6]

    Sedrakyan T 2004 Phys. Rev. B 69 085109

    [7]

    de Moura F A B F, Lyra M L 1998 Phys. Rev. Lett. 81 3735

    [8]

    Zhang G P, Xiong S J 2002 Eur. Phys. J. B 29 491

    [9]

    Kivshar Y S, Gredeskul S A, Sánchez A, Vásquez L 1990 Phys. Rev. Lett. 64 1693

    [10]

    Hu D S, Lu X J, Zhang Y M, Zhu C P 2009 Chin. Phys. B 18 2498

    [11]

    Hu D S, Zhu C P, Zhang Y M 2011 Chin. Phys. B 20 017104

    [12]

    Molina M I, Tsinoris G P 1994 Phys. Rev. Lett. 73 464

    [13]

    Kottos T, Weiss M 2004 Phys. Rev. Lett. 93 190604

    [14]

    Davids P S 1995 Phys. Rev. B 52 4146

    [15]

    Liu X L, Xu H, Ma S S, Song Z Q 2006 Acta Phys. Sin. 55 2949 (in Chinese) [刘小良, 徐慧, 马松山, 宋招权 2006 55 2949]

    [16]

    Bellani V, Diez E, Hey P, Toni L, Tarńcone L, Parravicini G B, Dominguez-Adame F, Gómez-Alcala R 1999 Phys. Rev. Lett. 82 2159

    [17]

    Hostein T 1959 Ann. Phys. (N. Y.) 8 325

    [18]

    Trombettoni A, Smerzi A 2001 Phys. Rev. Lett. 86 2353

    [19]

    Hopkins V A, Keat J, Meegan G D, Zhang T M, Maynard J D 1996 Phys. Rev. Lett. 76 1102

    [20]

    Molina M I 1998 Phys. Rev. B 58 12547

    [21]

    Senouci K, Zekri N 2000 Phys. Rev. B 62 2987

    [22]

    Cota E C, José J V, Maytorena J, Monsivais G 1995 Phys. Rev. Lett. 74 3302

    [23]

    Senouci K, Zekri N, Bahlouli H, Sen A K 1999 J. Phys.: Condens. Matter 11 1823

    [24]

    García-Mata I, Shepelyansky D L 2009 Phys. Rev. E 79 026205

    [25]

    Zhang Z J, Tong P Q, Gong J B, Li B W 2011 Phys. Rev. E 83 056205

    [26]

    Delyon F, Lévy Y E, Souillard B 1986 Phys. Rev. Lett. 57 2010

    [27]

    Cota E, José J V, Maytorena J, Monsivais G 1995 Phys. Rev. Lett. 74 3302

    [28]

    Shadrivov I V, Bliokh K Y, Bliokh Y P, Freilikher V, Kivshar Y S 2010 Phys. Rev. Lett. 104 123902

    [29]

    Datta P K 2007 Phys. Rev. B 75 205127

    [30]

    Senouci K 2007 J. Phys.: Condens. Matter 19 076202

    [31]

    Senouci K 2010 Physica B 405 694

  • [1] 孙建, 王秋良, 程军胜, 熊玲, 丛源涛, 王贺阳. 脉冲大电流直线驱动装置电-磁-热-结构多场耦合的局域建模方法.  , 2024, 73(10): 108502. doi: 10.7498/aps.73.20240235
    [2] 刘辉, 陆展鹏, 徐志浩. 一维非厄米十字晶格中的退局域-局域转变.  , 2024, 73(13): 137201. doi: 10.7498/aps.73.20240510
    [3] 胡强, 曾柏云, 辜鹏宇, 贾欣燕, 樊代和. 退相干条件下两比特纠缠态的量子非局域关联检验.  , 2022, 71(7): 070301. doi: 10.7498/aps.71.20211453
    [4] 丁大为, 卢小齐, 胡永兵, 杨宗立, 王威, 张红伟. 分数阶忆阻耦合异质神经元的多稳态及硬件实现.  , 2022, 71(23): 230501. doi: 10.7498/aps.71.20221525
    [5] 董丽娟, 薛春华, 孙勇, 邓富胜, 石云龙. 单负材料异质结构中损耗诱导的场局域增强和光学双稳态.  , 2016, 65(11): 114207. doi: 10.7498/aps.65.114207
    [6] 郭古青, 吴诗阳, 蔡光博, 杨亮. 判定金属玻璃微观结构中的二十面体类团簇.  , 2016, 65(9): 096402. doi: 10.7498/aps.65.096402
    [7] 彭澍源, 王秋实, 张兆传, 罗积润. 回旋行波管多模稳态理论及初步应用.  , 2014, 63(20): 208401. doi: 10.7498/aps.63.208401
    [8] 时培明, 李培, 韩东颖. 色关联乘性和加性色噪声驱动的多稳态系统的稳态特性.  , 2014, 63(17): 170504. doi: 10.7498/aps.63.170504
    [9] 胡文, 李俊平, 张弓, 刘文波, 赵广浩. 自调频混沌系统及其调频码耦合同步.  , 2012, 61(1): 010504. doi: 10.7498/aps.61.010504
    [10] 马松山, 徐慧, 郭锐, 崔麦玲. 准一维多链无序体系跳跃电导特性.  , 2010, 59(7): 4972-4979. doi: 10.7498/aps.59.4972
    [11] 赵义. 一维长程关联无序系统的局域性.  , 2010, 59(1): 532-535. doi: 10.7498/aps.59.532
    [12] 刘冬梅, 韩鹏. 含单负特异材料一维无序扰动周期结构中的光子局域特性研究.  , 2010, 59(10): 7066-7072. doi: 10.7498/aps.59.7066
    [13] 陈爱喜, 陈德海, 王志平. 级联型四能级原子相干介质中的光学双稳态和多稳态.  , 2009, 58(8): 5450-5454. doi: 10.7498/aps.58.5450
    [14] 邓超生, 徐 慧, 刘小良, 伍晓赞. 无序度对一维长程关联无序系统中局域化-退局域化转变的影响.  , 2008, 57(4): 2415-2420. doi: 10.7498/aps.57.2415
    [15] 韩 鹏, 汪河洲. 一维无序扰动周期结构中局域长度的对称等价变换.  , 2005, 54(1): 338-342. doi: 10.7498/aps.54.338
    [16] 徐慧, 曾红涛. 无序系统中电子局域态分布.  , 1992, 41(10): 1666-1671. doi: 10.7498/aps.41.1666
    [17] 陈鸿, 章豫梅, 吴翔. 耗散量子隧道系统中的局域—退局域转变.  , 1989, 38(9): 1497-1500. doi: 10.7498/aps.38.1497
    [18] 庞根弟, 蔡建华. 非均匀无序系统的声子局域化.  , 1988, 37(4): 688-690. doi: 10.7498/aps.37.688
    [19] 陈长风, 章立源. 金属中f电子局域磁矩及其退局域化的一个模型(Ⅰ).  , 1985, 34(11): 1442-1450. doi: 10.7498/aps.34.1442
    [20] 李福利. 双光子光学多稳态理论.  , 1983, 32(1): 71-83. doi: 10.7498/aps.32.71
计量
  • 文章访问数:  5709
  • PDF下载量:  323
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-09-26
  • 修回日期:  2012-02-15
  • 刊出日期:  2012-09-05

/

返回文章
返回
Baidu
map