搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

星载极化相关型全极化微波辐射计天线交叉极化校正技术(I): 天线温度方程推导

施健康 陆文 严卫 艾未华

引用本文:
Citation:

星载极化相关型全极化微波辐射计天线交叉极化校正技术(I): 天线温度方程推导

施健康, 陆文, 严卫, 艾未华

Antenna cross-polarization correction for spaceborne polarimetric microwave correlation radiometer (I): Derivation of the antenna temperature equation

Shi Jian-Kang, Lu Wen, Yan Wei, Ai Wei-Hua
PDF
导出引用
  • 星载极化相关型全极化微波辐射计是一种新型空间被动微波遥感仪器, 为海面风场等海洋大气环境参数的遥感探测提供了重要技术途径. 天线交叉极化校正是其数据预处理算法的重要环节. 本文针对星载极化相关型全极化微波辐射计天线交叉极化校正需求, 以极化相干检测理论为基础, 结合Stokes参数的定义, 自主推导了其适用的全极化天线温度方程. 该方程针对四个Stokes参数天线温度, 引入了Stokes参数之间交叉极化的振幅和相位, 并考虑了极化旋转角对天线方向图计算的影响. 最后, 建立了天线扫描波束与地球场景的几何对应关系, 对天线温度方程中各参数的确定方法进行了探讨. 全极化天线温度方程的建立为进一步开展星载极化相关型全极化微波辐射计天线交叉极化校正奠定了基础.
    Spaceborne polarimetric microwave correlation radiometer is a new type of instrument for the passive microwave remote sensing from space, which can provide an important way for remote sensing of sea surface wind vector and other ocean atmosphere environmental parameters. Antenna cross-polarization correction is an important part of the data pre-processing algorithm. In this paper, for the demand of antenna cross-polarization correction in spaceborne polarimetric microwave correlation radiometer, we have independently derived the full polarization antenna temperature equation based on the polarization coherent detection theory and the definition of Stokes parameters. The equation for the four parameters of Stokes antenna temperature introduced the cross polarization amplitude and phase between the Stokes parameters. Besides, the influence of the polarization rotation angle on the antenna pattern computation was considered. Finally, we established a geometric correspondence between the antenna scanning beam and the earth scene. The principle for determining the parameters of the antenna temperature equation was also discussed. Stokes antenna temperature equation laid the foundation for antenna cross-polarization correction for spaceborne polarimetric microwave correlation radiometer in the future.
    • 基金项目: 国家自然科学基金(批准号: 41076118, 41005018)和中国气象局大气物理与大气环境重点开放实验室基金(批准号: KDW1105)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 41076118, 41005018), and the foundation of CMA key laboratory for atmospheric physics and environment (Grant No. KDW1105).
    [1]

    Ulaby F T, Moore R K, Fung A K 1981 Microwave remote sensing: active and passive (Vol. 1) (Massachusetts: Addison-Wesley Publishing Company) pp229-285

    [2]

    Martine S 2004 An introduction to ocean remote sensing (Cambridge: Cambridge University Press) pp201-227

    [3]

    Gaiser P W, Twarog E M, Karen L L 2004 IEEE Trans. Geosci. Remote Sens. 42 2347

    [4]

    Wang Z Z, Jiang J S, Liu J Y, Yin X B 2008 Eng. Sin. 10 76 (in Chinese) [王振占, 姜景山, 刘憬怡, 殷晓斌 2008 中国工程科学 10 76]

    [5]

    Plonski M, Smith C 2001 Algorithm theoretical basis document (ATBD) for the conical-scanning microwave imager/sounder (CMIS) environmental data records (EDRs) (Vol.1 17) (Lexington: AER) pp1-132

    [6]

    Wang X B, Li J, Jiang J S 2008 Remote Sens. Tech. App. 23 582 (in Chinese) [王新彪, 李靖, 姜景山 2008 遥感技术与应用 23 582]

    [7]

    Claassen J, Fung C 1974 IEEE Trans. Antennas Propagat. 22 433

    [8]

    Ko H 1962 Proc. IRE 50 1950

    [9]

    Ko H 1961 IEEE Trans. Antennas Propagat. 9 581

    [10]

    Piepmeier J, Long D, Njoku E 2008 IEEE Trans. Geosci. Remote Sens. 46 516

    [11]

    Stokes G G 1852 Trans. Cambridge Phil. Soc. 9 399

    [12]

    Lu W, Yan W, Wang R, Wang Y Q 2012 Acta Phys. Sin. 61 018401 (in Chinese) [陆文, 严卫, 王蕊, 王迎强 2012 61 018401]

    [13]

    Sinclair G. 1950 Proc. IRE 38 148

    [14]

    Zhang Z Y, Lin S J 1995 Microwave radiation measurement technology and Application (Beijing: Electronic Industry Press) (in Chinese) [张祖荫, 林士杰 1995 微波辐射测量技术与应用 (北京: 电子工业出版社)]

    [15]

    Skou N B, Laursen 1999 IEEE Trans. Geosci. Remote Sens. 37 12165

    [16]

    Hamaker J P, Bregman J D, Sault R J 1996 Astronomy Astrophysics Supplement Series 117 137

    [17]

    Schmeider R 1969 J Opt. Soc. Amer. 59 297

    [18]

    Chang M, Jin Y Q 2002 Acta Phys. Sin. 51 74 (in Chinese) [常梅, 金亚秋 2002 51 74]

    [19]

    Dinnat E P, Vine D M L 2007 IEEE Trans. Geosci. Remote Sens. 45 2051

    [20]

    Shi J K 2009 MS Thesis (Nanjing: Institute of Meteorology, PLA University of Science & Technology) (in Chinese) [施健康 2009 硕士学位论文 (南京: 解放军理工大学气象学院)]

    [21]

    Ludwig A C 1973 IEEE Trans. Antennas Propagat. 21 116

  • [1]

    Ulaby F T, Moore R K, Fung A K 1981 Microwave remote sensing: active and passive (Vol. 1) (Massachusetts: Addison-Wesley Publishing Company) pp229-285

    [2]

    Martine S 2004 An introduction to ocean remote sensing (Cambridge: Cambridge University Press) pp201-227

    [3]

    Gaiser P W, Twarog E M, Karen L L 2004 IEEE Trans. Geosci. Remote Sens. 42 2347

    [4]

    Wang Z Z, Jiang J S, Liu J Y, Yin X B 2008 Eng. Sin. 10 76 (in Chinese) [王振占, 姜景山, 刘憬怡, 殷晓斌 2008 中国工程科学 10 76]

    [5]

    Plonski M, Smith C 2001 Algorithm theoretical basis document (ATBD) for the conical-scanning microwave imager/sounder (CMIS) environmental data records (EDRs) (Vol.1 17) (Lexington: AER) pp1-132

    [6]

    Wang X B, Li J, Jiang J S 2008 Remote Sens. Tech. App. 23 582 (in Chinese) [王新彪, 李靖, 姜景山 2008 遥感技术与应用 23 582]

    [7]

    Claassen J, Fung C 1974 IEEE Trans. Antennas Propagat. 22 433

    [8]

    Ko H 1962 Proc. IRE 50 1950

    [9]

    Ko H 1961 IEEE Trans. Antennas Propagat. 9 581

    [10]

    Piepmeier J, Long D, Njoku E 2008 IEEE Trans. Geosci. Remote Sens. 46 516

    [11]

    Stokes G G 1852 Trans. Cambridge Phil. Soc. 9 399

    [12]

    Lu W, Yan W, Wang R, Wang Y Q 2012 Acta Phys. Sin. 61 018401 (in Chinese) [陆文, 严卫, 王蕊, 王迎强 2012 61 018401]

    [13]

    Sinclair G. 1950 Proc. IRE 38 148

    [14]

    Zhang Z Y, Lin S J 1995 Microwave radiation measurement technology and Application (Beijing: Electronic Industry Press) (in Chinese) [张祖荫, 林士杰 1995 微波辐射测量技术与应用 (北京: 电子工业出版社)]

    [15]

    Skou N B, Laursen 1999 IEEE Trans. Geosci. Remote Sens. 37 12165

    [16]

    Hamaker J P, Bregman J D, Sault R J 1996 Astronomy Astrophysics Supplement Series 117 137

    [17]

    Schmeider R 1969 J Opt. Soc. Amer. 59 297

    [18]

    Chang M, Jin Y Q 2002 Acta Phys. Sin. 51 74 (in Chinese) [常梅, 金亚秋 2002 51 74]

    [19]

    Dinnat E P, Vine D M L 2007 IEEE Trans. Geosci. Remote Sens. 45 2051

    [20]

    Shi J K 2009 MS Thesis (Nanjing: Institute of Meteorology, PLA University of Science & Technology) (in Chinese) [施健康 2009 硕士学位论文 (南京: 解放军理工大学气象学院)]

    [21]

    Ludwig A C 1973 IEEE Trans. Antennas Propagat. 21 116

  • [1] 赵振宇, 刘海文, 陈智娇, 董亮, 常乐, 高萌英. 基于超材料角反射面的高增益高效率双圆极化Fabry-Perot天线设计.  , 2022, 71(4): 044101. doi: 10.7498/aps.71.20211914
    [2] 赵振宇, 刘海文, 陈智娇, 董亮, 常乐, 高萌英. 基于超材料角反射面的高增益高效率双圆极化Fabry-Perot天线设计.  , 2021, (): . doi: 10.7498/aps.70.20211914
    [3] 郭泽旭, 曹祥玉, 高军, 李思佳, 杨欢欢, 郝彪. 一种复合型极化转换表面及其在天线辐射散射调控中的应用.  , 2020, 69(23): 234102. doi: 10.7498/aps.69.20200797
    [4] 李唐景, 梁建刚, 李海鹏, 牛雪彬, 刘亚峤. 基于单层线-圆极化转换聚焦超表面的宽带高增益圆极化天线设计.  , 2017, 66(6): 064102. doi: 10.7498/aps.66.064102
    [5] 汪之国, 罗晖, 樊振方, 谢元平. 极化检测型铷原子磁力仪的研究.  , 2016, 65(21): 210702. doi: 10.7498/aps.65.210702
    [6] 李唐景, 梁建刚, 李海鹏. 基于单层反射超表面的宽带圆极化高增益天线设计.  , 2016, 65(10): 104101. doi: 10.7498/aps.65.104101
    [7] 李文惠, 张介秋, 屈绍波, 沈杨, 余积宝, 范亚, 张安学. 基于极化旋转超表面的圆极化天线设计.  , 2016, 65(2): 024101. doi: 10.7498/aps.65.024101
    [8] 杜延磊, 马文韬, 杨晓峰, 刘桂红, 于暘, 李紫薇. 无云情况下L波段微波辐射计快速大气校正方法.  , 2015, 64(7): 079501. doi: 10.7498/aps.64.079501
    [9] 丛丽丽, 付强, 曹祥玉, 高军, 宋涛, 李文强, 赵一, 郑月军. 一种高增益低雷达散射截面的新型圆极化微带天线设计.  , 2015, 64(22): 224219. doi: 10.7498/aps.64.224219
    [10] 范亚, 屈绍波, 王甲富, 张介秋, 冯明德, 张安学. 基于交叉极化旋转相位梯度超表面的宽带异常反射.  , 2015, 64(18): 184101. doi: 10.7498/aps.64.184101
    [11] 彭汉, 刘彬, 付松年, 张敏明, 刘德明. 高速线性光采样用被动锁模光纤激光器重复频率优化.  , 2015, 64(13): 134206. doi: 10.7498/aps.64.134206
    [12] 张重阳, 刘阿娣, 李弘, 陈志鹏, 李斌, 杨州军, 周楚, 谢锦林, 兰涛, 刘万东, 庄革, 俞昌旋. 双极化频率调制微波反射计在J-TEXT托卡马克上的应用.  , 2014, 63(12): 125204. doi: 10.7498/aps.63.125204
    [13] 李思佳, 曹祥玉, 高军, 刘涛, 杨欢欢, 李文强. 宽带超薄完美吸波体设计及在圆极化倾斜波束天线雷达散射截面缩减中的应用研究.  , 2013, 62(12): 124101. doi: 10.7498/aps.62.124101
    [14] 陆希成, 王建国, 刘钰, 李爽, 韩峰. 基于天线辐射理论构建微波混沌腔的随机耦合模型.  , 2013, 62(7): 070504. doi: 10.7498/aps.62.070504
    [15] 孙杰, 张晓娟, 方广有. 近地面三阵子天线估计电磁波到达角和极化参数.  , 2013, 62(19): 198402. doi: 10.7498/aps.62.198402
    [16] 陆文, 严卫, 艾未华, 施健康. 星载极化相关型全极化微波辐射计天线交叉极化校正技术 (II) : 校正试验.  , 2013, 62(7): 078403. doi: 10.7498/aps.62.078403
    [17] 陆文, 严卫, 王蕊, 王迎强. 全极化微波辐射计姿态对观测亮温的影响及消除.  , 2012, 61(1): 018401. doi: 10.7498/aps.61.018401
    [18] 雷中华, 兰明建, 汪先友, 李建杰. 遗迹引力波对宇宙微波背景辐射极化的影响.  , 2008, 57(11): 7408-7414. doi: 10.7498/aps.57.7408
    [19] 韩增富, 王均宏. 并联介质加载偶极天线脉冲辐射特性的研究.  , 2005, 54(2): 642-647. doi: 10.7498/aps.54.642
    [20] 冯克安, 蔡俊道, 蒲富恪. 天线理论中的第二类积分方程.  , 1978, 27(2): 187-202. doi: 10.7498/aps.27.187
计量
  • 文章访问数:  6127
  • PDF下载量:  682
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-06-07
  • 修回日期:  2012-11-22
  • 刊出日期:  2013-04-05

/

返回文章
返回
Baidu
map