-
稀土(R)-过渡族(T)金属间化合物具有优异的物理和化学性质.本研究考虑电子自旋极化作用,基于第一性原理的全电子投影缀加平面波赝势法理论,采用局域自旋密度近似(LSDA),对Ni13Nd3B2金属间化合物进行结构优化,计算体系晶格常数、电子结构和磁性能.结果表明,Ni13Nd3B2为带隙很小的金属导体.LSDA近似下体系原子间存在复杂作用类型,Nd原子与近邻Ni,B原子以离子键作用为主,Ni原子与近邻Ni原子间表现共价作用情形.体系存在Nd-Ni铁磁耦合,总磁矩约8.4329B,主要由Nd原子磁矩提供,自旋极化引起的体系Nd-4f,Ni-3p,Nd-5p电子自旋劈裂为体系表现磁性的根本原因.
-
关键词:
- 密度泛函理论 /
- 电子键结构 /
- 磁性能 /
- 稀土过渡金属间化合物
The rare earth-transition (R-T) intermetallics has excellent physical and chemical properties. The electronic structure, the band structure and the magnetic properties of the compound Ni13Nd3B2 are studied by using the first-principles plane wave pseudopotential method and the local spin-density approximation (LSDA). The calculation results indicate that this system is a metallic conductor with a very small band gap. The system has very complex bonding, where Nd atoms and the neighboring Ni and B atoms form ionic banding, whereas Ni atoms and the neighboring Ni atoms form covalent bonding. Under LSDA approximation, the system has Nd-Ni ferromagnetic coupling, and the total magnetic moment ( 8.4329B) is provided by the local Nd magnetic moment. The Nd-4f, Ni-3p, Nd-5p electron spin splittings due to spin polarization result in the magnetic system.-
Keywords:
- density functional theory /
- electronic structure /
- magnetic property /
- rare earth-transition metal compound
[1] Severin L, Gasche T, Brooks M S, Johansson B 1993 Phys. Rev. B 48 13547
[2] [3] Oesterreicher H, Parker F T 1984 Appl. Phys. 55 4334
[4] [5] Zhang C W, Li H, Dong J M, Wang Y J, Pan F C, Guo Y Q, Li W 2005 Acta Phys. Sin. 54 1814 (in Chinese) [张昌文, 李华, 董建敏, 王永娟, 潘凤春, 郭永权, 李卫 2005 54 1814]
[6] Zhang J H, Liu S, Gu F, Yang L J, Liu M 2006 Acta Phys. Sin. 55 2928 (in Chinese) [张加宏, 刘甦, 顾芳, 杨丽娟, 刘楣 2006 55 2928]
[7] [8] Bilonizhko N S, Krik B I, Kuzma Y B 1982 Doporidi Akademii Nauk Ukrains koi RSR, Seriya B 1982 21
[9] [10] [11] Yu B, Kuzma, N S Bilonizhko 1974 Sov. Phys. Crystallogr. 18 447
[12] [13] Hermes W, Al Alam A F, Matar S F, Pottgen R 2008 Solid State Sci. 10 1895
[14] Tolinski T, Andrzejewski B, Kowalczyk A, Trybu Z, Baszynski J 2003 J. Magn. Magn. Mater. 267 402
[15] [16] Yi Y, Ding Z J, Li K, Tang Y J, Luo J S 2011 Acta Phys. Sin. 60 097053 (in Chinese) [易勇, 丁志杰, 李 恺, 唐永建, 罗江山 2011 60 097053]
[17] [18] [19] Plugaru N, Rubin J, Bartolome J, Piquer C 2005 J, Magn. Magn. Mater. 290 1563
[20] Alexandrov A S, Kaye G J 1999 J. Phys. Condensed Matter 11 15
[21] [22] He Z Q, He W W 1990 J. Rare Eart. 8 145 (in Chinese) [黄智全, 何文望 1990 中国稀土学报 8 145]
[23] -
[1] Severin L, Gasche T, Brooks M S, Johansson B 1993 Phys. Rev. B 48 13547
[2] [3] Oesterreicher H, Parker F T 1984 Appl. Phys. 55 4334
[4] [5] Zhang C W, Li H, Dong J M, Wang Y J, Pan F C, Guo Y Q, Li W 2005 Acta Phys. Sin. 54 1814 (in Chinese) [张昌文, 李华, 董建敏, 王永娟, 潘凤春, 郭永权, 李卫 2005 54 1814]
[6] Zhang J H, Liu S, Gu F, Yang L J, Liu M 2006 Acta Phys. Sin. 55 2928 (in Chinese) [张加宏, 刘甦, 顾芳, 杨丽娟, 刘楣 2006 55 2928]
[7] [8] Bilonizhko N S, Krik B I, Kuzma Y B 1982 Doporidi Akademii Nauk Ukrains koi RSR, Seriya B 1982 21
[9] [10] [11] Yu B, Kuzma, N S Bilonizhko 1974 Sov. Phys. Crystallogr. 18 447
[12] [13] Hermes W, Al Alam A F, Matar S F, Pottgen R 2008 Solid State Sci. 10 1895
[14] Tolinski T, Andrzejewski B, Kowalczyk A, Trybu Z, Baszynski J 2003 J. Magn. Magn. Mater. 267 402
[15] [16] Yi Y, Ding Z J, Li K, Tang Y J, Luo J S 2011 Acta Phys. Sin. 60 097053 (in Chinese) [易勇, 丁志杰, 李 恺, 唐永建, 罗江山 2011 60 097053]
[17] [18] [19] Plugaru N, Rubin J, Bartolome J, Piquer C 2005 J, Magn. Magn. Mater. 290 1563
[20] Alexandrov A S, Kaye G J 1999 J. Phys. Condensed Matter 11 15
[21] [22] He Z Q, He W W 1990 J. Rare Eart. 8 145 (in Chinese) [黄智全, 何文望 1990 中国稀土学报 8 145]
[23]
计量
- 文章访问数: 7644
- PDF下载量: 1040
- 被引次数: 0