搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

透射式蓝延伸GaAs光电阴极光学结构对比

赵静 常本康 张益军 张俊举 石峰 程宏昌 崔东旭

引用本文:
Citation:

透射式蓝延伸GaAs光电阴极光学结构对比

赵静, 常本康, 张益军, 张俊举, 石峰, 程宏昌, 崔东旭

Comparison between transmission-mode extended blue GaAs photocathodes in optical structure

Zhao Jing, Chang Ben-Kang, Zhang Yi-Jun, Zhang Jun-Ju, Shi Feng, Cheng Hong-Chang, Cui Dong-Xu
PDF
导出引用
  • 用金属有机物化学气相沉积法外延制备了一个透射式蓝延伸GaAs光电阴极,积分灵敏度达到1980 A/lm,同时与美国ITT公司的一条蓝延伸阴极光谱响应曲线对比,分别对两者进行了光学结构拟合. 结果表明,国内阴极在Ga1-xAlxAs层厚度、Al组分、电子扩散长度和后界面复合速率上与国外存在差距,这导致国内阴极的蓝延伸性能不及国外.国内蓝延伸阴极的表面电子逸出几率、发射层厚度与国外阴极拟合结果一致,这使得两者长波响应性能差别远小于短波部分的差别.另外响应波段全谱的吸收率小于国外阴极,导致国内透射式蓝延伸GaAs光电阴极光谱响应、积分灵敏度尚不及国外.
    One transmission-mode extended blue GaAs photocathode is prepared by MOCVD , whose integral sensitivity is 1980 A/lm. Its spectral curve is compared with the spectral curve of ITT photocathode for analyzing optical structure. The comparison indicates that the differences lie in the thickness and the Al mole value of the Ga1-xAlxAs window layer, electron diffusion length, and back-interface recombination velocity, which make the photocathode in this experiment inferior to that of ITT in extended blue performance. However our surface electron-escape probability and the thickness of the GaAs active layer are in accordance with those of ITT, which leads their difference in the long waveband part to be less than in the short one. In addition, our absorptivity in the whole response waveband is smaller than that of ITT photocathode, which leads the spectral response and integral sensitivity of the domestic transmission-mode extended blue GaAs photocathode to be inferior to the exotic one.
    • 基金项目: 国家自然科学基金(批准号: 61171042)、江苏省普通高校研究生科研创新计划资助项目(项目编号:CX09B_096Z)和南京理工大学自主科研专项计划(项目编号:2010ZYTS032)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61171042), the Research and Innovation Plan for Graduate Students of Jiangsu Higher Education Institutions, China (Grant No. CX09B 096Z), and the Nanjing University of Science and Technology Researching Funding, China (Grant No. 2010ZYTS032).
    [1]

    Guo L J, Wüstenberg J P, Oleksiy A, Bauer M, Aeschlimann M2005 Acta Phys. Sin. 54 3200 (in Chinese) [郭立俊, Wüstenberg J P, Oleksiy A, Bauer M, Aeschlimann M 2005 54 3200]

    [2]

    Zhou LW, Li Y, Zhang Z Q, MonastyrskiMA, Schelve M Y 2005Acta Phys. Sin. 54 3591 (in Chinese) [周立伟,李元,张智诠, Monastyrski M A, Schelve M Y 2005 54 3591]

    [3]

    Liu Z, Sun Y, Peterson S, Pianetta P 2008 Appl. Phys. Lett. 92241107

    [4]

    Zhang Y J, Chang B K, Yang Z, Niu J, Zou J J 2009 Chin. Phys.B 18 4541

    [5]

    Sinor T W, Estrera J P, Phillips D L, Rector M K 1997 Proc. SPIE2551 130

    [6]

    Leopold D J, Buckley J H, Rebillot P 2005 J. Appl. Phys. 98043525.

    [7]

    Kenneth A C, Verle W A, Hugh F M 1990 Proc. SPIE 1243 99

    [8]

    Guo H, Feng N, Xiang S M 2005 Proc. SPIE 5644 579

    [9]

    Zhao J, Zhang Y J, Chang B K, Xiong Y J, Zhang J J, Shi F, ChengH C, Cui D X 2011 Acta Phys. Sin. 60 107802 (in Chinese) [赵静,张益军,常本康,熊雅娟,张俊举,石峰,程宏昌,崔东旭 2011 60 107802]

    [10]

    Aspnes D E, Kelso S M, Logan R A, Bhat R 1986 J. Appl. Phys.60 754

    [11]

    Smith A, Passmore K, Sillmon R 2002 New Developments in Photodetection 3rd Beaune Conference Beaune, France, 17–21 June,2002

    [12]

    Liu Y Z, Wang Z C, Dong Y Q 1995 Electron Emission and Photocathode(Beijing: Beijing University of Science and Technology Press) p327 (in Chinese) [刘元震,王仲春,董亚强 1995 电子发射与光电阴极(北京: 北京理工大学出版社)第327页]

    [13]

    Zhang Y J, Niu J, Zhao J, Zou J J, Chang B K, Shi F, Cheng H C2010 J. Appl. Phys. 108 093108

    [14]

    Tang J F, Gu P F, Liu X, Li H F 2006 Modern Optical Thin FilmTechnology (Zhejiang: Zhejiang University Press) p20 (in Chinese) [唐晋发,顾培夫,刘旭,李海峰 2006 现代光学薄膜技术(浙江: 浙江大学出版社)第20页]

    [15]

    Zhao J, Chang B K, Xiong Y J, Zhang Y J 2011 Chin. Phys. B 20047801

  • [1]

    Guo L J, Wüstenberg J P, Oleksiy A, Bauer M, Aeschlimann M2005 Acta Phys. Sin. 54 3200 (in Chinese) [郭立俊, Wüstenberg J P, Oleksiy A, Bauer M, Aeschlimann M 2005 54 3200]

    [2]

    Zhou LW, Li Y, Zhang Z Q, MonastyrskiMA, Schelve M Y 2005Acta Phys. Sin. 54 3591 (in Chinese) [周立伟,李元,张智诠, Monastyrski M A, Schelve M Y 2005 54 3591]

    [3]

    Liu Z, Sun Y, Peterson S, Pianetta P 2008 Appl. Phys. Lett. 92241107

    [4]

    Zhang Y J, Chang B K, Yang Z, Niu J, Zou J J 2009 Chin. Phys.B 18 4541

    [5]

    Sinor T W, Estrera J P, Phillips D L, Rector M K 1997 Proc. SPIE2551 130

    [6]

    Leopold D J, Buckley J H, Rebillot P 2005 J. Appl. Phys. 98043525.

    [7]

    Kenneth A C, Verle W A, Hugh F M 1990 Proc. SPIE 1243 99

    [8]

    Guo H, Feng N, Xiang S M 2005 Proc. SPIE 5644 579

    [9]

    Zhao J, Zhang Y J, Chang B K, Xiong Y J, Zhang J J, Shi F, ChengH C, Cui D X 2011 Acta Phys. Sin. 60 107802 (in Chinese) [赵静,张益军,常本康,熊雅娟,张俊举,石峰,程宏昌,崔东旭 2011 60 107802]

    [10]

    Aspnes D E, Kelso S M, Logan R A, Bhat R 1986 J. Appl. Phys.60 754

    [11]

    Smith A, Passmore K, Sillmon R 2002 New Developments in Photodetection 3rd Beaune Conference Beaune, France, 17–21 June,2002

    [12]

    Liu Y Z, Wang Z C, Dong Y Q 1995 Electron Emission and Photocathode(Beijing: Beijing University of Science and Technology Press) p327 (in Chinese) [刘元震,王仲春,董亚强 1995 电子发射与光电阴极(北京: 北京理工大学出版社)第327页]

    [13]

    Zhang Y J, Niu J, Zhao J, Zou J J, Chang B K, Shi F, Cheng H C2010 J. Appl. Phys. 108 093108

    [14]

    Tang J F, Gu P F, Liu X, Li H F 2006 Modern Optical Thin FilmTechnology (Zhejiang: Zhejiang University Press) p20 (in Chinese) [唐晋发,顾培夫,刘旭,李海峰 2006 现代光学薄膜技术(浙江: 浙江大学出版社)第20页]

    [15]

    Zhao J, Chang B K, Xiong Y J, Zhang Y J 2011 Chin. Phys. B 20047801

  • [1] 吕行, 富容国, 常本康, 郭欣, 王芝. 透射式GaAs光电阴极性能提高以及结构优化.  , 2024, 73(3): 037801. doi: 10.7498/aps.73.20231542
    [2] 王国建, 刘燕文, 李芬, 田宏, 朱虹, 李云, 赵恒邦, 王小霞, 张志强. 离子束表面处理对光电阴极发射的影响.  , 2021, 70(21): 218503. doi: 10.7498/aps.70.20210587
    [3] 郝广辉, 韩攀阳, 李兴辉, 李泽鹏, 高玉娟. 真空沟道结构GaAs光电阴极电子发射特性.  , 2020, 69(10): 108501. doi: 10.7498/aps.69.20191893
    [4] 王瑜英, 阎大伟, 谭秀兰, 王雪敏, 高扬, 彭丽萍, 易有根, 吴卫东. 球壳结构金阴极及其X射线光电发射特性.  , 2015, 64(9): 094103. doi: 10.7498/aps.64.094103
    [5] 任志君, 李晓东, 金洪震. Pearcey光束簇的实验产生和光学结构研究.  , 2015, 64(23): 234205. doi: 10.7498/aps.64.234205
    [6] 邓文娟, 彭新村, 邹继军, 江少涛, 郭栋, 张益军, 常本康. 变组分AlGaAs/GaAs透射式光电阴极分辨力特性分析.  , 2014, 63(16): 167902. doi: 10.7498/aps.63.167902
    [7] 陈鑫龙, 赵静, 常本康, 徐源, 张益军, 金睦淳, 郝广辉. 指数掺杂反射式GaAlAs和GaAs光电阴极比较研究.  , 2013, 62(3): 037303. doi: 10.7498/aps.62.037303
    [8] 蔡志鹏, 杨文正, 唐伟东, 侯洵. 大梯度指数掺杂透射式GaAs光电阴极响应特性的理论分析.  , 2012, 61(18): 187901. doi: 10.7498/aps.61.187901
    [9] 郭向阳, 常本康, 王晓晖, 张益军, 杨铭. 反射式负电子亲和势GaN光电阴极的光电发射及稳定性研究.  , 2011, 60(5): 058101. doi: 10.7498/aps.60.058101
    [10] 牛军, 张益军, 常本康, 熊雅娟. GaAs光电阴极激活后的表面势垒评估研究.  , 2011, 60(4): 044210. doi: 10.7498/aps.60.044210
    [11] 张益军, 牛军, 赵静, 邹继军, 常本康. 指数掺杂结构对透射式GaAs光电阴极量子效率的影响研究.  , 2011, 60(6): 067301. doi: 10.7498/aps.60.067301
    [12] 赵静, 张益军, 常本康, 熊雅娟, 张俊举, 石峰, 程宏昌, 崔东旭. 高性能透射式GaAs光电阴极量子效率拟合与结构研究.  , 2011, 60(10): 107802. doi: 10.7498/aps.60.107802
    [13] 牛军, 张益军, 常本康, 熊雅娟. GaAs光电阴极激活时Cs的吸附效率研究.  , 2011, 60(4): 044209. doi: 10.7498/aps.60.044209
    [14] 杨智, 邹继军, 常本康. 透射式指数掺杂GaAs光电阴极最佳厚度研究.  , 2010, 59(6): 4290-4295. doi: 10.7498/aps.59.4290
    [15] 牛军, 杨智, 常本康, 乔建良, 张益军. 反射式变掺杂GaAs光电阴极量子效率模型研究.  , 2009, 58(7): 5002-5006. doi: 10.7498/aps.58.5002
    [16] 邹继军, 常本康, 杨智, 张益军, 乔建良. 指数掺杂GaAs光电阴极分辨力特性分析.  , 2009, 58(8): 5842-5846. doi: 10.7498/aps.58.5842
    [17] 邹继军, 常本康, 杨 智. 指数掺杂GaAs光电阴极量子效率的理论计算.  , 2007, 56(5): 2992-2997. doi: 10.7498/aps.56.2992
    [18] 邹继军, 常本康, 杨 智, 高 频, 乔建良, 曾一平. GaAs光电阴极在不同强度光照下的稳定性.  , 2007, 56(10): 6109-6113. doi: 10.7498/aps.56.6109
    [19] 许北雪, 吴锦雷, 刘惟敏, 杨海, 邵庆益, 刘盛, 薛增泉, 吴全德. 稀土对金属纳米粒子-介质复合薄膜(Ag-BaO)光电发射性能的增强.  , 2001, 50(5): 977-980. doi: 10.7498/aps.50.977
    [20] 邹炳锁, 汤国庆, 张桂兰, 陈文驹. 岩盐型ZnO纳米微粒的光电子发射结构.  , 1995, 44(1): 164-172. doi: 10.7498/aps.44.164
计量
  • 文章访问数:  6629
  • PDF下载量:  499
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-04-06
  • 修回日期:  2011-06-07
  • 刊出日期:  2012-03-15

/

返回文章
返回
Baidu
map