-
航天器在空间环境中运行时,会受到质子的辐照,光纤环作为航天器上光纤陀螺的重要组成部件受辐照影响 最为严重.为了研究国产一字型保偏光纤因质子辐照导致辐照诱导损耗的变化规律及其辐照损伤机理, 选择质子能量为5 MeV和10 MeV,光源波长为1310 nm,原位测量了光纤传输功率变化情况,计算出辐照诱导损耗. 利用SRIM软件,模拟能量分别为5 MeV和10 MeV质子辐照在光纤中的电离和位移损伤分布.借助X 射线光电子能谱仪分析辐照前后O 1s和Si 2p解析谱,借助傅里叶变换红外光谱仪观察光纤辐照前后光谱变化情况研究发现,在波长为1310 nm处, 光纤的辐照诱导损耗随着质子注量的增加而增长,主要原因是由于光纤纤芯中SiOH的浓度增加所导致. 而且能量为5 MeV质子辐照造成光纤的辐照诱导损耗比10 MeV严重,这是因为5 MeV质子在光纤纤芯处造成的 位移和电离损伤均比10 MeV严重,即产生的SiOH数量多.
-
关键词:
- 一字型保偏光纤 /
- 质子辐照诱导损耗 /
- X射线光电子能谱仪 /
- 傅里叶变换红外光谱仪
A spacecraft running in the space environment would be irradiated by the proton, and the irradiation effects on the most important parts of the optical fiber gyroscope in the spacecraft -the optical fiber ring is the most. In order to investigate the irradiation damage induced by proton irradiation on the Capsule type polarization-maintaining optical fibers made in china, the variation of the transportation power at 1310 nm wavelength is measured by means of situ measurement for the 5 MeV and 10 MeV environments protons irradiation on the Capsule type polarization-maintaining optical fibers made in china. The irradiation induced loss is calculated by us. The Stopping and Range of Ions in Matter (SRIM) software was used to simulate the ionic and displacement damage of 5 MeV and 10 MeV energy protons irradiation on the optical fibers. The O 1s and Si 2p analytic spectrum of the before and after irradiation were obtained by means of X ray photoelectron spectroscopy (XPS). Using the Fourier transform infrared spectrometer (FTIR), we analyzed the before and after irradiation spectrum. The results show that at the 1310 nm wavelength, the rradiation induced loss of the of optical fibers increase with the increasing of the protons fluence due to the increase of the SiOH concentration in optical fiber core. The 5 MeV proton irradiation induced loss is worse than that of the 10 MeV mainly because the more worse displacement and the ironic damage induced by 5 MeV proton at the position of the optical fiber core than that of 10 MeV, i.e., the more amount of SiOH generation.-
Keywords:
- Capsuletype polarization-maintaining optical fibers /
- proton irradiation induced loss /
- XPS /
- FTIR
[1] Klaus B, Hubert B, Martin G B, Philippe G, Peter G 2007 IEEE Trans. Indust. Appl. 43 180
[2] Li M C, Liu L H, Xiao T P, Xue J J, Liang L T, Wang H L, Xiong M 2006 Appl. Phys. Lett. 89 101101-1
[3] Sagnac G 1913 Comptes rendus de I’ academie des Sciences 95 708
[4] Ezekiel S, Arditty H J 1982 Springer Series in Optical Sciences 32 2–26
[5] Miyamaru H, Tanabe T, Iida T, Takahashi A 1996 Nucl. Instr. Meth. Phys. Res. B 116 393
[6] Wang Q Y, Geng H B, He S Y, Yang D Z, Zhang Z H, Qin X B, Li Z X 2009 Nucl. Instr. Meth. Phys. Res. B 267 2489
[7] Wu Y Y, Yue L, Hu J M, Lan M J, Xiao J D, Yang D Z, He S Y, Zhang Z W, Wang X C, Qian Y, Chen M B 2011 Acta Phys. Sin 60 098110 (in Chinese)[吴宜勇, 岳龙, 胡建民, 蓝慕杰, 肖景东, 杨德庄, 何世禹, 张忠卫, 王训春, 钱勇, 陈鸣波 2011 60 098110]
[8] Maurer R D, Schiel E J, Kronenberg S, Lux R A 1973 Appl. Opt. 12 2024
[9] Friebele E 1979 J. Optical Engineering 18 552
[10] Tortech B 2008 IEEE Trans. Nucl. Sci. 55 2223
[11] Hashim S, Bradley D A, Peng N, Ramli A T, Wagiran H 2010 Nucl. Instr. Meth. Phys. Res. A 619 291
[12] Alessi A, Girard S, Marcandella C, Agnello S, Cannas M, Boukenter A, Ouerdane Y 2011 J. Non-Crystalline Solids 357 1966
[13] Yaakob N H 2011 Appl. Radiation and Isotopes 69 1189
[14] Mahrenia A, Mohamada A B, Kadhuma A A H, Dauda W R W, Iyukeb S E 2009 J. Membrane Science 327 32
[15] Shah L H, Tsuchiya B, Nagata S, Shikama T 2011 J. Nuclear Materials 417 822
[16] Girard S, Tortech B, Régnier E, Van M, Gusarov A, Ouerdane Y, Baggio J, Paillet P, Ferle C V, Boukenter A, Meunier J P, Berghmans F, Schwank J R, Shaneyfelt M R, Felix J A, Blackmore EW, Thienpont H 2007 IEEE Trans. Nucl. Sci. 54 2426
[17] Tchebotareva A L, Brebner J L, Roorda S, Albert J 1999 Nucl. Instr. Meth. Phys. Res. B 148 687
[18] Seung J Y, Masahiro S, Yoshimichi O, Makoto F, Kouichi A, Eisuke Y, Satoshi O 2007 Nucl. Instr. Meth. Phys. Res. B 265 490
[19] Kamala S K, Lahti D G, Smith W D, Averett T M 1996 SPIE. Photonics for Space Environments 2811 95
[20] Yaakob N H,Wagiran H, Hossain I, Ramli A T, Bradley D A 2011 Nucl. Instr. Meth. Phys. Res. A 637 185
[21] Hashim S, Ali H 2011 Nucl. Instr. Meth. Phys. Res. A 637 185
[22] Fabrizio M, Francesco C, Marco Cannas 2011 J. Non-Crystalline Solids 357 1985
[23] Paul M C, Bohra D, Dhar A, Sen R, Bhatnagar P K, Dasgupta K 2009 J. Non-Crystalline Solids 355 1496
[24] Jiang H, Chen B X, Sui G R, Ji S 2010 Acta Phys. Sin. 59 7782 (in Chinese)[姜辉, 陈抱雪, 傅长松, 隋国荣, 矶守 2010 59 7782]
[25] Dan S, Adelina S 2007 Fusion Engineering and Design 82 1372
[26] Fatma I, Nur A A L, David A B, Andrew N 2011 Nucl. Instr. Meth. Phys. Res. A 652 834
[27] Alessi A, Girard S, Marcandella C, Agnello S, Cannas M, Boukenter A, Ouerdane Y 2011 Optics Express 19 11680
[28] Komeda M, Kumada H, Ishikawa M, Nakamura T, Yamamoto K, Matsumura A 2009 Appl. Radiation and Isotopes 67 S254
[29] Henschel H, Köhn O, Weinand U 2002 IEEE Trans. Nucl. Sci. 49 1432
[30] David L G 2004 J. Non-Crystalline Solids 349 139
[31] Abdulrahman M, Alhazmi, Paul M M 2009 J. Am. Soc. Mass. Spectrom 20 6
[32] Kudoh H, Kasai N, Sasuga T, Seguchi T 1996 Radlat. Phys. Chem. 48 95
[33] Lim T Y, Kim C Y, Kim B S 2004 J. Sol-Gel Sci. Tech. 31 263
[34] Cho S M, Kim Y T, Yoon D H 2003 J. Korean Phys. Soc. 42 S947
[35] Lin Y J, Lee H Y, Hwang F T, Lee C T 2001 J. Electron. Mater. 30 532
[36] Lin Y J, Lin W X, Lee C T, Chang H C 2006 Jpn. J. Appl. Phys. 45 2505
[37] Lee S H, Jeong S, Moon J 2009 Organic Electronics 10 982
[38] Kim D I, Kim K H, Ahn H S 2010 International J. Precision Engineering and Manufacturing 11 741
[39] Innocenzi P, Falcaro P, Grosso D, Babonneau F 2003 J. Phys. Chem. B 107 4711
[40] Zhang G Q, Xua D P, Song G X, Xue Y F, Li L, Wang D Y, Su W H 2009 J. Alloys and Compounds 476 L4
[41] Cannas M, Costa S Boscaino R, Gelardi F M 2004 J. Non-Cryst. Solids 337 9
[42] Feng M, Li Y G, Li J F, Li J, Zhang X G, Lu K C, Wang H J 2005 Chin. Phys. Lett. 22 1137
-
[1] Klaus B, Hubert B, Martin G B, Philippe G, Peter G 2007 IEEE Trans. Indust. Appl. 43 180
[2] Li M C, Liu L H, Xiao T P, Xue J J, Liang L T, Wang H L, Xiong M 2006 Appl. Phys. Lett. 89 101101-1
[3] Sagnac G 1913 Comptes rendus de I’ academie des Sciences 95 708
[4] Ezekiel S, Arditty H J 1982 Springer Series in Optical Sciences 32 2–26
[5] Miyamaru H, Tanabe T, Iida T, Takahashi A 1996 Nucl. Instr. Meth. Phys. Res. B 116 393
[6] Wang Q Y, Geng H B, He S Y, Yang D Z, Zhang Z H, Qin X B, Li Z X 2009 Nucl. Instr. Meth. Phys. Res. B 267 2489
[7] Wu Y Y, Yue L, Hu J M, Lan M J, Xiao J D, Yang D Z, He S Y, Zhang Z W, Wang X C, Qian Y, Chen M B 2011 Acta Phys. Sin 60 098110 (in Chinese)[吴宜勇, 岳龙, 胡建民, 蓝慕杰, 肖景东, 杨德庄, 何世禹, 张忠卫, 王训春, 钱勇, 陈鸣波 2011 60 098110]
[8] Maurer R D, Schiel E J, Kronenberg S, Lux R A 1973 Appl. Opt. 12 2024
[9] Friebele E 1979 J. Optical Engineering 18 552
[10] Tortech B 2008 IEEE Trans. Nucl. Sci. 55 2223
[11] Hashim S, Bradley D A, Peng N, Ramli A T, Wagiran H 2010 Nucl. Instr. Meth. Phys. Res. A 619 291
[12] Alessi A, Girard S, Marcandella C, Agnello S, Cannas M, Boukenter A, Ouerdane Y 2011 J. Non-Crystalline Solids 357 1966
[13] Yaakob N H 2011 Appl. Radiation and Isotopes 69 1189
[14] Mahrenia A, Mohamada A B, Kadhuma A A H, Dauda W R W, Iyukeb S E 2009 J. Membrane Science 327 32
[15] Shah L H, Tsuchiya B, Nagata S, Shikama T 2011 J. Nuclear Materials 417 822
[16] Girard S, Tortech B, Régnier E, Van M, Gusarov A, Ouerdane Y, Baggio J, Paillet P, Ferle C V, Boukenter A, Meunier J P, Berghmans F, Schwank J R, Shaneyfelt M R, Felix J A, Blackmore EW, Thienpont H 2007 IEEE Trans. Nucl. Sci. 54 2426
[17] Tchebotareva A L, Brebner J L, Roorda S, Albert J 1999 Nucl. Instr. Meth. Phys. Res. B 148 687
[18] Seung J Y, Masahiro S, Yoshimichi O, Makoto F, Kouichi A, Eisuke Y, Satoshi O 2007 Nucl. Instr. Meth. Phys. Res. B 265 490
[19] Kamala S K, Lahti D G, Smith W D, Averett T M 1996 SPIE. Photonics for Space Environments 2811 95
[20] Yaakob N H,Wagiran H, Hossain I, Ramli A T, Bradley D A 2011 Nucl. Instr. Meth. Phys. Res. A 637 185
[21] Hashim S, Ali H 2011 Nucl. Instr. Meth. Phys. Res. A 637 185
[22] Fabrizio M, Francesco C, Marco Cannas 2011 J. Non-Crystalline Solids 357 1985
[23] Paul M C, Bohra D, Dhar A, Sen R, Bhatnagar P K, Dasgupta K 2009 J. Non-Crystalline Solids 355 1496
[24] Jiang H, Chen B X, Sui G R, Ji S 2010 Acta Phys. Sin. 59 7782 (in Chinese)[姜辉, 陈抱雪, 傅长松, 隋国荣, 矶守 2010 59 7782]
[25] Dan S, Adelina S 2007 Fusion Engineering and Design 82 1372
[26] Fatma I, Nur A A L, David A B, Andrew N 2011 Nucl. Instr. Meth. Phys. Res. A 652 834
[27] Alessi A, Girard S, Marcandella C, Agnello S, Cannas M, Boukenter A, Ouerdane Y 2011 Optics Express 19 11680
[28] Komeda M, Kumada H, Ishikawa M, Nakamura T, Yamamoto K, Matsumura A 2009 Appl. Radiation and Isotopes 67 S254
[29] Henschel H, Köhn O, Weinand U 2002 IEEE Trans. Nucl. Sci. 49 1432
[30] David L G 2004 J. Non-Crystalline Solids 349 139
[31] Abdulrahman M, Alhazmi, Paul M M 2009 J. Am. Soc. Mass. Spectrom 20 6
[32] Kudoh H, Kasai N, Sasuga T, Seguchi T 1996 Radlat. Phys. Chem. 48 95
[33] Lim T Y, Kim C Y, Kim B S 2004 J. Sol-Gel Sci. Tech. 31 263
[34] Cho S M, Kim Y T, Yoon D H 2003 J. Korean Phys. Soc. 42 S947
[35] Lin Y J, Lee H Y, Hwang F T, Lee C T 2001 J. Electron. Mater. 30 532
[36] Lin Y J, Lin W X, Lee C T, Chang H C 2006 Jpn. J. Appl. Phys. 45 2505
[37] Lee S H, Jeong S, Moon J 2009 Organic Electronics 10 982
[38] Kim D I, Kim K H, Ahn H S 2010 International J. Precision Engineering and Manufacturing 11 741
[39] Innocenzi P, Falcaro P, Grosso D, Babonneau F 2003 J. Phys. Chem. B 107 4711
[40] Zhang G Q, Xua D P, Song G X, Xue Y F, Li L, Wang D Y, Su W H 2009 J. Alloys and Compounds 476 L4
[41] Cannas M, Costa S Boscaino R, Gelardi F M 2004 J. Non-Cryst. Solids 337 9
[42] Feng M, Li Y G, Li J F, Li J, Zhang X G, Lu K C, Wang H J 2005 Chin. Phys. Lett. 22 1137
计量
- 文章访问数: 6904
- PDF下载量: 593
- 被引次数: 0