搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

质子辐照对国产一字型保偏光纤损伤效应研究

张红晨 刘海 乔文强 李兴冀 何世禹 V. V. Abraimof

引用本文:
Citation:

质子辐照对国产一字型保偏光纤损伤效应研究

张红晨, 刘海, 乔文强, 李兴冀, 何世禹, V. V. Abraimof

Study of the proton irradiation damage on Capsule type polarization-maintaining optical fibers made in China

Zhang Hong-Chen, Liu Hai, Qiao Wen-Qiang, Li Xing-Ji, He Shi-Yu, V. V. Abraimof
PDF
导出引用
  • 航天器在空间环境中运行时,会受到质子的辐照,光纤环作为航天器上光纤陀螺的重要组成部件受辐照影响 最为严重.为了研究国产一字型保偏光纤因质子辐照导致辐照诱导损耗的变化规律及其辐照损伤机理, 选择质子能量为5 MeV和10 MeV,光源波长为1310 nm,原位测量了光纤传输功率变化情况,计算出辐照诱导损耗. 利用SRIM软件,模拟能量分别为5 MeV和10 MeV质子辐照在光纤中的电离和位移损伤分布.借助X 射线光电子能谱仪分析辐照前后O 1s和Si 2p解析谱,借助傅里叶变换红外光谱仪观察光纤辐照前后光谱变化情况研究发现,在波长为1310 nm处, 光纤的辐照诱导损耗随着质子注量的增加而增长,主要原因是由于光纤纤芯中SiOH的浓度增加所导致. 而且能量为5 MeV质子辐照造成光纤的辐照诱导损耗比10 MeV严重,这是因为5 MeV质子在光纤纤芯处造成的 位移和电离损伤均比10 MeV严重,即产生的SiOH数量多.
    A spacecraft running in the space environment would be irradiated by the proton, and the irradiation effects on the most important parts of the optical fiber gyroscope in the spacecraft -the optical fiber ring is the most. In order to investigate the irradiation damage induced by proton irradiation on the Capsule type polarization-maintaining optical fibers made in china, the variation of the transportation power at 1310 nm wavelength is measured by means of situ measurement for the 5 MeV and 10 MeV environments protons irradiation on the Capsule type polarization-maintaining optical fibers made in china. The irradiation induced loss is calculated by us. The Stopping and Range of Ions in Matter (SRIM) software was used to simulate the ionic and displacement damage of 5 MeV and 10 MeV energy protons irradiation on the optical fibers. The O 1s and Si 2p analytic spectrum of the before and after irradiation were obtained by means of X ray photoelectron spectroscopy (XPS). Using the Fourier transform infrared spectrometer (FTIR), we analyzed the before and after irradiation spectrum. The results show that at the 1310 nm wavelength, the rradiation induced loss of the of optical fibers increase with the increasing of the protons fluence due to the increase of the SiOH concentration in optical fiber core. The 5 MeV proton irradiation induced loss is worse than that of the 10 MeV mainly because the more worse displacement and the ironic damage induced by 5 MeV proton at the position of the optical fiber core than that of 10 MeV, i.e., the more amount of SiOH generation.
    [1]

    Klaus B, Hubert B, Martin G B, Philippe G, Peter G 2007 IEEE Trans. Indust. Appl. 43 180

    [2]

    Li M C, Liu L H, Xiao T P, Xue J J, Liang L T, Wang H L, Xiong M 2006 Appl. Phys. Lett. 89 101101-1

    [3]

    Sagnac G 1913 Comptes rendus de I’ academie des Sciences 95 708

    [4]

    Ezekiel S, Arditty H J 1982 Springer Series in Optical Sciences 32 2–26

    [5]

    Miyamaru H, Tanabe T, Iida T, Takahashi A 1996 Nucl. Instr. Meth. Phys. Res. B 116 393

    [6]

    Wang Q Y, Geng H B, He S Y, Yang D Z, Zhang Z H, Qin X B, Li Z X 2009 Nucl. Instr. Meth. Phys. Res. B 267 2489

    [7]

    Wu Y Y, Yue L, Hu J M, Lan M J, Xiao J D, Yang D Z, He S Y, Zhang Z W, Wang X C, Qian Y, Chen M B 2011 Acta Phys. Sin 60 098110 (in Chinese)[吴宜勇, 岳龙, 胡建民, 蓝慕杰, 肖景东, 杨德庄, 何世禹, 张忠卫, 王训春, 钱勇, 陈鸣波 2011 60 098110]

    [8]

    Maurer R D, Schiel E J, Kronenberg S, Lux R A 1973 Appl. Opt. 12 2024

    [9]

    Friebele E 1979 J. Optical Engineering 18 552

    [10]

    Tortech B 2008 IEEE Trans. Nucl. Sci. 55 2223

    [11]

    Hashim S, Bradley D A, Peng N, Ramli A T, Wagiran H 2010 Nucl. Instr. Meth. Phys. Res. A 619 291

    [12]

    Alessi A, Girard S, Marcandella C, Agnello S, Cannas M, Boukenter A, Ouerdane Y 2011 J. Non-Crystalline Solids 357 1966

    [13]

    Yaakob N H 2011 Appl. Radiation and Isotopes 69 1189

    [14]

    Mahrenia A, Mohamada A B, Kadhuma A A H, Dauda W R W, Iyukeb S E 2009 J. Membrane Science 327 32

    [15]

    Shah L H, Tsuchiya B, Nagata S, Shikama T 2011 J. Nuclear Materials 417 822

    [16]

    Girard S, Tortech B, Régnier E, Van M, Gusarov A, Ouerdane Y, Baggio J, Paillet P, Ferle C V, Boukenter A, Meunier J P, Berghmans F, Schwank J R, Shaneyfelt M R, Felix J A, Blackmore EW, Thienpont H 2007 IEEE Trans. Nucl. Sci. 54 2426

    [17]

    Tchebotareva A L, Brebner J L, Roorda S, Albert J 1999 Nucl. Instr. Meth. Phys. Res. B 148 687

    [18]

    Seung J Y, Masahiro S, Yoshimichi O, Makoto F, Kouichi A, Eisuke Y, Satoshi O 2007 Nucl. Instr. Meth. Phys. Res. B 265 490

    [19]

    Kamala S K, Lahti D G, Smith W D, Averett T M 1996 SPIE. Photonics for Space Environments 2811 95

    [20]

    Yaakob N H,Wagiran H, Hossain I, Ramli A T, Bradley D A 2011 Nucl. Instr. Meth. Phys. Res. A 637 185

    [21]

    Hashim S, Ali H 2011 Nucl. Instr. Meth. Phys. Res. A 637 185

    [22]

    Fabrizio M, Francesco C, Marco Cannas 2011 J. Non-Crystalline Solids 357 1985

    [23]

    Paul M C, Bohra D, Dhar A, Sen R, Bhatnagar P K, Dasgupta K 2009 J. Non-Crystalline Solids 355 1496

    [24]

    Jiang H, Chen B X, Sui G R, Ji S 2010 Acta Phys. Sin. 59 7782 (in Chinese)[姜辉, 陈抱雪, 傅长松, 隋国荣, 矶守 2010 59 7782]

    [25]

    Dan S, Adelina S 2007 Fusion Engineering and Design 82 1372

    [26]

    Fatma I, Nur A A L, David A B, Andrew N 2011 Nucl. Instr. Meth. Phys. Res. A 652 834

    [27]

    Alessi A, Girard S, Marcandella C, Agnello S, Cannas M, Boukenter A, Ouerdane Y 2011 Optics Express 19 11680

    [28]

    Komeda M, Kumada H, Ishikawa M, Nakamura T, Yamamoto K, Matsumura A 2009 Appl. Radiation and Isotopes 67 S254

    [29]

    Henschel H, Köhn O, Weinand U 2002 IEEE Trans. Nucl. Sci. 49 1432

    [30]

    David L G 2004 J. Non-Crystalline Solids 349 139

    [31]

    Abdulrahman M, Alhazmi, Paul M M 2009 J. Am. Soc. Mass. Spectrom 20 6

    [32]

    Kudoh H, Kasai N, Sasuga T, Seguchi T 1996 Radlat. Phys. Chem. 48 95

    [33]

    Lim T Y, Kim C Y, Kim B S 2004 J. Sol-Gel Sci. Tech. 31 263

    [34]

    Cho S M, Kim Y T, Yoon D H 2003 J. Korean Phys. Soc. 42 S947

    [35]

    Lin Y J, Lee H Y, Hwang F T, Lee C T 2001 J. Electron. Mater. 30 532

    [36]

    Lin Y J, Lin W X, Lee C T, Chang H C 2006 Jpn. J. Appl. Phys. 45 2505

    [37]

    Lee S H, Jeong S, Moon J 2009 Organic Electronics 10 982

    [38]

    Kim D I, Kim K H, Ahn H S 2010 International J. Precision Engineering and Manufacturing 11 741

    [39]

    Innocenzi P, Falcaro P, Grosso D, Babonneau F 2003 J. Phys. Chem. B 107 4711

    [40]

    Zhang G Q, Xua D P, Song G X, Xue Y F, Li L, Wang D Y, Su W H 2009 J. Alloys and Compounds 476 L4

    [41]

    Cannas M, Costa S Boscaino R, Gelardi F M 2004 J. Non-Cryst. Solids 337 9

    [42]

    Feng M, Li Y G, Li J F, Li J, Zhang X G, Lu K C, Wang H J 2005 Chin. Phys. Lett. 22 1137

  • [1]

    Klaus B, Hubert B, Martin G B, Philippe G, Peter G 2007 IEEE Trans. Indust. Appl. 43 180

    [2]

    Li M C, Liu L H, Xiao T P, Xue J J, Liang L T, Wang H L, Xiong M 2006 Appl. Phys. Lett. 89 101101-1

    [3]

    Sagnac G 1913 Comptes rendus de I’ academie des Sciences 95 708

    [4]

    Ezekiel S, Arditty H J 1982 Springer Series in Optical Sciences 32 2–26

    [5]

    Miyamaru H, Tanabe T, Iida T, Takahashi A 1996 Nucl. Instr. Meth. Phys. Res. B 116 393

    [6]

    Wang Q Y, Geng H B, He S Y, Yang D Z, Zhang Z H, Qin X B, Li Z X 2009 Nucl. Instr. Meth. Phys. Res. B 267 2489

    [7]

    Wu Y Y, Yue L, Hu J M, Lan M J, Xiao J D, Yang D Z, He S Y, Zhang Z W, Wang X C, Qian Y, Chen M B 2011 Acta Phys. Sin 60 098110 (in Chinese)[吴宜勇, 岳龙, 胡建民, 蓝慕杰, 肖景东, 杨德庄, 何世禹, 张忠卫, 王训春, 钱勇, 陈鸣波 2011 60 098110]

    [8]

    Maurer R D, Schiel E J, Kronenberg S, Lux R A 1973 Appl. Opt. 12 2024

    [9]

    Friebele E 1979 J. Optical Engineering 18 552

    [10]

    Tortech B 2008 IEEE Trans. Nucl. Sci. 55 2223

    [11]

    Hashim S, Bradley D A, Peng N, Ramli A T, Wagiran H 2010 Nucl. Instr. Meth. Phys. Res. A 619 291

    [12]

    Alessi A, Girard S, Marcandella C, Agnello S, Cannas M, Boukenter A, Ouerdane Y 2011 J. Non-Crystalline Solids 357 1966

    [13]

    Yaakob N H 2011 Appl. Radiation and Isotopes 69 1189

    [14]

    Mahrenia A, Mohamada A B, Kadhuma A A H, Dauda W R W, Iyukeb S E 2009 J. Membrane Science 327 32

    [15]

    Shah L H, Tsuchiya B, Nagata S, Shikama T 2011 J. Nuclear Materials 417 822

    [16]

    Girard S, Tortech B, Régnier E, Van M, Gusarov A, Ouerdane Y, Baggio J, Paillet P, Ferle C V, Boukenter A, Meunier J P, Berghmans F, Schwank J R, Shaneyfelt M R, Felix J A, Blackmore EW, Thienpont H 2007 IEEE Trans. Nucl. Sci. 54 2426

    [17]

    Tchebotareva A L, Brebner J L, Roorda S, Albert J 1999 Nucl. Instr. Meth. Phys. Res. B 148 687

    [18]

    Seung J Y, Masahiro S, Yoshimichi O, Makoto F, Kouichi A, Eisuke Y, Satoshi O 2007 Nucl. Instr. Meth. Phys. Res. B 265 490

    [19]

    Kamala S K, Lahti D G, Smith W D, Averett T M 1996 SPIE. Photonics for Space Environments 2811 95

    [20]

    Yaakob N H,Wagiran H, Hossain I, Ramli A T, Bradley D A 2011 Nucl. Instr. Meth. Phys. Res. A 637 185

    [21]

    Hashim S, Ali H 2011 Nucl. Instr. Meth. Phys. Res. A 637 185

    [22]

    Fabrizio M, Francesco C, Marco Cannas 2011 J. Non-Crystalline Solids 357 1985

    [23]

    Paul M C, Bohra D, Dhar A, Sen R, Bhatnagar P K, Dasgupta K 2009 J. Non-Crystalline Solids 355 1496

    [24]

    Jiang H, Chen B X, Sui G R, Ji S 2010 Acta Phys. Sin. 59 7782 (in Chinese)[姜辉, 陈抱雪, 傅长松, 隋国荣, 矶守 2010 59 7782]

    [25]

    Dan S, Adelina S 2007 Fusion Engineering and Design 82 1372

    [26]

    Fatma I, Nur A A L, David A B, Andrew N 2011 Nucl. Instr. Meth. Phys. Res. A 652 834

    [27]

    Alessi A, Girard S, Marcandella C, Agnello S, Cannas M, Boukenter A, Ouerdane Y 2011 Optics Express 19 11680

    [28]

    Komeda M, Kumada H, Ishikawa M, Nakamura T, Yamamoto K, Matsumura A 2009 Appl. Radiation and Isotopes 67 S254

    [29]

    Henschel H, Köhn O, Weinand U 2002 IEEE Trans. Nucl. Sci. 49 1432

    [30]

    David L G 2004 J. Non-Crystalline Solids 349 139

    [31]

    Abdulrahman M, Alhazmi, Paul M M 2009 J. Am. Soc. Mass. Spectrom 20 6

    [32]

    Kudoh H, Kasai N, Sasuga T, Seguchi T 1996 Radlat. Phys. Chem. 48 95

    [33]

    Lim T Y, Kim C Y, Kim B S 2004 J. Sol-Gel Sci. Tech. 31 263

    [34]

    Cho S M, Kim Y T, Yoon D H 2003 J. Korean Phys. Soc. 42 S947

    [35]

    Lin Y J, Lee H Y, Hwang F T, Lee C T 2001 J. Electron. Mater. 30 532

    [36]

    Lin Y J, Lin W X, Lee C T, Chang H C 2006 Jpn. J. Appl. Phys. 45 2505

    [37]

    Lee S H, Jeong S, Moon J 2009 Organic Electronics 10 982

    [38]

    Kim D I, Kim K H, Ahn H S 2010 International J. Precision Engineering and Manufacturing 11 741

    [39]

    Innocenzi P, Falcaro P, Grosso D, Babonneau F 2003 J. Phys. Chem. B 107 4711

    [40]

    Zhang G Q, Xua D P, Song G X, Xue Y F, Li L, Wang D Y, Su W H 2009 J. Alloys and Compounds 476 L4

    [41]

    Cannas M, Costa S Boscaino R, Gelardi F M 2004 J. Non-Cryst. Solids 337 9

    [42]

    Feng M, Li Y G, Li J F, Li J, Zhang X G, Lu K C, Wang H J 2005 Chin. Phys. Lett. 22 1137

  • [1] 邵军, 陈熙仁, 王嫚, 陆卫. 红外调制光致发光光谱技术:从宽波段覆盖到微区高通量测量.  , 2024, 73(24): . doi: 10.7498/aps.73.20241491
    [2] 杨蒙生, 易泰民, 郑凤成, 唐永建, 张林, 杜凯, 李宁, 赵利平, 柯博, 邢丕峰. 沉积态铀薄膜表面氧化的X射线光电子能谱.  , 2018, 67(2): 027301. doi: 10.7498/aps.67.20172055
    [3] 王洪亮, 吕金光, 梁静秋, 梁中翥, 秦余欣, 王维彪. 中波红外微型静态傅里叶变换光谱仪的设计与分析.  , 2018, 67(6): 060702. doi: 10.7498/aps.67.20172599
    [4] 李祺伟, 张淳民, 魏宇童, 陈清颖. 偏振型干涉成像光谱仪中Savart偏光镜通光孔径的研究.  , 2015, 64(22): 224206. doi: 10.7498/aps.64.224206
    [5] 李金洋, 逯丹凤, 祁志美. 集成光波导静态傅里叶变换微光谱仪分辨率倍增方法.  , 2015, 64(11): 114207. doi: 10.7498/aps.64.114207
    [6] 许思维, 王丽, 沈祥. GexSb20Se80-x玻璃的拉曼光谱和X射线光电子能谱.  , 2015, 64(22): 223302. doi: 10.7498/aps.64.223302
    [7] 陈成, 梁静秋, 梁中翥, 吕金光, 秦余欣, 田超, 王维彪. 准直系统热光学效应对静态傅里叶变换红外光谱仪光谱复原的影响研究.  , 2015, 64(13): 130703. doi: 10.7498/aps.64.130703
    [8] 杨发展, 沈丽如, 王世庆, 唐德礼, 金凡亚, 刘海峰. 等离子体增强化学气相沉积法制备含氢类金刚石膜的紫外Raman光谱和X射线光电子能谱研究.  , 2013, 62(1): 017802. doi: 10.7498/aps.62.017802
    [9] 张旭杰, 刘红侠, 范小娇, 樊继斌. 前驱体和退火温度对Nd2O3薄膜组分影响的定量研究.  , 2013, 62(3): 037701. doi: 10.7498/aps.62.037701
    [10] 吕金光, 梁静秋, 梁中翥. 空间调制傅里叶变换光谱仪分束器色散特性研究.  , 2012, 61(14): 140702. doi: 10.7498/aps.61.140702
    [11] 吕金光, 梁静秋, 梁中翥. 窄带傅里叶变换光谱仪中平稳高斯噪声的理论分析.  , 2012, 61(7): 070704. doi: 10.7498/aps.61.070704
    [12] 韩录会, 张崇宏, 张丽卿, 杨义涛, 宋银, 孙友梅. 低速高电荷态重离子辐照的GaN晶体表面X射线光电子能谱研究.  , 2010, 59(7): 4584-4590. doi: 10.7498/aps.59.4584
    [13] 黄进, 蒋晓东, 刘红婕, 吕海兵, 王海军, 袁晓东, 郑万国. 真空环境中紫外脉冲激光对熔石英抗损伤能力的影响.  , 2010, 59(7): 4677-4681. doi: 10.7498/aps.59.4677
    [14] 胡 昕, 江少恩, 崔延莉, 黄翼翔, 丁永坤, 刘忠礼, 易荣清, 李朝光, 张景和, 张华全. 一种时间分辨三通道软X射线光谱仪.  , 2007, 56(3): 1447-1451. doi: 10.7498/aps.56.1447
    [15] 冯玉清, 赵 昆, 朱 涛, 詹文山. 磁性隧道结热稳定性的x射线光电子能谱研究.  , 2005, 54(11): 5372-5376. doi: 10.7498/aps.54.5372
    [16] 李刘合, 张海泉, 崔旭明, 张彦华, 夏立芳, 马欣新, 孙跃. X射线光电子能谱辅助Raman光谱分析类金刚石碳膜的结构细节.  , 2001, 50(8): 1549-1554. doi: 10.7498/aps.50.1549
    [17] 季振国, 陈立登, 马向阳, 姚鸿年, 阙端麟. 发光多孔硅的X射线光电子能谱深度剖析.  , 1995, 44(1): 57-63. doi: 10.7498/aps.44.57
    [18] 赵良仲. Ce(Ⅳ)和Ce(Ⅲ)化合物系列的X射线光电子能谱研究.  , 1989, 38(6): 987-990. doi: 10.7498/aps.38.987
    [19] 张酣, 何振辉, 赵勇, 孙式方, 钱逸泰, 张其瑞. Y—Ba—Cu—Al—O体系的X射线光电子能谱研究.  , 1989, 38(4): 689-693. doi: 10.7498/aps.38.689
    [20] 赵力耕, 徐至展. 激光诱导自电离及其光电子能谱.  , 1987, 36(4): 467-472. doi: 10.7498/aps.36.467
计量
  • 文章访问数:  6904
  • PDF下载量:  593
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-06-06
  • 修回日期:  2011-09-20
  • 刊出日期:  2012-03-15

/

返回文章
返回
Baidu
map