搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

搅拌摩擦焊准稳态热力耦合过程数值模拟研究

殷鹏飞 张蓉 熊江涛 李京龙

引用本文:
Citation:

搅拌摩擦焊准稳态热力耦合过程数值模拟研究

殷鹏飞, 张蓉, 熊江涛, 李京龙

Numerical simulation of coupled thermo-mechanical process of friction stir welding in quasi-steady-state

Yin Peng-Fei, Zhang Rong, Xiong Jiang-Tao, Li Jing-Long
PDF
导出引用
  • 搅拌摩擦焊接过程中的材料塑性变形流场与温度场对焊接接头的组织演化及最终的力学性能有着十分重要的影响, 许多学者对此进行了大量的研究.近年来的研究结果表明, 该过程是一个极其复杂的热力耦合过程, 温度场与材料塑性变形流场之间具有相互耦合效应. 运用流体力学和传热学原理对准稳态热力耦合过程进行了数值模拟研究, 通过计算得到了焊件材料的流场和温度场分布, 并设计了相关实验对温度场进行了验证, 结果表明该计算结果可以较准确地描述搅拌摩擦焊准稳态热力耦合状态.
    The flow field of plastic deformation and the temperature field during the process of friction stir welding can directly affect the structure evolution of the welded joint, and also have a great influence on mechanical properties of the final joint. In this respect, therfore, a lot of researches have been carried out. The recent research results show that this process is an extremely complex coupled thermal-mechanical process, the temperature field couples together with the flow field of plastic deformation of the material. In this paper, the coupled process is simulated based on hydromechanics and heat transfer theory; the flow field of plastic deformation and the temperature field are calculated; an experiment is designed to measure the temperature field, which indicates that the computed results can exactly describe the coupled thermal-mechanical condition of the friction stir welding in quasi-steady-state.
    • 基金项目: 国家自然科学基金(批准号: 51071123)和西北工业大学研究生创业种子基金(批准号: Z2012151)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51071123), and the Graduate Starting Seed Fund of Northwestern Polytechnical University, China (Grant No. Z2012151).
    [1]

    Mishra R S, Ma Z Y 2005 Mater. Sci. Eng. 50 1

    [2]

    Heurtier P, Jones M J, Desrayaud C, Driver J H, Montheillet F, Allehaux D 2006 J. Mater. Process. Technol. 171 348

    [3]

    Hamilton C, Dymek S, Blicharski M 2008 Mater. Charact. 59 1206

    [4]

    Jacquin D, de Meester B, Simar A, Deloison D, Montheillet F, Desrayaud C 2011 J. Mater. Process. Technol. 211 57

    [5]

    Wang X H, Wang K S, Xu K W, Hu K 2006 Ordn. Mater. Sci. Eng. 29 47 (in Chinese) [王训宏, 王快社, 许可为, 胡锴 2006 兵器材料科学与工程 29 47]

    [6]

    Wang X J, Han X H 2006 Electr. Weld. Mach. 36 48 (in Chinese) [王希靖, 韩晓辉 2006 电焊机 36 48]

    [7]

    Deng X M, Xu S W 2004 J. Manuf. Processes 6 125

    [8]

    Chao Y J, Qi X 1998 J. Mater. Process. Manuf. Sci. 7 215

    [9]

    Zhu X K, Chao Y J 2004 J. Mater. Process. Technol. 146 263

    [10]

    Xu W F, Liu J H 2010 Trans. China Weld. Inst. 31 63 (in Chinese) [徐韦锋, 刘金合, 朱宏强 2010 焊接学报 31 63]

    [11]

    Zhao J M, Wang Y, Yin X, Zhang H 2008 Mater. Mech. Eng. 32 78 (in Chinese) [赵俊敏, 王玉, 尹欣, 张辉 2008 机械工程材料 32 78]

    [12]

    Wang X J, Han X H, Guo R J, Li J 2005 Trans. China Weld. Inst. 26 17 (in Chinese) [王希靖, 韩晓辉, 郭瑞杰, 李晶 2005焊接学报 26 17]

    [13]

    Song M, Kovacevic R 2003 Int. J. Mach. Tools Manuf. 43 605

    [14]

    Fourment L, Guerdoux S 2004 5th International Friction Stir Welding Symposium Metz, France, September 14-16, 2004 p1259

    [15]

    Ulysse P 2002 Int. J. Mach. Tools Manuf. 42 1549

    [16]

    Hamilton C, Sommers A, Dymek S 2009 Int. J. Mach. Tools Manuf. 49 230

    [17]

    Shi Q Y, Wang X B, Kang X, Sun Y J 2010 J. Tsinghua Univ. (Sci. Technol.) 50 980 (in Chinese) [史清宇, 王细波, 康旭, 孙延军 2010 清华大学学报(自然科学版) 50 980]

    [18]

    Mendez P F, Tello K E, Lienert T J 2010 Acta Mater. 58 6012

    [19]

    Jacquin D, de Meester B, Simar A, Deloison D, Montheillet F, Desrayaud C 2011 J. Mater. Process. Technol. 211 57

    [20]

    Colegrove P A, Shercliff H R 2005 J. Mater. Process. Technol. 169 320

    [21]

    Hilgert J, Huetsch L L, Santos J F dos, Huber N 2010 COMSOL Conference 2010 Paris Paris, France, November 17-19, 2010

    [22]

    Zhang Z, Liu Y L, Chen J T, Zhang H W 2007 Trans. China Weld. Inst. 28 17 (in Chinese) [张昭, 刘亚丽, 陈金涛, 张洪武 2007 焊接学报 28 17]

    [23]

    Guerra M, Schmidt C, McClure J C, Murr L E, Nunes A C 2003 Mater. Charact. 49 95

    [24]

    Xu W F, Liu J H, Luan G H, Dong C L, Tang J Y, Li G 2008 Mech. Sci. Technol. Aerosp. Eng. 27 1159 (in Chinese) [徐韦峰, 刘金合, 栾国红, 董春林, 唐建宇, 李光 2008 机械科学与技术 27 1159]

    [25]

    Su X L, Wang K S, Zhou J J 2006 Weld. Technol. 35 12 (in Chinese) [苏晓莉, 王快社, 周俊杰 2006 焊接技术 35 12]

    [26]

    Zhou X Y, Ke L M, Liu G P, Xing L, Xia C, Tang X C 2003 New Technol. New Process 10 32 (in Chinese) [周细应, 柯黎明, 刘鸽平, 邢丽, 夏春, 汤旭昌 2003 新技术新工艺 10 32]

  • [1]

    Mishra R S, Ma Z Y 2005 Mater. Sci. Eng. 50 1

    [2]

    Heurtier P, Jones M J, Desrayaud C, Driver J H, Montheillet F, Allehaux D 2006 J. Mater. Process. Technol. 171 348

    [3]

    Hamilton C, Dymek S, Blicharski M 2008 Mater. Charact. 59 1206

    [4]

    Jacquin D, de Meester B, Simar A, Deloison D, Montheillet F, Desrayaud C 2011 J. Mater. Process. Technol. 211 57

    [5]

    Wang X H, Wang K S, Xu K W, Hu K 2006 Ordn. Mater. Sci. Eng. 29 47 (in Chinese) [王训宏, 王快社, 许可为, 胡锴 2006 兵器材料科学与工程 29 47]

    [6]

    Wang X J, Han X H 2006 Electr. Weld. Mach. 36 48 (in Chinese) [王希靖, 韩晓辉 2006 电焊机 36 48]

    [7]

    Deng X M, Xu S W 2004 J. Manuf. Processes 6 125

    [8]

    Chao Y J, Qi X 1998 J. Mater. Process. Manuf. Sci. 7 215

    [9]

    Zhu X K, Chao Y J 2004 J. Mater. Process. Technol. 146 263

    [10]

    Xu W F, Liu J H 2010 Trans. China Weld. Inst. 31 63 (in Chinese) [徐韦锋, 刘金合, 朱宏强 2010 焊接学报 31 63]

    [11]

    Zhao J M, Wang Y, Yin X, Zhang H 2008 Mater. Mech. Eng. 32 78 (in Chinese) [赵俊敏, 王玉, 尹欣, 张辉 2008 机械工程材料 32 78]

    [12]

    Wang X J, Han X H, Guo R J, Li J 2005 Trans. China Weld. Inst. 26 17 (in Chinese) [王希靖, 韩晓辉, 郭瑞杰, 李晶 2005焊接学报 26 17]

    [13]

    Song M, Kovacevic R 2003 Int. J. Mach. Tools Manuf. 43 605

    [14]

    Fourment L, Guerdoux S 2004 5th International Friction Stir Welding Symposium Metz, France, September 14-16, 2004 p1259

    [15]

    Ulysse P 2002 Int. J. Mach. Tools Manuf. 42 1549

    [16]

    Hamilton C, Sommers A, Dymek S 2009 Int. J. Mach. Tools Manuf. 49 230

    [17]

    Shi Q Y, Wang X B, Kang X, Sun Y J 2010 J. Tsinghua Univ. (Sci. Technol.) 50 980 (in Chinese) [史清宇, 王细波, 康旭, 孙延军 2010 清华大学学报(自然科学版) 50 980]

    [18]

    Mendez P F, Tello K E, Lienert T J 2010 Acta Mater. 58 6012

    [19]

    Jacquin D, de Meester B, Simar A, Deloison D, Montheillet F, Desrayaud C 2011 J. Mater. Process. Technol. 211 57

    [20]

    Colegrove P A, Shercliff H R 2005 J. Mater. Process. Technol. 169 320

    [21]

    Hilgert J, Huetsch L L, Santos J F dos, Huber N 2010 COMSOL Conference 2010 Paris Paris, France, November 17-19, 2010

    [22]

    Zhang Z, Liu Y L, Chen J T, Zhang H W 2007 Trans. China Weld. Inst. 28 17 (in Chinese) [张昭, 刘亚丽, 陈金涛, 张洪武 2007 焊接学报 28 17]

    [23]

    Guerra M, Schmidt C, McClure J C, Murr L E, Nunes A C 2003 Mater. Charact. 49 95

    [24]

    Xu W F, Liu J H, Luan G H, Dong C L, Tang J Y, Li G 2008 Mech. Sci. Technol. Aerosp. Eng. 27 1159 (in Chinese) [徐韦峰, 刘金合, 栾国红, 董春林, 唐建宇, 李光 2008 机械科学与技术 27 1159]

    [25]

    Su X L, Wang K S, Zhou J J 2006 Weld. Technol. 35 12 (in Chinese) [苏晓莉, 王快社, 周俊杰 2006 焊接技术 35 12]

    [26]

    Zhou X Y, Ke L M, Liu G P, Xing L, Xia C, Tang X C 2003 New Technol. New Process 10 32 (in Chinese) [周细应, 柯黎明, 刘鸽平, 邢丽, 夏春, 汤旭昌 2003 新技术新工艺 10 32]

  • [1] 于博文, 何孝天, 徐进良. 超临界CO2池式传热流固耦合传热特性数值模拟.  , 2024, 73(10): 104401. doi: 10.7498/aps.73.20231953
    [2] 牛越, 包为民, 李小平, 刘彦明, 刘东林. 大功率热平衡感应耦合等离子体数值模拟及实验研究.  , 2021, 70(9): 095204. doi: 10.7498/aps.70.20201610
    [3] 刘富成, 刘雅慧, 周志向, 郭雪, 董梦菲. 双层耦合非对称反应扩散系统中的超点阵斑图.  , 2020, 69(2): 028201. doi: 10.7498/aps.69.20191353
    [4] 王存海, 郑树, 张欣欣. 非规则形状介质内辐射-导热耦合传热的间断有限元求解.  , 2020, 69(3): 034401. doi: 10.7498/aps.69.20191185
    [5] 喻明浩. 非平衡感应耦合等离子体流场与电磁场作用机理的数值模拟.  , 2019, 68(18): 185202. doi: 10.7498/aps.68.20190865
    [6] 高新强, 沈俊, 和晓楠, 唐成春, 戴巍, 李珂, 公茂琼, 吴剑峰. 耦合高压斯特林制冷效应的复合磁制冷循环的数值模拟.  , 2015, 64(21): 210201. doi: 10.7498/aps.64.210201
    [7] 刘扬, 韩燕龙, 贾富国, 姚丽娜, 王会, 史宇菲. 椭球颗粒搅拌运动及混合特性的数值模拟研究.  , 2015, 64(11): 114501. doi: 10.7498/aps.64.114501
    [8] 陈石, 王辉, 沈胜强, 梁刚涛. 液滴振荡模型及与数值模拟的对比.  , 2013, 62(20): 204702. doi: 10.7498/aps.62.204702
    [9] 王新鑫, 樊丁, 黄健康, 黄勇. 双钨极耦合电弧数值模拟.  , 2013, 62(22): 228101. doi: 10.7498/aps.62.228101
    [10] 李艳阳, 杨仕娥, 陈永生, 周建朋, 李新利, 卢景霄. 甚高频电容耦合氢等离子体特性研究.  , 2012, 61(16): 165203. doi: 10.7498/aps.61.165203
    [11] 刘磊, 费建芳, 黄小刚, 程小平. 大气-海浪-海流耦合模式的建立和一次台风过程的初步试验.  , 2012, 61(14): 149201. doi: 10.7498/aps.61.149201
    [12] 聂涛, 刘伟强. 高超声速飞行器前缘流固耦合计算方法研究.  , 2012, 61(18): 184401. doi: 10.7498/aps.61.184401
    [13] 白占国, 董丽芳, 李永辉, 范伟丽. 双层耦合Lengel-Epstein模型中的超点阵斑图.  , 2011, 60(11): 118201. doi: 10.7498/aps.60.118201
    [14] 赵啦啦, 刘初升, 闫俊霞, 蒋小伟, 朱艳. 不同振动模式下颗粒分离行为的数值模拟.  , 2010, 59(4): 2582-2588. doi: 10.7498/aps.59.2582
    [15] 蔡利兵, 王建国. 介质表面高功率微波击穿的数值模拟.  , 2009, 58(5): 3268-3273. doi: 10.7498/aps.58.3268
    [16] 冯永平, 崔俊芝, 邓明香. 周期孔洞区域中热力耦合问题的双尺度有限元计算.  , 2009, 58(13): 327-S337. doi: 10.7498/aps.58.327
    [17] 姚小虎, 韩 强. 热力耦合作用下双层碳纳米管的扭转屈曲.  , 2008, 57(8): 5056-5062. doi: 10.7498/aps.57.5056
    [18] 张远涛, 王德真, 王艳辉. 大气压介质阻挡丝状放电时空演化数值模拟.  , 2005, 54(10): 4808-4815. doi: 10.7498/aps.54.4808
    [19] 丁伯江, 匡光力, 刘岳修, 沈慰慈, 俞家文, 石跃江. 低杂波电流驱动的数值模拟.  , 2002, 51(11): 2556-2561. doi: 10.7498/aps.51.2556
    [20] 张旭, 沈柯. 时空混沌的单向耦合同步.  , 2002, 51(12): 2702-2706. doi: 10.7498/aps.51.2702
计量
  • 文章访问数:  7131
  • PDF下载量:  1476
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-06-20
  • 修回日期:  2012-07-24
  • 刊出日期:  2013-01-05

/

返回文章
返回
Baidu
map