-
在旋量Bose-Einstein凝聚体(BEC)中引入量子Zeno子空间,将系统由3个自由度简化到2个自由度,给出了在S=1的反铁磁旋量BEC中制备双模最大纠缠态的方案.通过计算未简化系统中粒子数随时间的演化,证明了引入量子Zeno子空间简化系统的准确性.
-
关键词:
- Bose-Einstein凝聚 /
- 量子纠缠 /
- 量子Zeno空间
We propose a scheme to generate maximally two-mode entangled state in a spinor-1 anti-ferromagnetic Bose-Einstein condensation. We reduce the three-level system into an effective two-level system via the quantum Zeno subspace created by exerting strong Raman coupling. We investigate the particle number evolution in the unreduced system to justify the existence of Zeno subspace and find that the effective system can be trusted and the entanglement production is reliable.[1] Kheruntsyan K V, Olsen M K, Drummond P D 2005 Phys. Rev. Lett. 95 150405
[2] Esteve J, Gross C, Weller A, Giovanazzi S, Oberthaler M K 2008 Nature 455 1216
[3] Sorensen A, Duan L M, Cirac J I, Zoller P 2001 Nature 409 63
[4] Kitagawa M, Ueda M 1993 Phys. Rev. A 47 5138
[5] Shi Y, Niu Q 2006 Phys. Rev. Lett. 96 140401
[6] Deb B, Agarwal G S 2008 Phys. Rev. A 78 013639
[7] Cola M M, Piovella N 2004 Phys. Rev. A 70 045601
[8] Li Z G, Fei S M, Albeverio S, Liu W M 2009 Phys. Rev. A 80 034301
[9] Li Z G, Fei S M, Wang Z D, Liu W M 2009 Phys. Rev. A 79 024303
[10] Li Z G, Zhao M J, Fei S M, Liu W M 2010 Phys. Rev. A 81 042312
[11] Duan L M, Cirac J I, Zoller P 2002 Phys. Rev. A 65 033619
[12] Zhang M, You L 2003 Phys. Rev. Lett. 91 230404
[13] Yi S, Müstecaplio Agˇ lu E, Sun C P, You L 2002 Phys. Rev. A 66 011601
[14] Xu Y, Jia D J, Li Z X, Chen B, Tan L 2009 Acta Phys. Sin. 58 55 (in Chinese) [徐 岩、 贾多杰、 李照鑫、 陈 兵、 谭 磊 2009 58 55]
[15] Hines A P, McKenzie R H, Milburn G J 2003 Phys. Rev. A 67 013609
[16] Ho T L 1998 Phys. Rev. Lett. 81 742
[17] Law C K, Pu H, Bigelow N P 1998 Phys. Rev. Lett. 81 5257
[18] Pu H, Law C K, Raghavan S, Eberly J H, Bigelow N P 1999 Phys. Rev. A 60 1463
[19] Facchi P, Pascazio S 2002 Phys. Rev. Lett. 89 080401
-
[1] Kheruntsyan K V, Olsen M K, Drummond P D 2005 Phys. Rev. Lett. 95 150405
[2] Esteve J, Gross C, Weller A, Giovanazzi S, Oberthaler M K 2008 Nature 455 1216
[3] Sorensen A, Duan L M, Cirac J I, Zoller P 2001 Nature 409 63
[4] Kitagawa M, Ueda M 1993 Phys. Rev. A 47 5138
[5] Shi Y, Niu Q 2006 Phys. Rev. Lett. 96 140401
[6] Deb B, Agarwal G S 2008 Phys. Rev. A 78 013639
[7] Cola M M, Piovella N 2004 Phys. Rev. A 70 045601
[8] Li Z G, Fei S M, Albeverio S, Liu W M 2009 Phys. Rev. A 80 034301
[9] Li Z G, Fei S M, Wang Z D, Liu W M 2009 Phys. Rev. A 79 024303
[10] Li Z G, Zhao M J, Fei S M, Liu W M 2010 Phys. Rev. A 81 042312
[11] Duan L M, Cirac J I, Zoller P 2002 Phys. Rev. A 65 033619
[12] Zhang M, You L 2003 Phys. Rev. Lett. 91 230404
[13] Yi S, Müstecaplio Agˇ lu E, Sun C P, You L 2002 Phys. Rev. A 66 011601
[14] Xu Y, Jia D J, Li Z X, Chen B, Tan L 2009 Acta Phys. Sin. 58 55 (in Chinese) [徐 岩、 贾多杰、 李照鑫、 陈 兵、 谭 磊 2009 58 55]
[15] Hines A P, McKenzie R H, Milburn G J 2003 Phys. Rev. A 67 013609
[16] Ho T L 1998 Phys. Rev. Lett. 81 742
[17] Law C K, Pu H, Bigelow N P 1998 Phys. Rev. Lett. 81 5257
[18] Pu H, Law C K, Raghavan S, Eberly J H, Bigelow N P 1999 Phys. Rev. A 60 1463
[19] Facchi P, Pascazio S 2002 Phys. Rev. Lett. 89 080401
计量
- 文章访问数: 9821
- PDF下载量: 682
- 被引次数: 0