搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含铜铁电电容器SrRuO3/Pb(Zr0.4Ti0.6)O3/SrRuO3/Ni-Al/Cu/Ni-Al/SiO2/Si异质结的研究

陈剑辉 刘保亭 赵庆勋 崔永亮 赵冬月 郭哲

引用本文:
Citation:

含铜铁电电容器SrRuO3/Pb(Zr0.4Ti0.6)O3/SrRuO3/Ni-Al/Cu/Ni-Al/SiO2/Si异质结的研究

陈剑辉, 刘保亭, 赵庆勋, 崔永亮, 赵冬月, 郭哲

Integration of SRO/PZT/SRO/Ni-Al/Cu/Ni-Al/SiO2/Si ferroelectric capacitor with copper

Chen Jian-Hui, Liu Bao-Ting, Zhao Qing-Xun, Cui Yong-Liang, Zhao Dong-Yue, Guo Zhe
PDF
导出引用
  • 应用磁控溅射法以Ni-Al同时作为Cu与SiO2/Si,Cu与SRO薄膜之间的阻挡层材料,将Cu与SiO2/Si衬底和氧化物薄膜电极隔离,避免它们在高温氧气氛中发生化学反应和互扩散,实现了Cu薄膜与氧化物铁电电容器的集成.采用X射线衍射仪(XRD)和原子力显微镜(AFM)研究了不同温度下快速退火的SrRuO3(SRO)/Ni-Al/Cu/Ni-Al/SiO2/Si含Cu异质结的微结构和表面形貌,结果发现SRO/Ni-Al/Cu/Ni-Al/SiO2/Si含Cu多层异质结薄膜在高达750 ℃仍然具有较强的Cu衍射峰和比较平整的表面,显示出了很好的高温热稳定性.研究了室温长高温退和低温长高温退两种工艺手段,发现在制备含Cu多层氧化物薄膜异质结时,低温长高温后退火的方式要优于常规的室温长高温后退火方式,通过低温长高温退工艺可以缓解应力、削弱界面粗化和避免高温生长对阻挡层和Cu薄膜结构的破坏.最后结合sol-gel法将Pb(Zr0.4Ti0.6)O3(PZT)生长在该含Cu异质结上,制备得SRO/PZT/SRO/Ni-Al/Cu/Ni-Al/SiO2/Si含Cu铁电电容器,研究了电容器的薄膜结构、铁电性能和漏电特性等,发现制备的含Cu铁电电容器具有很好的铁电性能,如电滞回线趋势饱和,剩余极化强度高达~42 C/cm2,矫顽电压为~1.0 V,介电常数~1600,漏电流~1.8310-4 A/cm2,以及良好的抗疲劳特性和保持特性等,表明导电性优良的Cu薄膜可以应用于高密度高性能铁电电容器.对其漏电机理研究表明,SRO/PZT/SRO含Cu铁电电容器满足空间电荷限制传导机理.
    To integrate ferroelectric capacitor with copper thin film, SRO/Ni-Al/Cu/Ni-Al/SiO2/Si stack is fabricated by magnetron sputtering with Ni-Al as the barriers between Cu and SiO2/Si and between Cu and SRO simultaneously in order to segregate Cu from its adjacent oxide layers for avoiding interdiffusions/reactions when samples are annealed at a high temperature. XRD and AFM are employed to study microstructure and surface morphology respectively. The Cu diffraction peaks and the uniform surfaces are found in SRO/Ni-Al/Cu/Ni-Al/SiO2/Si stack at a high temperature of 750 ℃, implying that the SRO/Ni-Al/Cu/Ni-Al/SiO2/Si stack possesses excellent stability. It is also found that growing at the lower temperature followed by annealing at a high temperature is better than current growing at the room temperature followed by annealing at a high temperature in that the former can relax stresses and reduced the roughness of interfaces to prevent the destruction of barrier and Cu layers at the high temperature. Moreover, PZT is grown on a SRO/Ni-Al/Cu/Ni-Al/SiO2/Si stack by the sol-gel method to construct a ferroelectric capacitor with copper, and the microstructure, the ferroelectric performance and leakage are investigated. The good ferroelectric properties of the capacitor with copper are presented, including a saturated hysteresis loop, remnant polarization ~42 C/cm2, coercive voltage ~1.0 V, dielectric constant ~1600, leakage current ~1.8310-4 A/cm2, excellent fatigue resistance, and good retention performance, indicating that high conductivity copper thin film has a promising application to high density and performance ferroelectric memory. Analysis of the leakage fitting also suggests that bulk-limited space-charge-limited conduction (SCLC) acts as the leakage current mechanism in the capacitor.
    • 基金项目: 国家自然科学基金(批准号: 60876055,11074063)、河北省自然科学基金(批准号: E2008000620,E2009000207)、河北省应用基础研究计划重点基础研究(批准号:10963525D)和高等学校博士点基金(批准号: 20091301110002)资助的课题.
    [1]

    Auciello O, Scott J F, Ramesh R 1998 Appl. Phys. Lett. 51 22

    [2]
    [3]

    Do D H, Evans P G, Isaacs E D, Kim D M, Eom C B, Dufresne E M 2004 Nature Mater. 3 365

    [4]

    Aggarwal S, Nagaraj B, Jenkins I G, Li H, Sharma P, Salamanca-riba L, Ramesh H, Dhote A M, Krauss A R, Auciello O 2000 Acta mater. 48 3387

    [5]
    [6]

    Brandstetter S, Rauch E F, Carreau V, Maitrejean S, Verdier M, Legros M 2010 Scripta Materialia 63 965

    [7]
    [8]
    [9]

    Zhang W J, Yi W B, Wu J 2006 Acta Phys. Sin. 55 5424(in Chinese) [张文杰、易万兵、吴 瑾 2006 55 5424]

    [10]
    [11]

    Fan W, Kabius B, Hiller J M, Saha S, Carlisle J A, Auciello O, Chang R P H, Ramesh R 2003 J. Appl. Phys. 94 6192

    [12]

    Kingon A I, Srinivasan S 2005 Nat. Mater. 4 233

    [13]
    [14]
    [15]

    Fan W, Saha S, Carlisle J A, Auciello O, Chang R P H, Ramesh R 2003 Appl. Phys. Lett. 82 1452

    [16]
    [17]

    Wu Z Y, Yang Y T, Chai C C, Li Y J, Wang J Y, Liu B 2008 Acta Phys. Sin. 57 3730(in Chinese) [吴振宇、杨银堂、柴常春、李跃进、汪家友、刘 彬 2008 57 3730]

    [18]

    Chen K C, Wu W W, Liao C N, Chen L J, Tu K N 2008 Science 321 1066

    [19]
    [20]

    Liu B T, Cheng C S, F Li, Ma L, Zhao Q X, Yan Z, Wu D Q, Li C R, Wang Y, Li X H, Zhang X Y 2006 Appl. Phys. Lett. 88 252903

    [21]
    [22]
    [23]

    Dittmar K, Engelmann H, Peikert M, Wieser E, Borany J V 2005 Appl. Surf. Sci. 252 185

    [24]
    [25]

    Song S S, Liu Y, Li M, Mao D L, Chang C K, Ling H Q 2006 Microelectron. Eng. 83 423

    [26]
    [27]

    Chen C W, Chen J S, Jeng J S 2009 J. Electrochem. Soc. 156 H724

    [28]

    Nagaraj B, Aggarwal S, Song T K, Sawhney T, Ramesh R 1999 Phys. Rev. B 59 16022

    [29]
    [30]
    [31]

    Pabst G W, Martin L W, Chu Y H, Ramesh R 2007 Appl. Phys. Lett. 90 072902

  • [1]

    Auciello O, Scott J F, Ramesh R 1998 Appl. Phys. Lett. 51 22

    [2]
    [3]

    Do D H, Evans P G, Isaacs E D, Kim D M, Eom C B, Dufresne E M 2004 Nature Mater. 3 365

    [4]

    Aggarwal S, Nagaraj B, Jenkins I G, Li H, Sharma P, Salamanca-riba L, Ramesh H, Dhote A M, Krauss A R, Auciello O 2000 Acta mater. 48 3387

    [5]
    [6]

    Brandstetter S, Rauch E F, Carreau V, Maitrejean S, Verdier M, Legros M 2010 Scripta Materialia 63 965

    [7]
    [8]
    [9]

    Zhang W J, Yi W B, Wu J 2006 Acta Phys. Sin. 55 5424(in Chinese) [张文杰、易万兵、吴 瑾 2006 55 5424]

    [10]
    [11]

    Fan W, Kabius B, Hiller J M, Saha S, Carlisle J A, Auciello O, Chang R P H, Ramesh R 2003 J. Appl. Phys. 94 6192

    [12]

    Kingon A I, Srinivasan S 2005 Nat. Mater. 4 233

    [13]
    [14]
    [15]

    Fan W, Saha S, Carlisle J A, Auciello O, Chang R P H, Ramesh R 2003 Appl. Phys. Lett. 82 1452

    [16]
    [17]

    Wu Z Y, Yang Y T, Chai C C, Li Y J, Wang J Y, Liu B 2008 Acta Phys. Sin. 57 3730(in Chinese) [吴振宇、杨银堂、柴常春、李跃进、汪家友、刘 彬 2008 57 3730]

    [18]

    Chen K C, Wu W W, Liao C N, Chen L J, Tu K N 2008 Science 321 1066

    [19]
    [20]

    Liu B T, Cheng C S, F Li, Ma L, Zhao Q X, Yan Z, Wu D Q, Li C R, Wang Y, Li X H, Zhang X Y 2006 Appl. Phys. Lett. 88 252903

    [21]
    [22]
    [23]

    Dittmar K, Engelmann H, Peikert M, Wieser E, Borany J V 2005 Appl. Surf. Sci. 252 185

    [24]
    [25]

    Song S S, Liu Y, Li M, Mao D L, Chang C K, Ling H Q 2006 Microelectron. Eng. 83 423

    [26]
    [27]

    Chen C W, Chen J S, Jeng J S 2009 J. Electrochem. Soc. 156 H724

    [28]

    Nagaraj B, Aggarwal S, Song T K, Sawhney T, Ramesh R 1999 Phys. Rev. B 59 16022

    [29]
    [30]
    [31]

    Pabst G W, Martin L W, Chu Y H, Ramesh R 2007 Appl. Phys. Lett. 90 072902

  • [1] 刘欢, 李公平, 许楠楠, 林俏露, 杨磊, 王苍龙. Cu离子注入单晶TiO2微结构及光学性质的模拟研究.  , 2016, 65(20): 206102. doi: 10.7498/aps.65.206102
    [2] 高雪云, 王海燕, 李春龙, 任慧平, 李德超, 刘宗昌. 稀土La对bcc-Fe中Cu扩散行为影响的第一性原理研究.  , 2014, 63(24): 248101. doi: 10.7498/aps.63.248101
    [3] 邵庆生, 刘士余, 赵辉, 余大书, 曹茂盛. 三方和四方相PbZr0.5Ti0.5O3 的结构稳定性和电子结构的第一性原理研究.  , 2012, 61(4): 047103. doi: 10.7498/aps.61.047103
    [4] 张福平, 杜金梅, 刘雨生, 刘艺, 刘高旻, 贺红亮. PZT 95/5陶瓷电致失效机理研究.  , 2011, 60(5): 057701. doi: 10.7498/aps.60.057701
    [5] 闻心怡, 王耘波, 周文利, 高俊雄, 于军. 张应力对准同形相界Pb(Zr,Ti)O3薄膜相变和铁电性能影响.  , 2011, 60(9): 097701. doi: 10.7498/aps.60.097701
    [6] 新梅, 曹望和. 水热法制备ZnS:Cu,Tm超细X射线发光粉.  , 2010, 59(8): 5833-5838. doi: 10.7498/aps.59.5833
    [7] 蒋冬冬, 杜金梅, 谷 岩, 冯玉军. 冲击波加载下PZT 95/5铁电陶瓷的电阻率研究.  , 2008, 57(1): 566-570. doi: 10.7498/aps.57.566
    [8] 陈学锋, 李华梅, 李东杰, 曹 菲, 董显林. 脉冲电容器用细电滞回线铁电陶瓷材料的研究.  , 2008, 57(11): 7298-7304. doi: 10.7498/aps.57.7298
    [9] 印晓明, 张 宁. 单磁场驱动的Tb1-xDyxFe2-y/Pb(Zr,Ti)O3三层膜磁电效应.  , 2008, 57(9): 5951-5955. doi: 10.7498/aps.57.5951
    [10] 曹鸿霞, 张 宁. 磁电双层膜层间耦合的弹性力学研究.  , 2008, 57(5): 3237-3243. doi: 10.7498/aps.57.3237
    [11] 赵九洲, 刘 俊, 赵 毅, 胡壮麒. 压力对非晶铜形成影响的分子动力学模拟.  , 2007, 56(1): 443-445. doi: 10.7498/aps.56.443
    [12] 杜金梅, 张 毅, 张福平, 贺红亮, 王海晏. 冲击加载下PZT 95/5铁电陶瓷的脉冲大电流输出特性.  , 2006, 55(5): 2584-2589. doi: 10.7498/aps.55.2584
    [13] 王龙海, 于 军, 刘 锋, 郑朝丹, 李 佳, 王耘波, 高峻雄, 王志红, 曾慧中, 赵素玲. PT/PZT/PT铁电薄膜的铁电畴和畴壁.  , 2006, 55(5): 2590-2595. doi: 10.7498/aps.55.2590
    [14] 张 茹, 王 淼, 张 宁, Srinivasan G.. (Ni0.8Zn0.2Fe2O4)epoxy-PZT双层膜中的磁电效应.  , 2006, 55(5): 2548-2552. doi: 10.7498/aps.55.2548
    [15] 曾华荣, 余寒峰, 初瑞清, 李国荣, 殷庆瑞, 唐新桂. PZT铁电薄膜纳米尺度铁电畴的场致位移特性.  , 2005, 54(3): 1437-1441. doi: 10.7498/aps.54.1437
    [16] 张端明, 严文生, 钟志成, 杨凤霞, 郑克玉, 李智华. PZT四方相区介电常数εr与晶格畸变关系的研究.  , 2004, 53(5): 1316-1320. doi: 10.7498/aps.53.1316
    [17] 葛四平, 朱 星, 杨威生. CuAg纳米结构表面共存和Ag表面对甘氨酸的新吸附行为.  , 2004, 53(10): 3447-3452. doi: 10.7498/aps.53.3447
    [18] 曾华荣, 李国荣, 殷庆瑞, 唐新桂. PZT铁电薄膜纳米尺度畴结构的扫描力显微术研究.  , 2003, 52(7): 1783-1787. doi: 10.7498/aps.52.1783
    [19] 张建民, 徐可为, 马 飞. 用改进嵌入原子法计算Cu晶体的表面能.  , 2003, 52(8): 1993-1999. doi: 10.7498/aps.52.1993
    [20] 张维平, 李从周. PZT-8型铁电压电陶瓷的低频介电特性.  , 1982, 31(2): 247-251. doi: 10.7498/aps.31.247
计量
  • 文章访问数:  8338
  • PDF下载量:  557
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-01-20
  • 修回日期:  2011-03-06
  • 刊出日期:  2011-11-15

/

返回文章
返回
Baidu
map