搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

(G'/G)展开法与高维非线性物理方程的新分形结构

李帮庆 马玉兰 徐美萍

引用本文:
Citation:

(G'/G)展开法与高维非线性物理方程的新分形结构

李帮庆, 马玉兰, 徐美萍

(G'/G)-expansion method and novel fractal structures for high-dimensional nonlinear physical equation

Li Bang-Qing, Ma Yu-Lan, Xu Mei-Ping
PDF
导出引用
  • 将(G′/G)展开法扩展到研究高维非线性物理方程的非行波解和分形结构. 以(2+1)维变系数色散长波系统为例, 构造出该系统的非行波解, 对解中的任意函数进行适当的设置, 发现了一类新的分形结构, 即十字形分形结构.
    The (G′/G)-expansion method is extended to construct non-traveling wave solutions and explore the fractal structure for high dimensional nonlinear physical equation. As an example, a series of non-traveling solutions is obtained for the (2+1)-dimensional dispersive long wave system with variable coefficient. Furthermore, by setting properly the arbitrary functions in the solutions, a class of novel fractal structures, namely, the cross-like fractal structures are firstly observed.
    • 基金项目: 北京市教委科技发展计划面上项目 (批准号: KM201010011008) 和北京市优秀骨干教师项目(批准号: PXM2007-014213-044566) 资助的课题.
    [1]

    [1]Wang M L 1995 Phys. Lett. A 199 169

    [2]

    [2]Yan Z Y, Zhang H Q 2000 Acta Phys. Sin. 49 2113 (in Chinese)[闫振亚、张鸿庆 2000 49 2113]

    [3]

    [3]Fan E G 2000 Acta Phys. Sin. 49 1409 (in Chinese)[范恩贵2000 49 1409]

    [4]

    [4]Liu S K, Liu S D, Fu Z T 2001 Acta Phys. Sin. 50 2068 (in Chinese)[刘式适、刘适达、付遵涛 2001 50 2068]

    [5]

    [5]Liu S D, Fu Z T, Liu S K, Zhao Q 2002 Acta Phys. Sin. 51 718 (in Chinese)[刘式达、付遵涛、刘适式、赵强 2002 51 718 ]

    [6]

    [6]Wu G J, Han J H, Shi L M, Zhang M 2006 Acta Phys. Sin. 55 3858 (in Chinese)[吴国将、韩家骅、史良马、张苗 2006 55 3858 ]

    [7]

    [7]Wang M L, Zhou Y B, Li Z B 2003 Phys. Lett. A 318 84

    [8]

    [8]Zhou Y B, Wang ML, Miao T D 2004 Phys. Lett. A 323 77

    [9]

    [9]Zhang J L,Wang Y M,Wang M L 2003 Acta Phys. Sin. 52 1574 (in Chinese)[张金良、王跃明、王明亮 2003 52 1574]

    [10]

    [10]Li X Z, Zhang J L, Wang Y M, Wang M L 2004 Acta Phys. Sin. 53 4045 (in Chinese)[李向正、张金良、王跃明、王明亮 2004 53 4045]

    [11]

    [11]Taogetusang, Sirendaoerji 2006 Acta Phys. Sin. 55 13 (in Chinese)[套格图桑、斯仁道尔吉 2006 55 13]

    [12]

    [12]Taogetusang, Sirendaoerji 2006 Acta Phys. Sin. 55 3246 (in Chinese)[套格图桑、斯仁道尔吉 2006 55 3246]

    [13]

    [13]Li X Z, Li X Y, Zhao L Y, Zhang J L 2008 Acta Phys. Sin. 57 2203 (in Chinese)[李向正、李修勇、赵丽英、张金良 2008 57 2203]

    [14]

    [14]Ma Y L, Li B Q 2009 Appl. Math. Comput. 211 102

    [15]

    [15]Lou S Y, Qu C Z, Zhang S L 2006 Chin. Phys. 15 2765

    [16]

    [16]Tang X Y, Liang Z F 2006 Phys. Lett. A 351 398

    [17]

    [17]Zhang S L, Lou S Y, Qu C Z 2006 Chin. Phys. 15 2765

    [18]

    [18]Ma H C, Ge D J, Yu Y D 2008 Chin. Phys. B 17 1448

    [19]

    [19]Ying J P, Lou S Y 2003 Chin. Phys. Lett. 20 1448

    [20]

    [20]Fang J P, Zheng C L, Zhu J M 2005 Commun. Theor. Phys. 44 203

    [21]

    [21]Fang J P, Zheng C L 2005 Chin. Phys. 14 670

    [22]

    [22]Fang J P, Zheng C L, Zhu J M 2005 Acta Phys. Sin. 54 2990 (in Chinese)[方建平、郑春龙、朱加民 2005 54 2990]

    [23]

    [23]Ma S H, Wu X H, Fang J P, Zheng C L 2006 Z. Naturforsch. 61a 249

    [24]

    [24]Ma S H, Fang J P 2006 Acta Phys. Sin. 55 5611 (in Chinese)[马松华、方建平 2006 55 5611]

    [25]

    [25]Ma S H, Fang J P, Zheng C L 2008 Chin. Phys. B 17 2767

    [26]

    [26]Ma S H, Fang J P,Hong B H, Zheng C L 2008 Commun. Theor. Phys. 49 1245

    [27]

    [27]Huang L, Sun J A, Dou F Q, Duan W S, Liu X X 2007 Acta Phys. Sin. 56 611 (in Chinese)[黄磊、孙建安、豆福全、段文山 2007 56 611]

    [28]

    [28]Ma S H, Fang J P, Zheng C L 2007 Z. Naturforsch. 62a 8

    [29]

    [29]Ma S H, Fang J P, Zheng C L 2008 Z. Naturforsch. 63a 121

    [30]

    [30]Li J B, Zheng C L, Ma S H 2008 Z. Naturforsch. 63a 641

    [31]

    [31]Ma S H, Wu X H, Fang J P, Zheng C L 2008 Acta Phys. Sin. 57 0011 (in Chinese)[马松华、吴小红、方建平、郑春龙 2008 57 0011]

    [32]

    [32]Lou S Y, Tang X Y 2006 Methods of Nonlinear Mathematical Physics(Beijing: Science Press) p120(in Chinese)[楼森岳、唐晓艳 2006 非线性数学物理方法(北京: 科学出版社) 第120页]

    [33]

    [33]Ma Z Y, Zhu J M, Zheng C L 2004 Chin. Phys. 13 1382

    [34]

    [34]Zhu J M, Ma Z Y, Zheng C L 2004 Acta Phys. Sin. 53 3248 (in Chinese)[朱加民、马正义、郑春龙 2004 53 3248]

    [35]

    [35] Ma Z Y, Zheng C L 2006 Chin. Phys. 15 0045

    [36]

    [36]Ma S H, Fang J P, Ren Q B 2007 Acta Phys. Sin. 56 6784 (in Chinese)[马松华、方建平 2007 56 6784]

    [37]

    [37]Ma Z Y, Hu Y H 2007 Chaos, Solitons Fractals 34 1667

    [38]

    [38]Wang M L, Li X Z,Zhang J L 2008 Phys. Lett. A 372 417

    [39]

    [39]Zhang S, Tong J L, Wang W 2008 Phys. Lett. A 372 2254

    [40]

    [40]Bekir A. 2008 Phys. Lett. A 372 3400

    [41]

    [41]Zhang J, Wei X L, Lu Y J 2008 Phys. Lett. A 372 3653

    [42]

    [42]Li B Q, Ma Y L 2009 Acta Phys. Sin. 58 4373 (in Chinese)[李帮庆、马玉兰 2009 58 4373]

    [43]

    [43]Ma Y L, Li B Q, Sun J Z 2009 Acta Phys. Sin. 58 7402 (in Chinese, in press)[ 马玉兰、李帮庆、孙践知 2009 58 7402]

    [44]

    [44]Boiti P, Leon J J, Manna M, Pempinelli F 1987 Inverse Problems 3 25

    [45]

    [45]Zeng X, Zhang H Q 2005 Acta Phys. Sin. 54 504 (in Chinese)[曾昕、张鸿庆 2005 54 504]

    [46]

    [46]Naranmandula 2002 Acta Phys. Sin. 51 1671 (in Chinese)[那仁满都拉 2009 51 1671]

    [47]

    [47]Liu C S 2005 Chin. Phys. 14 1710

    [48]

    [48]Zhang W L, Wu G J, Zhang M, Wang J M, Han J H 2008 Chin. Phys. B 17 1156

  • [1]

    [1]Wang M L 1995 Phys. Lett. A 199 169

    [2]

    [2]Yan Z Y, Zhang H Q 2000 Acta Phys. Sin. 49 2113 (in Chinese)[闫振亚、张鸿庆 2000 49 2113]

    [3]

    [3]Fan E G 2000 Acta Phys. Sin. 49 1409 (in Chinese)[范恩贵2000 49 1409]

    [4]

    [4]Liu S K, Liu S D, Fu Z T 2001 Acta Phys. Sin. 50 2068 (in Chinese)[刘式适、刘适达、付遵涛 2001 50 2068]

    [5]

    [5]Liu S D, Fu Z T, Liu S K, Zhao Q 2002 Acta Phys. Sin. 51 718 (in Chinese)[刘式达、付遵涛、刘适式、赵强 2002 51 718 ]

    [6]

    [6]Wu G J, Han J H, Shi L M, Zhang M 2006 Acta Phys. Sin. 55 3858 (in Chinese)[吴国将、韩家骅、史良马、张苗 2006 55 3858 ]

    [7]

    [7]Wang M L, Zhou Y B, Li Z B 2003 Phys. Lett. A 318 84

    [8]

    [8]Zhou Y B, Wang ML, Miao T D 2004 Phys. Lett. A 323 77

    [9]

    [9]Zhang J L,Wang Y M,Wang M L 2003 Acta Phys. Sin. 52 1574 (in Chinese)[张金良、王跃明、王明亮 2003 52 1574]

    [10]

    [10]Li X Z, Zhang J L, Wang Y M, Wang M L 2004 Acta Phys. Sin. 53 4045 (in Chinese)[李向正、张金良、王跃明、王明亮 2004 53 4045]

    [11]

    [11]Taogetusang, Sirendaoerji 2006 Acta Phys. Sin. 55 13 (in Chinese)[套格图桑、斯仁道尔吉 2006 55 13]

    [12]

    [12]Taogetusang, Sirendaoerji 2006 Acta Phys. Sin. 55 3246 (in Chinese)[套格图桑、斯仁道尔吉 2006 55 3246]

    [13]

    [13]Li X Z, Li X Y, Zhao L Y, Zhang J L 2008 Acta Phys. Sin. 57 2203 (in Chinese)[李向正、李修勇、赵丽英、张金良 2008 57 2203]

    [14]

    [14]Ma Y L, Li B Q 2009 Appl. Math. Comput. 211 102

    [15]

    [15]Lou S Y, Qu C Z, Zhang S L 2006 Chin. Phys. 15 2765

    [16]

    [16]Tang X Y, Liang Z F 2006 Phys. Lett. A 351 398

    [17]

    [17]Zhang S L, Lou S Y, Qu C Z 2006 Chin. Phys. 15 2765

    [18]

    [18]Ma H C, Ge D J, Yu Y D 2008 Chin. Phys. B 17 1448

    [19]

    [19]Ying J P, Lou S Y 2003 Chin. Phys. Lett. 20 1448

    [20]

    [20]Fang J P, Zheng C L, Zhu J M 2005 Commun. Theor. Phys. 44 203

    [21]

    [21]Fang J P, Zheng C L 2005 Chin. Phys. 14 670

    [22]

    [22]Fang J P, Zheng C L, Zhu J M 2005 Acta Phys. Sin. 54 2990 (in Chinese)[方建平、郑春龙、朱加民 2005 54 2990]

    [23]

    [23]Ma S H, Wu X H, Fang J P, Zheng C L 2006 Z. Naturforsch. 61a 249

    [24]

    [24]Ma S H, Fang J P 2006 Acta Phys. Sin. 55 5611 (in Chinese)[马松华、方建平 2006 55 5611]

    [25]

    [25]Ma S H, Fang J P, Zheng C L 2008 Chin. Phys. B 17 2767

    [26]

    [26]Ma S H, Fang J P,Hong B H, Zheng C L 2008 Commun. Theor. Phys. 49 1245

    [27]

    [27]Huang L, Sun J A, Dou F Q, Duan W S, Liu X X 2007 Acta Phys. Sin. 56 611 (in Chinese)[黄磊、孙建安、豆福全、段文山 2007 56 611]

    [28]

    [28]Ma S H, Fang J P, Zheng C L 2007 Z. Naturforsch. 62a 8

    [29]

    [29]Ma S H, Fang J P, Zheng C L 2008 Z. Naturforsch. 63a 121

    [30]

    [30]Li J B, Zheng C L, Ma S H 2008 Z. Naturforsch. 63a 641

    [31]

    [31]Ma S H, Wu X H, Fang J P, Zheng C L 2008 Acta Phys. Sin. 57 0011 (in Chinese)[马松华、吴小红、方建平、郑春龙 2008 57 0011]

    [32]

    [32]Lou S Y, Tang X Y 2006 Methods of Nonlinear Mathematical Physics(Beijing: Science Press) p120(in Chinese)[楼森岳、唐晓艳 2006 非线性数学物理方法(北京: 科学出版社) 第120页]

    [33]

    [33]Ma Z Y, Zhu J M, Zheng C L 2004 Chin. Phys. 13 1382

    [34]

    [34]Zhu J M, Ma Z Y, Zheng C L 2004 Acta Phys. Sin. 53 3248 (in Chinese)[朱加民、马正义、郑春龙 2004 53 3248]

    [35]

    [35] Ma Z Y, Zheng C L 2006 Chin. Phys. 15 0045

    [36]

    [36]Ma S H, Fang J P, Ren Q B 2007 Acta Phys. Sin. 56 6784 (in Chinese)[马松华、方建平 2007 56 6784]

    [37]

    [37]Ma Z Y, Hu Y H 2007 Chaos, Solitons Fractals 34 1667

    [38]

    [38]Wang M L, Li X Z,Zhang J L 2008 Phys. Lett. A 372 417

    [39]

    [39]Zhang S, Tong J L, Wang W 2008 Phys. Lett. A 372 2254

    [40]

    [40]Bekir A. 2008 Phys. Lett. A 372 3400

    [41]

    [41]Zhang J, Wei X L, Lu Y J 2008 Phys. Lett. A 372 3653

    [42]

    [42]Li B Q, Ma Y L 2009 Acta Phys. Sin. 58 4373 (in Chinese)[李帮庆、马玉兰 2009 58 4373]

    [43]

    [43]Ma Y L, Li B Q, Sun J Z 2009 Acta Phys. Sin. 58 7402 (in Chinese, in press)[ 马玉兰、李帮庆、孙践知 2009 58 7402]

    [44]

    [44]Boiti P, Leon J J, Manna M, Pempinelli F 1987 Inverse Problems 3 25

    [45]

    [45]Zeng X, Zhang H Q 2005 Acta Phys. Sin. 54 504 (in Chinese)[曾昕、张鸿庆 2005 54 504]

    [46]

    [46]Naranmandula 2002 Acta Phys. Sin. 51 1671 (in Chinese)[那仁满都拉 2009 51 1671]

    [47]

    [47]Liu C S 2005 Chin. Phys. 14 1710

    [48]

    [48]Zhang W L, Wu G J, Zhang M, Wang J M, Han J H 2008 Chin. Phys. B 17 1156

  • [1] 吴晨骏, 程用志, 王文颖, 何博, 龚荣洲. 基于十字形结构的相位梯度超表面设计与雷达散射截面缩减验证.  , 2015, 64(16): 164102. doi: 10.7498/aps.64.164102
    [2] 林福忠, 马松华. (2+1)维色散长波方程的新精确解及其复合波激发.  , 2014, 63(4): 040508. doi: 10.7498/aps.63.040508
    [3] 石兰芳, 周先春, 莫嘉琪. 一类大气浅水波系统的广义变分迭代行波近似解.  , 2013, 62(23): 230202. doi: 10.7498/aps.62.230202
    [4] 欧阳成, 石兰芳, 林万涛, 莫嘉琪. (2+1)维扰动时滞破裂孤波方程行波解的摄动方法.  , 2013, 62(17): 170201. doi: 10.7498/aps.62.170201
    [5] 尹君毅. 扩展的(G/G)展开法和Zakharov方程组的新精确解.  , 2013, 62(20): 200202. doi: 10.7498/aps.62.200202
    [6] 钟明亮, 李山, 熊祖洪, 张中月. 十字形银纳米结构的表面等离子体光子学性质.  , 2012, 61(2): 027803. doi: 10.7498/aps.61.027803
    [7] 庞晶, 靳玲花, 赵强. 变系数非线性发展方程的G'/G展开解.  , 2012, 61(14): 140201. doi: 10.7498/aps.61.140201
    [8] 杨征, 马松华, 方建平. (2+1)维 Zakharov-Kuznetsov 方程的精确解和孤子结构.  , 2011, 60(4): 040508. doi: 10.7498/aps.60.040508
    [9] 曹永军, 云国宏, 那日苏. 平面波展开法计算二维磁振子晶体带结构.  , 2011, 60(7): 077502. doi: 10.7498/aps.60.077502
    [10] 王珊珊, 高劲松, 梁凤超, 王岩松, 陈新. 多频段十字分形频率选择表面.  , 2011, 60(5): 050703. doi: 10.7498/aps.60.050703
    [11] 周振春, 马松华, 方建平, 任清褒. (2+1)维孤子系统的多孤子解和分形结构.  , 2010, 59(11): 7540-7545. doi: 10.7498/aps.59.7540
    [12] 黄多辉, 王藩侯. O2分子激发态a1Δg和b1Σ+g态的分析势能函数.  , 2009, 58(9): 6091-6095. doi: 10.7498/aps.58.6091
    [13] 马玉兰, 李帮庆, 孙践知. (G′/G)展开法在高维非线性物理方程中的新应用.  , 2009, 58(11): 7402-7409. doi: 10.7498/aps.58.7402
    [14] 李帮庆, 马玉兰. (G′/G)展开法和(2+1)维非对称Nizhnik-Novikov-Veselov系统的新精确解.  , 2009, 58(7): 4373-4378. doi: 10.7498/aps.58.4373
    [15] 马松华, 方建平, 任清褒. (2+1)维非对称 Nizhnik-Novikov-Veselov系统的新映射解及其局域结构.  , 2007, 56(12): 6784-6790. doi: 10.7498/aps.56.6784
    [16] 马松华, 任清褒, 方建平, 郑春龙. 变系数(2+1)维Broer-Kaup系统的特殊孤子结构及孤子的裂变和湮没现象.  , 2007, 56(12): 6777-6783. doi: 10.7498/aps.56.6777
    [17] 曾 昕, 张鸿庆. (2+1)维色散长波方程的新的类孤子解.  , 2005, 54(2): 504-510. doi: 10.7498/aps.54.504
    [18] 朱加民, 马正义, 郑春龙. (2+1)维Broer-Kaup方程的局域分形结构.  , 2004, 53(10): 3248-3251. doi: 10.7498/aps.53.3248
    [19] 那仁满都拉, 王克协. (2+1)维耗散长波方程与(2+1)维Broer-Kaup方程新的类多孤子解.  , 2003, 52(7): 1565-1568. doi: 10.7498/aps.52.1565
    [20] 吕燕南, 黄祖洽. H2(X1∑g+)—H2(E1∑g+)系统的相互作用.  , 1989, 38(9): 1510-1514. doi: 10.7498/aps.38.1510
计量
  • 文章访问数:  9553
  • PDF下载量:  1516
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-05-25
  • 修回日期:  2009-06-26
  • 刊出日期:  2010-03-15

/

返回文章
返回
Baidu
map