Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Numerical simulation on atmospheric pressure argon dielectric barrier discharge mode influenced by applied voltage amplitude

Li Xuechen Ge Yuqi Yang Chenxi Liu Xiaoqian Ren Chenhua Ran Junxia Su Tong Zhang Xuexue Yang Xinyao Jia Pengying

Citation:

Numerical simulation on atmospheric pressure argon dielectric barrier discharge mode influenced by applied voltage amplitude

Li Xuechen, Ge Yuqi, Yang Chenxi, Liu Xiaoqian, Ren Chenhua, Ran Junxia, Su Tong, Zhang Xuexue, Yang Xinyao, Jia Pengying
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • As a popular low-temperature plasma source, dielectric barrier discharge (DBD) has drawn significant attention due to its extensive application field including surface modification, material synthesis, sterilization, etc. DBD has presented different modes with varying experimental conditions. In order to address the formation mechanism of the different modes, a two-dimensional axis-symmetric fluid model is employed to simulate the characteristics of DBD in atmospheric pressure argon. Results indicate that DBD undergoes a scenario from a discretely-filamentary mode, a diffuse mode, a complementarily-filamentary mode, to a columnar mode with increasing voltage amplitude (Va) or discharge power (Pdis). Waveforms of applied voltage and discharge current indicate that for every discharge mode, the discharge current waveforms are always symmetrical for positive and negative discharge half-cycles. The discharge current exhibits single-pulse characteristics per half-cycle with low Va (or Pdis), and turns to double-pulse, triple-pulse, or multi-pulse characteristics per half-cycle with increasing Va (or Pdis). Spatial-temporal evolutions of electron density and electric field reveal that residual electrons play an important role in the discharge mode. Electric field (E) is mainly composed of its axial component, and its radial component only appears at the edge of the electrode in the diffuse mode. In the complementarily-filamentary mode, the locations of the strong-MDs and those of the weak-MDs alternate in the consecutive half-cycles. The strong-MD channels are stationary at fixed locations in the consecutive half-cycles for the columnar mode. In addition, the diameter of residual electrons in the columnar mode is larger than that in the filamentary mode. Moreover, the generation rate of Ar* increases, while the energy efficiency of the discharge shrinks with increasing Va (or Pdis). These results are of great significance for the deep understanding of discharge mode and the improving of DBD performance.
  • [1]

    Li X C, Chu J D, Zhang Q, Zhang P P, Jia P Y, Geng J L 2016 Appl. Phys. Lett. 109 204102

    [2]

    Rad R H, Brüser V, Brandenburg R 2024 Plasma Sources Sci. Technol. 33 025027

    [3]

    Lu Y M, Ono R, A. Komuro 2024 Plasma Sources Sci. Technol. 33 04LT01

    [4]

    Nguyen-Smith R T, Böddecker A, Schücke L, Bibinov N, Korolov I, Zhang Q Z, Mussenbrock T, Awakowicz P, Schulze J 2022 Plasma Sources Sci. Technol. 31 035008

    [5]

    Galmiz O, Cimerman R, Pareek P, Janda M, Machala Z 2025 Plasma Sources Sci. Technol. 34 025011

    [6]

    Chen M, Dong X P, Wu K Y, Ran J X, Jia P Y, Wu J C, Li X C 2024 Appl. Phys. Lett. 124 214102

    [7]

    Ren C H, Huang B D, Zhang C, Qi B, Chen W J, Shao T 2023 Plasma Sources Sci. Technol. 32 025004

    [8]

    Liu K, Geng W Q, Zhou X F, Duan Q S, Zheng Z F, Ostrikov K 2023 Plasma Sources Sci. Technol. 32 025005

    [9]

    Mikheyev P A, Demyanov A V, Kochetov I V, Sludnova A A, Torbin A P, Mebel A M, Azyazov V N 2020 Plasma Sources Sci. Technol. 29 015012

    [10]

    Liu F, Li S H, Zhao Y L, Akram S, Zhang L, Fang Z 2023 Plasma Sci. Technol. 25 104001

    [11]

    Wang Z F, Liu L B, Liu D X, Zhu M Y, Chen J K, Zhang J Y, Zhang F G, Jiang J N, Guo L, Wang X H, Rong M Z 2022 Plasma Sources Sci. Technol. 31 05LT01

    [12]

    Qiao J J, Yang Q, Wang D Z, Xiong Q 2023 Plasma Sources Sci. Technol. 32 11LT01

    [13]

    Li X C, Zhang L L, Chen K, Ran J X, Pang X X, Jia P Y 2024 IEEE Trans. Plasma Sci. 52 1619-1630

    [14]

    Zhang L L, Li T X, Pang X X, Ge Y Q, Liu X Q, Ran J X, Li Q, Li X C 2025 Acta Phys. Sin. 74 135201 (in Chinese) [张璐璐, 李天翔, 庞学霞, 葛禹琦, 刘晓倩, 冉俊霞, 李庆, 李雪辰 2025 74 135201]

    [15]

    Zhang L Y, Zhang Q Z, Mujahid Z, Neuroth C, Berger B, Schulze J 2024 Plasma Sources Sci. Technol. 33 105016

    [16]

    Poramapijitwat P, Thana P, Boonyawan D, Janpong K, Kuensaen C, Charerntantanakul W, Yu L D, Sarapirom S 2020 Surf. Coat. Technol. 402 126482

    [17]

    Wang J, Li J, Lei B Y, Ran S, Xu B P, Liu Y H, Li X Z, Wang Y S, Tang J, Zhao W, Duan Y X 2021 Plasma Sources Sci. Technol. 30 035012

    [18]

    Wu K Y, Wu J C, Jia B Y, Ren C H, Kang P C, Jia P Y, Li X C 2020 Phys. Plasmas 27 082308

    [19]

    Zhang J, Tang W W, Wang Y H, Wang D Z 2023 Plasma Sources Sci. Technol. 32 055005

    [20]

    Raizer Y, Kisin V, Allen J 1991 Gas Discharge Physics

    [21]

    Jovanović A P, Loffhagen D, Becker M M 2022 Plasma Sources Sci. Technol. 31 04LT02

    [22]

    Ran J X, Chen Q Y, Zhou Y X, Tian S, Wu J C, Li P R, Li Q, Zhang X X, Li X C 2025 Plasma Process Polym. 22 e70023

    [23]

    Akishev Y, Alekseeva T, Karalnik V, Petryakov A 2022 Plasma Sources Sci. Technol. 31 084001

    [24]

    Bernecker B, Callegari T, Boeuf J P 2011 J. Phys. D: Appl. Phys. 44 262002

    [25]

    Callegari T, Bernecker B, Boeuf J P 2014 Plasma Sources Sci. Technol. 23, 054003

    [26]

    Hao Y P, Fang Q, Wan H R, Han Y Y, Yang L, Li L C 2019 Phys. Plasmas 26 073518

    [27]

    Wan H R, Hao Y P, Fang Q, Su H W, Yang L, Li L C 2020 Acta Phys. Sin. 69 145203 (in Chinese) [万海容, 郝艳捧, 房强, 苏恒炜, 阳林, 李立浧 2020 69 145203]

    [28]

    Massines F, Gherardi N, Naudé N, Ségur P 2009 Eur. Phys. J. Appl. Phys. 47 22805

    [29]

    Soloviev V R, Anokhin E M, Aleksandrov N L 2020 Plasma Sources Sci. Technol. 29 035006

    [30]

    Bajon C, Dap S, Belinger A, Guaitella O, Hoder T, Naudé N 2023 Plasma Sources Sci. Technol. 32 045012

    [31]

    Steuer D, van Impel H, Labenski R, Schulz-von der Gathen V, Böke M, Golda J 2025 J. Phys. D: Appl. Phys. 58 085211

    [32]

    Wang Y Y, Yan H J, Guo H F, Xu Y F, Zhang Q Z, Song J 2021 Plasma Sources Sci. Technol. 30 075009

    [33]

    Huang Z M, Hao Y P, Yang L, Han Y X, Li L C 2015 Phys. Plasmas 22 123509

    [34]

    Jiang W M, Li J, Tang J, Wang Y S, Zhao W, Duan Y X 2015 Sci. Rep. 5 16391

    [35]

    Ráhel J, Síra M, Stahel P, Trunec D 2007 Contrib. Plasma Phys. 47 34-39

    [36]

    Zhang Y H, Ning W J, Dai D, Wang Q 2019 Plasma Sources Sci. Technol. 28 075003

    [37]

    Urabe K, Yamada K, Sakai O 2011 Jpn. J. Appl. Phys. 50 116002

    [38]

    Sublet A, Ding C, Dorier J L, Hollenstein C, Fayet P, Coursimault F 2006 Plasma Sources Sci. Technol. 15 627-634

    [39]

    Fang Z, Lin J, Xie X, Qiu Y, Kuffel E 2009 J. Phys. D: Appl. Phys. 42 085203

    [40]

    Li X C, Zhang Q, Jia P Y, Chu J D, Zhang P P, Dong L F 2017 Phys. Plasmas 24 033505

    [41]

    Pinchuk M E, Stepanova O M, Gromov M, Leys C, Nikiforov A 2020 Appl. Phys. Lett. 116 164102

    [42]

    Fan Z H, Qi H C, Liu Y D, Yan H J, Ren C S 2016 Phys. Plasmas 23 123520

    [43]

    Chiper A S, Anita V, Agheorghiesei C, Pohoata V, Anita M, Popa G 2004 Plasma Process Polym. 1 57-62

    [44]

    Ran J X, Zhang X X, Zhang Y, Wu KY, Zhao N, He X R, Dai X H, Liang Q H, Li X C 2023 Plasma Sci. Technol. 25 055403

    [45]

    Lou Y Q, Tang J F, Gu H Y, Zhou D S 2025 J. Electrostat. 134 104016

    [46]

    Hao Y P, Zheng B, Liu Y G 2014 Phys. Plasmas 21 013503

    [47]

    Hao Y P, Han Y Y, Huang Z M, Yang L, Dai D, Li L C 2018 Phys. Plasmas 25 013516

    [48]

    Wan J, Wang Q, Dai D, Ning W J 2019 Phys. Plasmas 26 103510

    [49]

    Crispim L W S, da Silva C D, Amorim J, Ballester M Y 2024 Phys. Scr. 99 065521

    [50]

    Ren C H, He X R, Jia P Y, Wu K Y, Li X C 2020 Phys. Plasmas 27 113507

    [51]

    Hagelaar G J M, Pitchford L C 2005 Plasma Sources Sci. Technol. 14 722-733

    [52]

    Lazarou C, Belmonte T, Chiper A S, Georghiou G E 2016 Plasma Sources Sci. Technol. 25 055023

    [53]

    Wang J, Lei B Y, Li J, Xu Y G, Wang Y S, Tang J, Zhao W, Duan Y X 2020 Phys. Plasmas 27 043501

    [54]

    Zhang Z H, Zhang G J, Shao X J, Chang Z S, Peng Z Y, Xu H 2012 Acta Phys. Sin. 61 245205 (in Chinese) [张增辉, 张冠军, 邵先军, 常正实, 彭兆裕, 许昊 2012 61 245205]

    [55]

    Li X C, Ren C H, He X R, Wu K Y, Jia P Y, Li S Z 2020 Plasma Process Polym. 17 e1900228

    [56]

    Moravej M, Yang X, Barankin M, Penelon J, Babayan S E, Hicks R F 2006 Plasma Sources Sci. Technol. 15 204-210

    [57]

    Vitello P A, Penetrante B M, Bardsley J N 1994 Phys. Rev. E 49 5574-5598

    [58]

    Shirafuji T, Kitagawa T, Wakai T, Tachibana K 2003 Appl. Phys. Lett. 83 2309-2311

    [59]

    Takaki K, Nawa K, Mukaigawa S, Fujiwara T, Aizawa T 2008 IEEE Trans. Plasma Sci. 36 1260-1261

    [60]

    Zhang J, Wang Y H, Wang D Z 2015 Phys. Plasmas 22 043517

    [61]

    Li X C, Liu R, Jia P Y, Wu K Y, Ren C H, Kang P C, Jia B Y, Li Y R 2018 Phys. Plasmas 25, 073510

    [62]

    Wang J, Li J, Lei B Y, Xing Y F, Xu B P, Liu Y H, Li X Z, Wang Y S, Tang J, Zhao W, Duan Y X 2020 Phys. Plasmas 27 073503

    [63]

    Li X C, Ge Y Q, Wan W J, Zhang X X, Sun H, Ran J X, Pang X X, Wu K Y, Jia P Y 2025 Phys. Scr. 100 075602

    [64]

    Li X C, Wan W J, Liu X Q, Chen M, Wu K Y, Ran J X, Pang X X, Zhang X X, Wu J C, Jia P Y, Sun H 2025 Chin. Phys. B 34 035202

    [65]

    Wang Q, Ning W J, Dai D, Zhang Y H, Ouyang J T 2019 J. Phys. D: Appl. Phys. 52 205201

    [66]

    Massines F, Gherardi N, Naudé N, Ségur P 2005 Plasma Phys. Control. Fusion 47 B577–B588

    [67]

    Luo H Y, Liang Z, Lv B, Wang X X, Guan Z C, Wang L M 2007 Appl. Phys. Lett. 91 221504

    [68]

    Jia P Y, Gao K, Zhou S, Chen J Y, Wu J C, Wu K Y, Li X C 2021 Plasma Sources Sci. Technol. 30 095021

    [69]

    Jodzis S, Zieba M 2018 Vacuum 155 29-37

  • [1] MA Yichen, WANG Yufei, WANG Tingting, CAO Yawen, LI Zhengqing, TAN Chang. Discharge characteristics of Martian CO2 in a packed-bed dielectric barrier discharge reactor. Acta Physica Sinica, doi: 10.7498/aps.74.20251061
    [2] Zhao Kai, Mu Zong-Xin, Zhang Jia-Liang. Dielectric layer equivalent capacitance and loading performance of a coaxial dielectric barrier discharge reactor. Acta Physica Sinica, doi: 10.7498/aps.63.185208
    [3] Dai Dong, Wang Qi-Ming, Hao Yan-Peng. Experimental study on asymmetrical period-one discharge in dielectric barrier discharge in helium at atmospheric pressure. Acta Physica Sinica, doi: 10.7498/aps.62.135204
    [4] Liu Wei-Yuan, Yue Han, Wang Shuai, Liu Zhong-Wei, Chen Qiang, Dong Li-Fang, Yang Yu-Jie. Characteristics of dielectric barrier discharge with different dielectric layer structures. Acta Physica Sinica, doi: 10.7498/aps.60.025216
    [5] Dong Li-Fang, Li Shu-Feng, Fan Wei-Li. Defects in transition between different filament structures in dielectric barrier discharge. Acta Physica Sinica, doi: 10.7498/aps.60.065205
    [6] Dong Li-Fang, Yue Han, Fan Wei-Li, Li Yuan-Yuan, Yang Yu-Jie, Xiao Hong. Target patterns obtained by suddenly increasing applied voltage in dielectric barrier discharge. Acta Physica Sinica, doi: 10.7498/aps.60.065206
    [7] Dong Li-Fang, Yang Yu-Jie, Fan Wei-Li, Yue Han, Wang Shuai, Xiao Hong. Study on the phase transition of the filaments structure in dielectric barrier discharge. Acta Physica Sinica, doi: 10.7498/aps.59.1917
    [8] Shao Xian-Jun, Ma Yue, Li Ya-Xi, Zhang Guan-Jun. One-dimensional simulation of low pressure xenon dielectric barrier discharge. Acta Physica Sinica, doi: 10.7498/aps.59.8747
    [9] Hao Yan-Peng, Yang Lin, Tu En-Lai, Chen Jian-Yang, Zhu Zhan-Wen, Wang Xiao-Lei. Experimental study on mode and mechanism of multi-pulse atmospheric-pressure glow discharges. Acta Physica Sinica, doi: 10.7498/aps.59.2610
    [10] Wang Li-Ming, Liang Zhuo, Guan Zhi-Cheng, Luo Hai-Yun, Wang Xin-Xin. Influences of gas flow on gas temperature and discharge mode in dielectric barrier discharge of nitrogen at atmospheric pressure. Acta Physica Sinica, doi: 10.7498/aps.59.8739
    [11] Dong Li-Fang, Wang Hong-Fang, Liu Wei-Li, He Ya-Feng, Liu Fu-Cheng, Liu Shu-Hua. Influence of dielectric parameters on temporal behavior of dielectric barrier discharge. Acta Physica Sinica, doi: 10.7498/aps.57.1802
    [12] Li Xue-Chen, Jia Peng-Ying, Liu Zhi-Hui, Li Li-Chun, Dong Li-Fang. Study on the transition from filamentary to uniform discharge in dielectric barrier discharge. Acta Physica Sinica, doi: 10.7498/aps.57.1001
    [13] Dong Li-Fang, Gao Rui-Ling, He Ya-Feng, Fan Wei-Li, Li Xue-Chen, Liu Shu-Hua, Liu Wei-Li. Study on the interaction of microdischarge channels in dielectric barrier discharge pattern. Acta Physica Sinica, doi: 10.7498/aps.56.1471
    [14] Investigation on power transfer in dielectric barrier discharge. Acta Physica Sinica, doi: 10.7498/aps.56.7078
    [15] Ouyang Ji-Ting, He Feng, Miao Jin-Song, Feng Shuo. Study of characteristics of coplanar dielectric barrier discharge. Acta Physica Sinica, doi: 10.7498/aps.55.5969
    [16] Wang Yan-Hui, Wang De-Zhen. Characteristics of dielectric barrier homogenous discharge at atmospheric pressure in nitrogen. Acta Physica Sinica, doi: 10.7498/aps.55.5923
    [17] Wang Yan-Hui, Wang De-Zhen. Study on homogeneous multiple-pulse barrier discharge at atmospheric pressure. Acta Physica Sinica, doi: 10.7498/aps.54.1295
    [18] Zhang Yuan-Tao, Wang De-Zhen, Wang Yan-Hui. Numerical simulation of filamentary discharge controlled by dielectric barrier at atmospheric pressure. Acta Physica Sinica, doi: 10.7498/aps.54.4808
    [19] Dong Li-Fang, Mao Zhi-Guo, Ran Jun-Xia. Study on the electrical characteristic of different modes of dielectric barrier discharge in argon. Acta Physica Sinica, doi: 10.7498/aps.54.3268
    [20] Yin Zeng-Qian, Wang Long, Dong Li-Fang, Li Xue-Chen, Chai Zhi-Fang. The mapping equation of micro-discharge in dielectric barrier discharges. Acta Physica Sinica, doi: 10.7498/aps.52.929
Metrics
  • Abstract views:  56
  • PDF Downloads:  7
  • Cited By: 0
Publishing process
  • Available Online:  06 January 2026
  • /

    返回文章
    返回
    Baidu
    map