Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research progress on quantum magnetic sensing of solid-state color centers under high pressure

SUN Chengmei ZHONG Cheng DUAN Youyi ZHOU Haojie WANG Junfeng

Citation:

Research progress on quantum magnetic sensing of solid-state color centers under high pressure

SUN Chengmei, ZHONG Cheng, DUAN Youyi, ZHOU Haojie, WANG Junfeng
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • High-pressure science has emerged as one of the core frontiers in exploring novel states of matter and phenomena under extreme conditions. In high-pressure environments, the in situ detection of physical quantities such as magnetic fields and pressure is crucial for understanding material behavior under extreme conditions. However, conventional high-pressure magnetic sensing techniques often face challenges such as low spatial resolution, poor sensitivity, and difficulties in achieving in situ magnetic detection.
    In recent years, quantum sensors based on solid-state color centers—such as nitrogen-vacancy centers in diamond, silicon-vacancy/double-vacancy centers in silicon carbide, and color centers in hexagonal boron nitride—have enabled high-pressure quantum metrology with micrometer-scale spatial resolution, high sensitivity, and superior in situ detection capabilities, offering innovative solutions for high-pressure research.
    This review systematically summarizes the effects of extreme high-pressure conditions on the optical and spin properties of these solid-state defects. Furthermore, taking high-pressure magnetic phase transition studies in magnetic materials and Meissner effect measurements in superconductors as examples, we highlight recent advances in in situ magnetic sensing using solid-state color centers under high pressure. This overview aims to provide technical guidance for the future development of high-pressure quantum precision measurement techniques based on solid-state defects.
  • [1]

    Mao H K, Chen X J, Ding Y, Li B, Wang L 2018 Rev. Mod. Phys. 90 015007

    [2]

    Dias R P, Silvera I F 2017 Science 355 715

    [3]

    Salzmann C G 2019 J. Chem. Phys. 150 060901

    [4]

    Laniel D, Winkler B, Fedotenko T, Pakhomova A, Chariton S, Milman V, Prakapenka V, Dubrovinsky L, Dubrovinskaia N 2020 Phys. Rev. Lett. 124 216001

    [5]

    Bhoi D, Gouchi J, Hiraoka N, Zhang Y, Ogita N, Hasegawa T, Kitagawa K, Takagi H, Kim K H, Uwatoko Y 2021 Phys. Rev. Lett. 127 217203

    [6]

    Scharf G, Guterding D, Hen B, Sarte P M, Ortiz B R, Rozenberg G K, Holder T, Wilson S D, Jeschke H O, Ron A 2025 Phys. Rev. Res. 7 013127

    [7]

    Cai W, Sun H, Xia W, Wu C, Liu Y, Liu H, Gong Y, Yao D-X, Guo Y, Wang M 2020 Phys. Rev. B 102 144525

    [8]

    Zhang C, Gu Y, Wang L, Huang L L, Fu Y, Liu C, Wang S, Su H, Mei J W, Zou X, Dai J F 2021 Nano Lett. 21 7946

    [9]

    Han W, Feng J, Dong H, Cheng M, Yang L, Yu Y, Du G, Li J, Du Y, Zhang T, Wang Z, Chen B, Shi J, Chen Y 2024 Nano Lett. 24 966

    [10]

    Gati E, Inagaki Y, Kong T, Cava R J, Furukawa Y, Canfield P C, Bud'ko S L 2019 Phys. Rev. B 100 094408

    [11]

    Valenta J, Kratochvílová M, Míšek M, Carva K, Kaštil J, Doležal P, Opletal P, Čermák P, Proschek P, Uhlířová K, Prchal J, Coak M J, Son S, Park J G, Sechovský V 2021 Phys. Rev. B 103 054424

    [12]

    Drozdov A P, Eremets M I, Troyan I A, Ksenofontov V, Shylin S I 2015 Nature 525 73

    [13]

    Somayazulu M, Ahart M, Mishra A K, Geballe Z M, Baldini M, Meng Y, Struzhkin V V, Hemley R J 2019 Phys. Rev. Lett. 122 027001

    [14]

    Jackson D D, Aracne-Ruddle C, Malba V, Weir S T, Catledge S A, Vohra Y K 2003 Rev. Sci. Instrum. 74 2467

    [15]

    Marizy A, Guigue B, Occelli F, Leridon B, Loubeyre P 2017 High Pressure Res. 37 465

    [16]

    Balasubramanian G, Chan I Y, Kolesov R, Al-Hmoud M, Tisler J, Shin C, Kim C, Wojcik A, Hemmer P R, Krueger A, Hanke T, Leitenstorfer A, Bratschitsch R, Jelezko F, Wrachtrup J 2008 Nature 455 648

    [17]

    Grinolds M S, Hong S, Maletinsky P, Luan L, Lukin M D, Walsworth R L, Yacoby A 2013 Nat. Phys. 9 215

    [18]

    Tetienne J P, Hingant T, Kim J V, Diez L H, Adam J P, Garcia K, Roch J F, Rohart S, Thiaville A, Ravelosona D, Jacques V 2014 Science 344 1366

    [19]

    Thiel L, Wang Z, Tschudin M A, Rohner D, Gutierrez-Lezama I, Ubrig N, Gibertini M, Giannini E, Morpurgo A F, Maletinsky P 2019 Science 364 973

    [20]

    Sun Q C, Song T, Anderson E, Brunner A, Forster J, Shalomayeva T, Taniguchi T, Watanabe K, Grafe J, Stohr R, Xu X, Wrachtrup J 2021 Nat. Commun. 12 1989

    [21]

    Dong Y, Du B, Zhang S C, Chen X D, Sun F W 2018 Acta Phys. Sin. 67 160301 (in Chinese) [董杨, 杜博, 张少春, 陈向东, 孙方稳 2018 67 160301]

    [22]

    Koehl W F, Buckley B B, Heremans F J, Calusine G, Awschalom D D 2011 Nature 479 84

    [23]

    Mu Z, Zargaleh S A, von Bardeleben H J, Fröch J E, Nonahal M, Cai H, Yang X, Yang J, Li X, Aharonovich I, Gao W 2020 Nano Lett. 20 6142

    [24]

    Wang J F, Yan F F, Li Q, Liu Z H, Cui J M, Liu Z D, Gali A, Xu J S, Li C F, Guo G C 2021 Nat. Commun. 12 3223

    [25]

    Chen X, Luo Q Y, Guo P J, Zhou H J, Hu Q C, Wu H P, Shen X W, Cui R Y, Dong L, Wei T X, Xiao Y H, Li D, Lei L, Zhang X, Wang J F, Xiang G 2025 Adv. Funct. Mater. 35 2413529

    [26]

    Gottscholl A, Kianinia M, Soltamov V, Orlinskii S, Mamin G, Bradac C, Kasper C, Krambrock K, Sperlich A, Toth M, Aharonovich I, Dyakonov V 2020 Nat. Mater. 19 540

    [27]

    Gottscholl A, Diez M, Soltamov V, Kasper C, Sperlich A, Kianinia M, Bradac C, Aharonovich I, Dyakonov V 2021 Sci. Adv. 7 eabf3630

    [28]

    Gottscholl A, Diez M, Soltamov V, Kasper C, Krausse D, Sperlich A, Kianinia M, Bradac C, Aharonovich I, Dyakonov V 2021 Nat. Commun. 12 4480

    [29]

    Huang M, Zhou J, Chen D, Lu H, McLaughlin N J, Li S, Alghamdi M, Djugba D, Shi J, Wang H, Du C R 2022 Nat. Commun. 13 5369

    [30]

    Healey A J, Scholten S C, Yang T, Scott J A, Abrahams G J, Robertson I O, Hou X F, Guo Y F, Rahman S, Lu Y, Kianinia M, Aharonovich I, Tetienne J P 2023 Nat. Phys. 19 87

    [31]

    Hsieh S, Bhattacharyya P, Zu C, Mittiga T, Smart T J, Machado F, Kobrin B, Hohn T O, Rui N Z, Kamrani M, Chatterjee S, Choi S, Zaletel M, Struzhkin V V, Moore J E, Levitas V I, Jeanloz R, Yao N Y 2019 Science 366 1349

    [32]

    Lesik M, Plisson T, Toraille L, Renaud J, Occelli F, Schmidt M, Salord O, Delobbe A, Debuisschert T, Rondin L, Loubeyre P, Roch J F 2019 Science 366 1359

    [33]

    Yip K Y, Ho K O, Yu K Y, Chen Y, Zhang W, Kasahara S, Mizukami Y, Shibauchi T, Matsuda Y, Goh S K, Yang S 2019 Science 366 1355

    [34]

    Bhattacharyya P, Chen W, Huang X, Chatterjee S, Huang B, Kobrin B, Lyu Y, Smart T J, Block M, Wang E, Wang Z, Wu W, Hsieh S, Ma H, Mandyam S, Chen B, Davis E, Geballe Z M, Zu C, Struzhkin V, Jeanloz R, Moore J E, Cui T, Galli G, Halperin B I, Laumann C R, Yao N Y 2024 Nature 627 73

    [35]

    Wang M Q, Wang Y, Liu Z X, Xu G Y, Yang B, Yu P, Sun H Y, Ye X Y, Zhou J W, Goncharov A F, Wang Y, Du J F 2024 Nat. Commun. 15 8843

    [36]

    Liu L, Guo J N, Hu D Y, Yan G Z, Chen Y Z, Yu L X, Wang M, Liu X D, Huang X L 2025 Phys. Rev. Lett. 135 096001

    [37]

    Liu L, Wang J F, Liu X D, Xu H A, Cui J M, Li Q, Zhou J Y, Lin W X, He Z X, Xu W, Wei Y, Liu Z H, Wang P, Hao Z H, Ding J F, Li H O, Liu W, Li H, You L, Xu J S, Gregoryanz E, Li C F, Guo G C 2022 Nano Lett. 22 9943

    [38]

    Wang J F, Liu L, Liu X D, Li Q, Cui J M, Zhou D F, Zhou J Y, Wei Y, Xu H A, Xu W, Lin W X, Yan J W, He Z X, Liu Z H, Hao Z H, Li H O, Liu W, Xu J S, Gregoryanz E, Li C F, Guo G C 2023 Nat. Mater. 22 489

    [39]

    Du J F, Shi F Z, Kong X, Jelezko F, Wrachtrup J 2024 Rev. Mod. Phys. 96 025001

    [40]

    Hamlin J J, Zhou B B 2019 Science 366 1312

    [41]

    Dai J H, Shang Y X, Yu Y H, Xu Y, Yu H, Hong F, Yu X H, Pan X Y, Liu G Q 2022 Chin. Phys. Lett. 39 117601

    [42]

    Doherty M W, Struzhkin V V, Simpson D A, McGuinness L P, Meng Y, Stacey A, Karle T J, Hemley R J, Manson N B, Hollenberg L C, Prawer S 2014 Phys. Rev. Lett. 112 047601

    [43]

    Christle D J, Falk A L, Andrich P, Klimov P V, Hassan J U, Son Nguyen T, Janzén E, Ohshima T, Awschalom D D 2014 Nat. Mater. 14 160

    [44]

    Yu L X, Guo N J, Liu L, Liu W, Yan G Z, Cui J M, Tang J S, Li C F, Liu X D 2025 arXiv:2501.13757Mesoscale and Nanoscale Physics

    [45]

    Zhong C, Mai D, Wang Y P, Wang H, Dai R C, Wang Z P, Sun X Y, Zhang Z M 2025 ACS Photonics 12 3717

    [46]

    Mu Z, Fraunié J, Durand A, Clément S, Finco A, Rouquette J, Hadj-Azzem A, Rougemaille N, Coraux J, Li J, Poirier T, Edgar J H, Gerber I C, Marie X, Gil B, Cassabois G, Robert C, Jacques V 2025 Nat. Commun. 16 8574

    [47]

    He G H, Gong R T, Wang Z P, Liu Z Y, Hong J H, Zhang T X, Riofrio A L, Rehfuss Z, Chen M F, Yao C Y, Poirier T, Ye B T, Wang X, Ran S, Edgar J H, Zhang S X, Yao N Y, Zu C 2025 Nat. Commun. 16 8162

    [48]

    Wen J, Xu Y, Wang G, He Z X, Chen Y, Wang N, Lu T, Ma X, Jin F, Chen L, Liu M, Fan J W, Liu X, Yu Pan X, Liu G Q, Cheng J, Yu X 2025 Nati. Sci. Rev. nwaf268

    [49]

    Liu G Q 2025 Acta Phys. Sin. 74 117601 (in Chinese) [刘刚钦 2025 74 117601]

    [50]

    Li D F, Lee K, Wang B Y, Osada M, Crossley S, Lee H R, Cui Y, Hikita Y, Hwang H Y 2019 Nature 572 624

    [51]

    Sun H L, Huo M W, Hu X W, Li J Y, Liu Z J, Han Y F, Tang L Y, Mao Z Q, Yang P T, Wang B S, Cheng J G, Yao D X, Zhang G M, Wang M 2023 Nature 621 493

    [52]

    Wang N N, Wang G, Shen X L, Hou J, Luo J, Ma X P, Yang H X, Shi L F, Dou J, Feng J, Yang J, Shi Y Q, Ren Z A, Ma H M, Yang P T, Liu Z Y, Liu Y, Zhang H, Dong X L, Wang Y X, Jiang K, Hu J P, Nagasaki S, Kitagawa K, Calder S, Yan J Q, Sun J P, Wang B, Zhou R, Uwatoko Y, Cheng J G 2024 Nature 634 579

  • [1] YIN Xuetong, LIAO Dunyuan, PAN Dong, WANG Peng, LIU Bingbing. Room-temperature photoluminescence in GaAsSb nanowires under high-pressure. Acta Physica Sinica, doi: 10.7498/aps.74.20250042
    [2] Wang Fei, Li Quan-Jun, Hu Kuo, Liu Bing-Bing. Electron microscopic study on high-pressure induced deformation of nano-TiO2. Acta Physica Sinica, doi: 10.7498/aps.72.20221656
    [3] Li Tian-Jing, Cao Xiu-Xia, Tang Shi-Hui, He Lin, Meng Chuan-Min. Crystal-orientation effects of the optical extinction in shocked Al2O3: a first-principles investigation. Acta Physica Sinica, doi: 10.7498/aps.69.20190955
    [4] Guo Jing, Wu Qi, Sun Li-Ling. Pressure-induced phenomena and physics in iron-based superconductors. Acta Physica Sinica, doi: 10.7498/aps.67.20181651
    [5] Dong Jia-Jun, Yao Ming-Guang, Liu Shi-Jie, Liu Bing-Bing. Studies of quasi one-dimensional nanostructures at high pressures. Acta Physica Sinica, doi: 10.7498/aps.66.039101
    [6] Li Xiao-Dong, Li Hui, Li Peng-Shan. High pressure single-crystal synchrotron X-ray diffraction technique. Acta Physica Sinica, doi: 10.7498/aps.66.036203
    [7] Wu Di, Zhao Ji-Jun, Tian Hua. Effect of substitution Fe2+ on physical properties of MgSiO3 perovskite at high temperature and high pressure. Acta Physica Sinica, doi: 10.7498/aps.62.049101
    [8] Wu Bao-Jia, Li Yan, Peng Gang, Gao Chun-Xiao. Electrical transport properties of InSe under high pressure. Acta Physica Sinica, doi: 10.7498/aps.62.140702
    [9] Li Nan, Huang Kai-Kai, Lu Xuan-Hui. Study on the sensitivity of laser-pumped cesium atomic magnetometer. Acta Physica Sinica, doi: 10.7498/aps.62.133201
    [10] Lü Xiao-Jing, Weng Chun-Sheng, Li Ning. The analysis of CO2 absorption spectrum characteristics near 1.58 μm at high pressures. Acta Physica Sinica, doi: 10.7498/aps.61.234205
    [11] Chen Zhong-Jun. First principles study of the elastic, electronic and optical properties of MgS under pressure. Acta Physica Sinica, doi: 10.7498/aps.61.177104
    [12] Ming Xing, Wang Xiao-Lan, Du Fei, Chen Gang, Wang Chun-Zhong, Yin Jian-Wu. Phase transition and properties of siderite FeCO3 under high pressure: an ab initio study. Acta Physica Sinica, doi: 10.7498/aps.61.097102
    [13] Qin Jie-Ming, Zhang Ying, Cao Jian-Ming, Tian Li-Fei, Dong Zhong-Wei, Li Yue. Characterization of the transparent n-type ZnO ceramic with lowresistivity prepared under high pressure. Acta Physica Sinica, doi: 10.7498/aps.60.036105
    [14] Zhou Mi, Li Zhan-Long, Lu Guo-Hui, Li Dong-Fei, Sun Cheng-Lin, Gao Shu-Qin, Li Zuo-Wei. High pressure Raman investigation on the Fermi resonance of biphenyl. Acta Physica Sinica, doi: 10.7498/aps.60.050702
    [15] Zhou Mi, Zhang Peng, Liu Tie-Cheng, Xu Da-Peng, Jiang Yong-Heng, Gao Shu-Qin, Li Zuo-Wei. Effect of pressure on the Fermi resonance of benzene. Acta Physica Sinica, doi: 10.7498/aps.59.210
    [16] Wu Bao-Jia, Han Yong-Hao, Peng Gang, Liu Cai-Long, Wang Yue, Gao Chun-Xiao. Research of in-situ electrical property of micron dimension ZnO under high pressure. Acta Physica Sinica, doi: 10.7498/aps.59.4235
    [17] Ma Li, Gao Yong. Semi-super junction SiGe high voltage fast and soft recovery switching diodes. Acta Physica Sinica, doi: 10.7498/aps.58.529
    [18] Ma Li, Zhu Zhi-Yong, Li Min, Yu Shi-Dan, Cui Qi-Liang, Zhou Qiang, Chen Jing-Lan, Wu Guang-Heng. Structure and magnetic properties of stress-induced martensites in ferromagnetic shape memory alloy Mn2NiGa. Acta Physica Sinica, doi: 10.7498/aps.58.3479
    [19] Ding Ying-Chun, Xu Ming, Pan Hong-Zhe, Shen Yi-Bin, Zhu Wen-Jun, He Hong-Liang. Electronic structure and physical properties of γ-Si3N4 under high pressure. Acta Physica Sinica, doi: 10.7498/aps.56.117
    [20] Shao Guang-Jie, Qin Xiu-Juan, Liu Ri-Ping, Wang Wen-Kui, Yao Yu-Shu. Grain fragmentation and property modification of nanocrystalline ZnO under high pressure. Acta Physica Sinica, doi: 10.7498/aps.55.472
Metrics
  • Abstract views:  26
  • PDF Downloads:  1
  • Cited By: 0
Publishing process
  • Available Online:  12 November 2025
  • /

    返回文章
    返回
    Baidu
    map