Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effects of molecular collisions on accommodation coefficients under multi-Parameter incident conditions

HU Yuhui CHEN Qi ZHANG Wei JIANG Dingwu LI Jin QIAO Chenliang

Citation:

Effects of molecular collisions on accommodation coefficients under multi-Parameter incident conditions

HU Yuhui, CHEN Qi, ZHANG Wei, JIANG Dingwu, LI Jin, QIAO Chenliang
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • In rarefied gas flows, accommodation coefficients (ACs) serve as core parameters for gas-surface interactions and play a crucial role in the accuracy of mesoscopic model simulations. However, there exist significant discrepancies in the ACs obtained by different molecular dynamics simulation methods. To accurately characterize the momentum and energy accommodation properties of rarefied gases with solid surfaces under non-equilibrium conditions, this study systematically investigates the gas-surface interactions between argon molecules and platinum surfaces using molecular dynamics (MD) methods. By employing single scattering (SS) and continual scattering (CS) approaches, the influence of gas-gas collisions on tangential momentum accommodation coefficients (TMAC), normal momentum accommodation coefficients (NMAC), and energy accommodation coefficients (EAC) is comparatively analyzed, along with the operational laws of parameters such as surface morphology, surface temperature, incident velocity, and mean free path (MFP). The results demonstrate that gas density exerts a dual effect on momentum and energy accommodation: at smaller MFP, the high gas density within the interaction region impedes the accommodation of subsequent incident molecules with the surface, resulting in lower ACs; at moderate MFP, gas-gas collisions promote accommodation by increasing the frequency of gas-surface collisions, thereby enhancing ACs. Within the MFP range of 2.0–60.0 nm, the deviation in ACs between the CS and SS methods ranges from –14.88% to 5.21%, validating the dual role of gas density. Furthermore, at larger MFP, the TMAC and NMAC obtained via the CS method exhibit different trends with increasing MFP across surfaces of varying morphologies. In contrast to gas density, increases in both surface temperature and incident velocity shorten the interaction time, leading to reduced ACs. Notably, the effect of temperature varies across surfaces with different morphologies: elevated temperatures on smooth surfaces enhance the thermal fluctuations of surface atoms, thereby increasing NMAC, while elevated temperatures on rough surfaces cause smoothing of rough structures, thus inhibiting accommodation. Under high-speed incident conditions, gas-gas collisions promote NMAC on smooth surfaces, inhibit both TMAC and NMAC on rough surfaces, and suppress EAC across all surfaces. Additionally, the ACs obtained via both the CS and SS methods decrease with increasing incident velocity across surfaces of different morphologies.
  • 图 1  模拟盒子示意图

    Figure 1.  MD simulation box schematic.

    图 2  气体分子入射角度示意图

    Figure 2.  Schematic diagram of the incident angle of gas molecules.

    图 3  不同粗糙形态表面示意图 (a) 1D正弦粗糙表面; (b) 2D正弦粗糙表面; (c) 金字塔形粗糙表面; (d) 随机粗糙表面

    Figure 3.  Schematic diagrams of surfaces with different roughness morphologies: (a) 1D sinusoidal rough surface; (b) 2D sinusoidal rough surface; (c) pyramidal rough surface; (d) random rough surface.

    图 4  光滑表面下CS与SS方法ACs随样本量的变化 (a) SS方法; (b) CS方法

    Figure 4.  Variation of ACs with sample size for CS and SS methods on a smooth surface: (a) SS method; (b) CS method.

    图 5  本文和Kammara[28]得到的TMAC结果对比

    Figure 5.  Comparison of TMAC results obtained in this work and by Kammara[28].

    图 6  不同形态表面下CS方法随MFP变化得到的ACs与SS方法的ACs对比 (a) 光滑表面; (b) 2D正弦粗糙表面; (c) 随机粗糙表面

    Figure 6.  Comparison of ACs obtained by the CS method with varying MFP and by the SS method on surfaces with different morphologies: (a) smooth surface; (b) 2D sinusoidal rough surface; (c) random rough surface.

    图 7  不同形态表面和MFP下的平均气体-表面相互作用时间

    Figure 7.  Average gas-surface interaction time on surfaces with different morphologies at varying MFP.

    图 8  不同形态表面和MFP下气体分子的吸附概率

    Figure 8.  Sticking probability of gas molecules on surfaces with different morphologies at varying MFP.

    图 9  不同形态表面和表面温度下CS与SS方法得到的ACs对比图 (a) 光滑表面; (b) 1D正弦粗糙表面; (c) 2D正弦粗糙表面; (d) 金字塔形粗糙表面; (e) 随机粗糙表面

    Figure 9.  Comparison of ACs obtained by CS and SS methods on surfaces with different morphologies at varying surface temperatures: (a) smooth surface; (b) 1D sinusoidal rough surface; (c) 2D sinusoidal rough surface; (d) pyramidal rough surface; (e) random rough surface.

    图 10  不同形态表面下CS与SS方法吸附概率随表面温度的变化

    Figure 10.  Variation of sticking probabilities for CS and SS methods with surface temperature on surfaces with different morphologies.

    图 11  光滑及2D正弦粗糙表面下CS与SS方法平均气体-表面相互作用时间随表面温度的变化

    Figure 11.  Variation of average gas-surface interaction time with surface temperature for CS and SS methods on smooth and 2D sinusoidal rough surfaces.

    图 12  CS方法入射气体分子的典型碰撞轨迹图

    Figure 12.  Typical collision trajectories of incident gas molecules under the CS method.

    图 13  不同形态表面和入射速度下CS与SS方法得到的ACs对比图 (a) 光滑表面; (b) 1D正弦粗糙表面; (c) 2D正弦粗糙表面; (d) 金字塔形粗糙表面; (e) 随机粗糙表面

    Figure 13.  Comparison of ACs obtained by CS and SS methods on surfaces with different morphologies at varying incident velocities: (a) smooth surface; (b) 1D sinusoidal rough surface; (c) 2D sinusoidal rough surface; (d) pyramidal rough surface; (e) random rough surface.

    图 14  光滑表面YOZ平面势能分布示意图

    Figure 14.  Schematic diagram of potential energy distribution in the YOZ plane on a smooth surface.

    图 15  不同形态表面和入射速度下CS与SS方法的平均气体-表面相互作用时间

    Figure 15.  Average gas-surface interaction time for CS and SS methods on surfaces with different morphologies at varying incident velocities.

    图 16  不同入射速度下光滑表面CS与SS方法的总气-固碰撞次数和平均单次碰撞能量损失值

    Figure 16.  Total gas-solid collision counts and average energy loss per collision for CS and SS methods on a smooth surface at varying Incident velocities.

    图 17  不同形态表面和入射速度下CS与SS方法的ACs的相对偏差平均值

    Figure 17.  Average relative deviations of ACs between CS and SS methods on surfaces with different morphologies at varying incident velocities.

    表 1  光滑表面下MFP为2.0、1.0、0.5、0.2 nm时得到的ACs

    Table 1.  Accommodation coefficients obtained on a smooth surface at MFP equal to 2.0, 1.0, 0.5, and 0.2 nm.

    MFP/nmTMACNMACEAC
    2.00.6690.5330.538
    1.00.6370.4460.498
    0.50.6120.4080.425
    0.20.4910.2690.278
    DownLoad: CSV

    表 2  不同形态表面和MFP下CS与SS方法ACs的正负最大差值

    Table 2.  Maximum positive and negative differences in ACs between CS and SS methods on surfaces with different morphologies at varying MFP.

    表面形态 正负最大差值 TMAC NMAC EAC
    Smooth 正差值 0.007 0.002 0.028
    负差值 –0.028 –0.070 –0.004
    2Dsin 正差值 0.020 0.024 0.018
    负差值 –0.143 –0.052 –0.013
    Random 正差值 0.018 0.017 0.017
    负差值 –0.064 –0.080 –0.022
    DownLoad: CSV

    表 3  不同形态表面下SS方法在300 K和900 K表面温度得到的ACs的差值

    Table 3.  Differences in ACs obtained by the SS method on surfaces with different morphologies at surface temperatures of 300 K and 900 K.

    表面形态TMACNMACEAC
    Smooth0.2130.0090.140
    1Dsin0.3250.1240.270
    2Dsin0.3350.1410.249
    Pyramid0.2860.1070.226
    Random0.2360.1110.224
    DownLoad: CSV
    Baidu
  • [1]

    Chen Y Y, Chen D X, Liang S Z, Dai Y G, Bai X, Song B, Zhang D Y, Chen H W, Feng L 2022 Adv.Intell.Syst. 4 2100116Google Scholar

    [2]

    Zang H F, Zhang Z Y, Huang Z T, Lu Y H, Wang P 2024 Sci.Adv. 10 eadk2265Google Scholar

    [3]

    Song B W, Wang C W, Fan S Y, Zhang L R, Zhang C C, Xiong W, Hu Y L, Chu J R, Wu D, Li J W 2024 Adv.Funct.Mater. 34 2305245Google Scholar

    [4]

    Li B, Li H J, Yao X Y, Zhu X F, Liu N K 2022 Appl.Surf.Sci. 584 152617Google Scholar

    [5]

    Maxwell J C 1997 Philos.Trans.R.Soc.Lond. 170 231

    [6]

    Rooholghdos S A, Roohi E 2014 Comput.Math.Appl. 67 2029Google Scholar

    [7]

    Burnett D 1935 Proc.Lond.Math.Soc. s2-39 385Google Scholar

    [8]

    Shavaliyev M 1993 J.Appl.Math.Mech. 57 573Google Scholar

    [9]

    Lord R G 1995 Phys.Fluids 7 1159Google Scholar

    [10]

    Cercignani C, Lampis M 1971 Transp.Theory Stat.Phys. 1 101Google Scholar

    [11]

    Liang T F, Li Q, Ye W J 2018 J.Comput.Phys. 352 105Google Scholar

    [12]

    Yamamoto K 2001 RAREFIED GAS DYNAMICS: 22nd International Symposium Sydney, Australia, July 9–14, 2000 339

    [13]

    Park J H, Baek S W 2004 Int.J.Heat Mass Transf. 47 1313Google Scholar

    [14]

    Liang Z, Keblinski P 2014 Int.J.Heat Mass Transf. 78 161Google Scholar

    [15]

    Yamaguchi H, Matsuda Y, Niimi T 2017 Phys.Rev.E 96 013116Google Scholar

    [16]

    Yousefi-Nasab S, Safdari J, Karimi-Sabet J, hasan Mallah M 2021 Vacuum 183 109864Google Scholar

    [17]

    Agrawal A, Prabhu S V 2008 J.Vac.Sci.Technol.A 26 634Google Scholar

    [18]

    Mohammad Nejad S, Nedea S, Frijns A, Smeulders D 2020 Micromachines 11

    [19]

    Rappe A K, Casewit C J, Colwell K S, Goddard W A I, Skiff W M 1992 J.Am.Chem.Soc. 114 10024Google Scholar

    [20]

    C T Rettner 1998 IEEE Trans.Magn. 34 2387Google Scholar

    [21]

    Minton T K, Tagawa M, Nathanson G M 2004 J.Spacecr.Rockets 41 389Google Scholar

    [22]

    Tekasakul P, Bentz J A, Tompson R V, Loyalka S K 1996 J.Vac.Sci.Technol.A 14 2946Google Scholar

    [23]

    Jousten K 2002 J.Vac.Sci.Technol.A 21 318

    [24]

    Arya G, C Hsueh-Chia, Maginn E J 2003 Mol.Simul. 29 697Google Scholar

    [25]

    Yamamoto K, Takeuchi H, Hyakutake T 2006 Phys.Fluids 18 046103Google Scholar

    [26]

    Prabha S K, Sathian S P 2012 Phys.Rev.E 85 041201

    [27]

    Cao B Y, Chen M, Guo Z Y 2005 Appl.Phys.Lett. 86 091905Google Scholar

    [28]

    Peddakotla S A, Kammara K K, Kumar R 2019 Microfluid.Nanofluid. 23 79Google Scholar

    [29]

    Sipkens T A, Daun K J 2018 J.Phys.Chem.C 122 20431Google Scholar

    [30]

    V Chirita, B A Pailthorpe, R E Collins 1993 J.Phys.D Appl.Phys. 26 133Google Scholar

    [31]

    Finger G W, Kapat J S, Bhattacharya A 2006 J.Fluids Eng. 129 31

    [32]

    Ozhgibesov M, Leu T, Cheng C, Utkin A 2012 J.Mol.Graph.Model. 38 375Google Scholar

    [33]

    Xiao C, Shi P F, Yan W M, Chen L, Qian L M, Kim S H 2019 Colloids Interfaces 3

    [34]

    Skoulidas A I, Sholl D S, Johnson J K 2006 J.Chem.Phys. 124 054708Google Scholar

    [35]

    Moe K, Moe M M 2011 27TH INTERNATIONAL SYMPOSIUM ON RAREFIED GAS DYNAMICS Pacific Grove, California, USA, July 10–15, 2010 1313

    [36]

    Miao Q, Li L Q, Pi X C, Qiu Y, Fang M 2023 Phys.Fluids 35 082113Google Scholar

    [37]

    Mohammad Nejad S, Nedea S, Frijns A, Smeulders D 2022 Phys.Fluids 34 117122Google Scholar

    [38]

    Wang Z J, Song C Q, Qin F H, Luo X S 2021 J.Fluid Mech. 928 A34Google Scholar

    [39]

    Liang T F, Zhang J, Li Q 2021 Phys.Fluids 33 082005Google Scholar

    [40]

    Liang T F, Li Q 2019 J.Appl.Phys. 126 084304Google Scholar

    [41]

    TAO R L, WANG Z H 2024 Chin.J.Aeronaut. 37 228Google Scholar

    [42]

    Minkowycz W, Sparrow E 2018 Advances in Numerical Heat Transfer, Volume 2. 0th edn. (Routledge). Pp200

    [43]

    Paterlini M, Ferguson D M 1998 Chem.Phys. 236 243Google Scholar

    [44]

    Tully J C 1980 J.Chem.Phys. 73 1975Google Scholar

    [45]

    Adelman S A, Doll J D 1976 J.Chem.Phys. 64 2375Google Scholar

    [46]

    Kimura T, Maruyama S 2002 Microscale Thermophys.Eng. 6 3Google Scholar

    [47]

    Maruyama S, Kimura T 1999 Therm.Sci.Eng 7 63

    [48]

    Foiles S M, Baskes M I, Daw M S 1986 Phys.Rev.B 33 7983Google Scholar

    [49]

    Spijker P, Markvoort A J, Nedea S V, Hilbers P A J 2010 Phys.Rev.E 81 011203Google Scholar

    [50]

    Pham T T, To Q D, Lauriat G, Léonard C, Hoang V V 2012 Phys.Rev.E 86 051201Google Scholar

    [51]

    Cao B Y, Sun J, Chen M, Guo Z Y 2009 Int.J.Mol.Sci. 10 4638Google Scholar

    [52]

    Borisov S F, Litvinenko S A, Semenov Y G, Suetin P E 1978 J.Eng.Phys. 34 603Google Scholar

    [53]

    Reinhold J, Veltzke T, Wells B, Schneider J, Meierhofer F, Colombi Ciacchi L, Chaffee A, Thöming J 2014 Comput.Fluids 97 31Google Scholar

    [54]

    张冉, 常青, 李桦 2018 67 223401Google Scholar

    Zhang R, Chang Q, Li H 2018 Acta Phys. Sin. 67 223401Google Scholar

  • [1] HUANG Yongfeng, CAO Zhijian, MENG Sheng. Molecular dynamics simulation of ion crystallization in nano-droplet on nonpolar solid surface. Acta Physica Sinica, doi: 10.7498/aps.74.20251231
    [2] GONG Luyuan, WEI Xinding, HAN Tao, GUO Yali, SHEN Shengqiang. Molecular dynamics study on influence of geometric characteristics of microstructure surface on steam condensation. Acta Physica Sinica, doi: 10.7498/aps.74.20250324
    [3] Ding Ye-Zhang, Ye Yin, Li Duo-Sheng, Xu Feng, Lang Wen-Chang, Liu Jun-Hong, Wen Xin. Molecular dynamics simulation of graphene deposition and growth on WC-Co cemented carbides. Acta Physica Sinica, doi: 10.7498/aps.72.20221332
    [4] Yu Hang, Zhang Ran, Yang Fan, Li Hua. Molecular dynamics study on the conversion mechanism between momentum and energy components in gas-surface interaction. Acta Physica Sinica, doi: 10.7498/aps.70.20201192
    [5] Zhang Ye, Zhang Ran, Lai Jian-Qi, Li Hua. Effect of macroscopic velocity on accommodation coefficients based on the molecular dynamics method. Acta Physica Sinica, doi: 10.7498/aps.68.20190987
    [6] Chang Xu. Ripples of multilayer graphenes:a molecular dynamics study. Acta Physica Sinica, doi: 10.7498/aps.63.086102
    [7] Xiao Hong-Xing, Long Chong-Sheng. Molecular dynamics simulation of surface energy of low miller index surfaces in UO2. Acta Physica Sinica, doi: 10.7498/aps.62.103104
    [8] Ke Chuan, Zhao Cheng-Li, Gou Fu-Jun, Zhao Yong. Molecular dynamics study of interaction between the H atoms and Si surface. Acta Physica Sinica, doi: 10.7498/aps.62.165203
    [9] He Ping-Ni, Ning Jian-Ping, Qin You-Min, Zhao Cheng-Li, Gou Fu-Jun. Molecular dynamics simulations of low-energy Clatoms etching Si(100) surface. Acta Physica Sinica, doi: 10.7498/aps.60.045209
    [10] Zhao Cheng-Li, Lü Xiao-Dan, Ning Jian-Ping, Qing You-Min, He Ping-Ni, Gou Fu-Jun. Molecular dynamics simulations of energy effectson atorn F interaction with SiC(100). Acta Physica Sinica, doi: 10.7498/aps.60.095203
    [11] Qin You-Min, Zhao Cheng-Li, He Ping-Ni, Gou Fu-Jun, Ning Jian-Ping, Lü Xiao-Dan, Bogaerts A.. Molecular dynamics simulation of temperature effects on CF+3 etching of Si surface. Acta Physica Sinica, doi: 10.7498/aps.59.7225
    [12] Zhang Zong-Ning, Liu Mei-Lin, Li Wei, Geng Chang-Jian, Zhao Qian, Zhang Lin. Molecular dynamics study of freezing a molten Cu55 cluster on Cu(010)surface. Acta Physica Sinica, doi: 10.7498/aps.58.67
    [13] Zhang Lin, Zhang Cai-Bei, Qi Yang. Molecular dynamics study on structural change of a Au959 cluster supported on MgO(100) surface at low temperature. Acta Physica Sinica, doi: 10.7498/aps.58.53
    [14] Liu Mei-Lin, Zhang Zong-Ning, Li Wei, Zhao Qian, Qi Yang, Zhang Lin. Deposition process of MgO thin film on MgO(001) surface simulated by molecular dynamics. Acta Physica Sinica, doi: 10.7498/aps.58.199
    [15] Zhang Chao, Wang Yong-Liang, Yan Chao, Zhang Qing-Yu. Numerical simulation of the influence of substitutional impurity on the interaction between low-energy Pt atoms and Pt(111) surface. Acta Physica Sinica, doi: 10.7498/aps.55.2882
    [16] Wang Hai-Long, Wang Xiu-Xi, Liang Hai-Yi. Molecular dynamics simulation of strain effects on surface melting for metal Cu. Acta Physica Sinica, doi: 10.7498/aps.54.4836
    [17] Xie Guo-Feng, Wang De-Wu, Ying Chun-Tong. Molecular dynamics simulation of Gd adatom diffusion on Cu(110) surface. Acta Physica Sinica, doi: 10.7498/aps.52.2254
    [18] Hu Xiao-Jun, Dai Yong-Bing, He Xian-Chang, Shen He-Sheng, Li Rong-Bin. . Acta Physica Sinica, doi: 10.7498/aps.51.1388
    [19] Chen Jun, Jing Fu-Qian, Zhang Jing-Lin, Chen Dong-Quan. . Acta Physica Sinica, doi: 10.7498/aps.51.2386
    [20] Zhang Chao, Lv Hai-Feng, Zhang Qing-Yu. . Acta Physica Sinica, doi: 10.7498/aps.51.2329
Metrics
  • Abstract views:  408
  • PDF Downloads:  6
  • Cited By: 0
Publishing process
  • Available Online:  17 October 2025
  • /

    返回文章
    返回
    Baidu
    map