-
In rarefied gas flows, accommodation coeffcients (ACs) serve as core parameters for gas-surface interactions and play a crucial role in the accuracy of mesoscopic model simulations. However, there exist significant discrepancies in the ACs obtained by different molecular dynamics simulation methods. To accurately characterize the momentum and energy accommodation properties of rarefied gases with solid surfaces under non-equilibrium conditions, this study systematically investigates the gas-surface interactions between argon molecules and platinum surfaces using molecular dynamics (MD) methods. By employing single scattering (SS) and continual scattering (CS) approaches, the influence of gas-gas collisions on tangential momentum accommodation coeffcients (TMAC), normal momentum accommodation coeffcients (NMAC), and energy accommodation coeffcients (EAC) is comparatively analyzed, along with the operational laws of parameters such as surface morphology, surface temperature, incident velocity, and mean free path (MFP). The results demonstrate that gas density exerts a dual effect on momentum and energy accommodation: at smaller MFP, the high gas density within the interaction region impedes the accommodation of subsequent incident molecules with the surface, resulting in lower ACs; at moderate MFP, gas-gas collisions promote accommodation by increasing the frequency of gas-surface collisions, thereby enhancing ACs. Within the MFP range of 2.0–60.0 nm, the deviation in ACs between the CS and SS methods ranges from -14.88% to 5.21%, validating the dual role of gas density. Furthermore, at larger MFP, the TMAC and NMAC obtained via the CS method exhibit different trends with increasing MFP across surfaces of varying morphologies. In contrast to gas density, increases in both surface temperature and incident velocity shorten the interaction time, leading to reduced ACs. Notably, the effect of temperature varies across surfaces with different morphologies: elevated temperatures on smooth surfaces enhance the thermal fluctuations of surface atoms, thereby increasing NMAC, while elevated temperatures on rough surfaces cause smoothing of rough structures, thus inhibiting accommodation. Under high-speed incident conditions, gas-gas collisions promote NMAC on smooth surfaces, inhibit both TMAC and NMAC on rough surfaces, and suppress EAC across all surfaces. Additionally, the ACs obtained via both the CS and SS methods decrease with increasing incident velocity across surfaces of different morphologies.
-
Keywords:
- molecular dynamics /
- gas-surface interaction /
- accommodation coeffcient /
- surface morphology
-
[1] Chen Y Y, Chen D X, Liang S Z, Dai Y G, Bai X, Song B, Zhang D Y, Chen H W, Feng L 2022 Adv.Intell.Syst. 4 2100116
[2] Zang H F, Zhang Z Y, Huang Z T, Lu Y H, Wang P 2024 Sci.Adv. 10 eadk2265
[3] Song B W, Wang C W, Fan S Y, Zhang L R, Zhang C C, Xiong W, Hu Y L, Chu J R, Wu D, Li J W 2024 Adv.Funct.Mater. 34 2305245
[4] Li B, Li H J, Yao X Y, Zhu X F, Liu N K 2022 Appl.Surf.Sci. 584 152617
[5] Maxwell J C 1997 Philos.Trans.R.Soc.Lond. 170 231
[6] Rooholghdos S A, Roohi E 2014 Comput.Math.Appl. 67 2029
[7] Burnett D 1935 Proc.Lond.Math.Soc. s2-39 385
[8] Shavaliyev M 1993 J.Appl.Math.Mech. 57 573
[9] Lord R G 1995 Phys.Fluids 7 1159
[10] Cercignani C,, Lampis M 1971 Transp.Theory Stat.Phys. 1 101
[11] Liang T F, Li Q, Ye W J 2018 J.Comput.Phys. 352 105
[12] Yamamoto K 2001 RAREFIED GAS DYNAMICS:22nd International Symposium Sydney,Australia,July 9-14,2000 339
[13] Park J H, Baek S W 2004 Int.J.Heat Mass Transf. 47 1313
[14] Liang Z, Keblinski P 2014 Int.J.Heat Mass Transf. 78 161
[15] Yamaguchi H, Matsuda Y, Niimi T 2017 Phys.Rev.E 96 013116
[16] Yousefi-Nasab S, Safdari J, Karimi-Sabet J, hasan Mallah M 2021 Vacuum 183 109864
[17] Agrawal A, Prabhu S V 2008 J.Vac.Sci.Technol.A 26 634
[18] Mohammad Nejad S, Nedea S, Frijns A, Smeulders D 2020 Micromachines 11
[19] Rappe A K, Casewit C J, Colwell K S, Goddard W A I, Skiff W M 1992 J.Am.Chem.Soc. 114 10024
[20] C T Rettner 1998 IEEE Trans.Magn. 34 2387
[21] Minton T K, Tagawa M, Nathanson G M 2004 J.Spacecr.Rockets 41 389
[22] Tekasakul P, Bentz J A, Tompson R V, Loyalka S K 1996 J.Vac.Sci.Technol.A 14 2946
[23] Jousten K 2002 J.Vac.Sci.Technol.A 21 318
[24] Arya G, C Hsueh-Chia,, Maginn E J 2003 Mol.Simul. 29 697
[25] Yamamoto K, Takeuchi H, Hyakutake T 2006 Phys.Fluids 18 046103
[26] Prabha S K, Sathian S P 2012 Phys.Rev.E 85 041201
[27] Cao B Y, Chen M, Guo Z Y 2005 Appl.Phys.Lett. 86 091905
[28] Peddakotla S A, Kammara K K, Kumar R 2019 Microfluid.Nanofluid. 23 79
[29] Sipkens T A, Daun K J 2018 J.Phys.Chem.C 122 20431
[30] V Chirita, B A Pailthorpe, R E Collins 1993 J.Phys.D Appl.Phys. 26 133
[31] Finger G W, Kapat J S, Bhattacharya A 2006 J.Fluids Eng. 129 31
[32] Ozhgibesov M, Leu T, Cheng C, Utkin A 2012 J.Mol.Graph.Model. 38 375
[33] Xiao C, Shi P F, Yan W M, Chen L, Qian L M, Kim S H 2019 Colloids Interfaces 3
[34] Skoulidas A I, Sholl D S, Johnson J K 2006 J.Chem.Phys. 124 054708
[35] Moe K, Moe M M 2011 27TH INTERNATIONAL SYMPOSIUM ON RAREFIED GAS DYNAMICS Pacific Grove,California,USA,July 10-15,2010 1313
[36] Miao Q ff, Li L Q ff, Pi X C ff, Qiu Y ff, Fang M ff 2023 Phys.Fluids 35 082113
[37] Mohammad Nejad S, Nedea S, Frijns A, Smeulders D 2022 Phys.Fluids 34 117122
[38] Wang Z J, Song C Q, Qin F H, Luo X S 2021 J.Fluid Mech. 928 A34
[39] Liang T F ff, Zhang J ff, Li Q ff 2021 Phys.Fluids 33 082005
[40] Liang T F, Li Q 2019 J.Appl.Phys. 126 084304
[41] TAO R L, WANG Z H 2024 Chin.J.Aeronaut. 37 228
[42] Minkowycz W, Sparrow E 2018 Advances in Numerical Heat Transfer, Volume 2. 0th edn. (Routledge). Pp200
[43] Paterlini M, Ferguson D M 1998 Chem.Phys. 236 243
[44] Tully J C 1980 J.Chem.Phys. 73 1975
[45] Adelman S A, Doll J D 1976 J.Chem.Phys. 64 2375
[46] Kimura T,, Maruyama S 2002 Microscale Thermophys.Eng. 6 3
[47] Maruyama S, Kimura T 1999 Therm.Sci.Eng 7 63
[48] Foiles S M, Baskes M I, Daw M S 1986 Phys.Rev.B 33 7983
[49] Spijker P, Markvoort A J, Nedea S V, Hilbers P A J 2010 Phys.Rev.E 81 011203
[50] Pham T T, To Q D, Lauriat G, Léonard C, Hoang V V 2012 Phys.Rev.E 86 051201
[51] Cao B Y, Sun J, Chen M, Guo Z Y 2009 Int.J.Mol.Sci. 10 4638
[52] Borisov S F, Litvinenko S A, Semenov Y G, Suetin P E 1978 J.Eng.Phys. 34 603
[53] Reinhold J, Veltzke T, Wells B, Schneider J, Meierhofer F, Colombi Ciacchi L, Chaffee A, Thöming J 2014 Comput.Fluids 97 31
[54] Zhang R, Chang Q, Li H 2018 Acta Phys. Sin. 67 223401 (in Chinses)
[55] [张冉, 常青, 李桦 2018 物理 学报 67 223401]
Metrics
- Abstract views: 28
- PDF Downloads: 0
- Cited By: 0