Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effects of molecular collisions on accommodation coeffcients under multi-Parameter incident conditions

HU Yuhui CHEN Qi ZHANG Wei JIANG Dingwu LI Jin QIAO Chenliang

Citation:

Effects of molecular collisions on accommodation coeffcients under multi-Parameter incident conditions

HU Yuhui, CHEN Qi, ZHANG Wei, JIANG Dingwu, LI Jin, QIAO Chenliang
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • In rarefied gas flows, accommodation coeffcients (ACs) serve as core parameters for gas-surface interactions and play a crucial role in the accuracy of mesoscopic model simulations. However, there exist significant discrepancies in the ACs obtained by different molecular dynamics simulation methods. To accurately characterize the momentum and energy accommodation properties of rarefied gases with solid surfaces under non-equilibrium conditions, this study systematically investigates the gas-surface interactions between argon molecules and platinum surfaces using molecular dynamics (MD) methods. By employing single scattering (SS) and continual scattering (CS) approaches, the influence of gas-gas collisions on tangential momentum accommodation coeffcients (TMAC), normal momentum accommodation coeffcients (NMAC), and energy accommodation coeffcients (EAC) is comparatively analyzed, along with the operational laws of parameters such as surface morphology, surface temperature, incident velocity, and mean free path (MFP). The results demonstrate that gas density exerts a dual effect on momentum and energy accommodation: at smaller MFP, the high gas density within the interaction region impedes the accommodation of subsequent incident molecules with the surface, resulting in lower ACs; at moderate MFP, gas-gas collisions promote accommodation by increasing the frequency of gas-surface collisions, thereby enhancing ACs. Within the MFP range of 2.0–60.0 nm, the deviation in ACs between the CS and SS methods ranges from -14.88% to 5.21%, validating the dual role of gas density. Furthermore, at larger MFP, the TMAC and NMAC obtained via the CS method exhibit different trends with increasing MFP across surfaces of varying morphologies. In contrast to gas density, increases in both surface temperature and incident velocity shorten the interaction time, leading to reduced ACs. Notably, the effect of temperature varies across surfaces with different morphologies: elevated temperatures on smooth surfaces enhance the thermal fluctuations of surface atoms, thereby increasing NMAC, while elevated temperatures on rough surfaces cause smoothing of rough structures, thus inhibiting accommodation. Under high-speed incident conditions, gas-gas collisions promote NMAC on smooth surfaces, inhibit both TMAC and NMAC on rough surfaces, and suppress EAC across all surfaces. Additionally, the ACs obtained via both the CS and SS methods decrease with increasing incident velocity across surfaces of different morphologies.
  • [1]

    Chen Y Y, Chen D X, Liang S Z, Dai Y G, Bai X, Song B, Zhang D Y, Chen H W, Feng L 2022 Adv.Intell.Syst. 4 2100116

    [2]

    Zang H F, Zhang Z Y, Huang Z T, Lu Y H, Wang P 2024 Sci.Adv. 10 eadk2265

    [3]

    Song B W, Wang C W, Fan S Y, Zhang L R, Zhang C C, Xiong W, Hu Y L, Chu J R, Wu D, Li J W 2024 Adv.Funct.Mater. 34 2305245

    [4]

    Li B, Li H J, Yao X Y, Zhu X F, Liu N K 2022 Appl.Surf.Sci. 584 152617

    [5]

    Maxwell J C 1997 Philos.Trans.R.Soc.Lond. 170 231

    [6]

    Rooholghdos S A, Roohi E 2014 Comput.Math.Appl. 67 2029

    [7]

    Burnett D 1935 Proc.Lond.Math.Soc. s2-39 385

    [8]

    Shavaliyev M 1993 J.Appl.Math.Mech. 57 573

    [9]

    Lord R G 1995 Phys.Fluids 7 1159

    [10]

    Cercignani C,, Lampis M 1971 Transp.Theory Stat.Phys. 1 101

    [11]

    Liang T F, Li Q, Ye W J 2018 J.Comput.Phys. 352 105

    [12]

    Yamamoto K 2001 RAREFIED GAS DYNAMICS:22nd International Symposium Sydney,Australia,July 9-14,2000 339

    [13]

    Park J H, Baek S W 2004 Int.J.Heat Mass Transf. 47 1313

    [14]

    Liang Z, Keblinski P 2014 Int.J.Heat Mass Transf. 78 161

    [15]

    Yamaguchi H, Matsuda Y, Niimi T 2017 Phys.Rev.E 96 013116

    [16]

    Yousefi-Nasab S, Safdari J, Karimi-Sabet J, hasan Mallah M 2021 Vacuum 183 109864

    [17]

    Agrawal A, Prabhu S V 2008 J.Vac.Sci.Technol.A 26 634

    [18]

    Mohammad Nejad S, Nedea S, Frijns A, Smeulders D 2020 Micromachines 11

    [19]

    Rappe A K, Casewit C J, Colwell K S, Goddard W A I, Skiff W M 1992 J.Am.Chem.Soc. 114 10024

    [20]

    C T Rettner 1998 IEEE Trans.Magn. 34 2387

    [21]

    Minton T K, Tagawa M, Nathanson G M 2004 J.Spacecr.Rockets 41 389

    [22]

    Tekasakul P, Bentz J A, Tompson R V, Loyalka S K 1996 J.Vac.Sci.Technol.A 14 2946

    [23]

    Jousten K 2002 J.Vac.Sci.Technol.A 21 318

    [24]

    Arya G, C Hsueh-Chia,, Maginn E J 2003 Mol.Simul. 29 697

    [25]

    Yamamoto K, Takeuchi H, Hyakutake T 2006 Phys.Fluids 18 046103

    [26]

    Prabha S K, Sathian S P 2012 Phys.Rev.E 85 041201

    [27]

    Cao B Y, Chen M, Guo Z Y 2005 Appl.Phys.Lett. 86 091905

    [28]

    Peddakotla S A, Kammara K K, Kumar R 2019 Microfluid.Nanofluid. 23 79

    [29]

    Sipkens T A, Daun K J 2018 J.Phys.Chem.C 122 20431

    [30]

    V Chirita, B A Pailthorpe, R E Collins 1993 J.Phys.D Appl.Phys. 26 133

    [31]

    Finger G W, Kapat J S, Bhattacharya A 2006 J.Fluids Eng. 129 31

    [32]

    Ozhgibesov M, Leu T, Cheng C, Utkin A 2012 J.Mol.Graph.Model. 38 375

    [33]

    Xiao C, Shi P F, Yan W M, Chen L, Qian L M, Kim S H 2019 Colloids Interfaces 3

    [34]

    Skoulidas A I, Sholl D S, Johnson J K 2006 J.Chem.Phys. 124 054708

    [35]

    Moe K, Moe M M 2011 27TH INTERNATIONAL SYMPOSIUM ON RAREFIED GAS DYNAMICS Pacific Grove,California,USA,July 10-15,2010 1313

    [36]

    Miao Q ff, Li L Q ff, Pi X C ff, Qiu Y ff, Fang M ff 2023 Phys.Fluids 35 082113

    [37]

    Mohammad Nejad S, Nedea S, Frijns A, Smeulders D 2022 Phys.Fluids 34 117122

    [38]

    Wang Z J, Song C Q, Qin F H, Luo X S 2021 J.Fluid Mech. 928 A34

    [39]

    Liang T F ff, Zhang J ff, Li Q ff 2021 Phys.Fluids 33 082005

    [40]

    Liang T F, Li Q 2019 J.Appl.Phys. 126 084304

    [41]

    TAO R L, WANG Z H 2024 Chin.J.Aeronaut. 37 228

    [42]

    Minkowycz W, Sparrow E 2018 Advances in Numerical Heat Transfer, Volume 2. 0th edn. (Routledge). Pp200

    [43]

    Paterlini M, Ferguson D M 1998 Chem.Phys. 236 243

    [44]

    Tully J C 1980 J.Chem.Phys. 73 1975

    [45]

    Adelman S A, Doll J D 1976 J.Chem.Phys. 64 2375

    [46]

    Kimura T,, Maruyama S 2002 Microscale Thermophys.Eng. 6 3

    [47]

    Maruyama S, Kimura T 1999 Therm.Sci.Eng 7 63

    [48]

    Foiles S M, Baskes M I, Daw M S 1986 Phys.Rev.B 33 7983

    [49]

    Spijker P, Markvoort A J, Nedea S V, Hilbers P A J 2010 Phys.Rev.E 81 011203

    [50]

    Pham T T, To Q D, Lauriat G, Léonard C, Hoang V V 2012 Phys.Rev.E 86 051201

    [51]

    Cao B Y, Sun J, Chen M, Guo Z Y 2009 Int.J.Mol.Sci. 10 4638

    [52]

    Borisov S F, Litvinenko S A, Semenov Y G, Suetin P E 1978 J.Eng.Phys. 34 603

    [53]

    Reinhold J, Veltzke T, Wells B, Schneider J, Meierhofer F, Colombi Ciacchi L, Chaffee A, Thöming J 2014 Comput.Fluids 97 31

    [54]

    Zhang R, Chang Q, Li H 2018 Acta Phys. Sin. 67 223401 (in Chinses)

    [55]

    [张冉, 常青, 李桦 2018 物理 学报 67 223401]

  • [1] YU Mian, LI Bingheng, MENG Xiangwen, WU Lianfeng, MA Lianxiang, TANG Yuanzheng. Molecular dynamics study on bubble nucleation on rough surfaces with sinusoidal protrusions under different wetting conditions. Acta Physica Sinica, doi: 10.7498/aps.74.20250717
    [2] GONG Luyuan, WEI Xinding, HAN Tao, GUO Yali, SHEN Shengqiang. Molecular dynamics study on influence of geometric characteristics of microstructure surface on steam condensation. Acta Physica Sinica, doi: 10.7498/aps.74.20250324
    [3] Ding Ye-Zhang, Ye Yin, Li Duo-Sheng, Xu Feng, Lang Wen-Chang, Liu Jun-Hong, Wen Xin. Molecular dynamics simulation of graphene deposition and growth on WC-Co cemented carbides. Acta Physica Sinica, doi: 10.7498/aps.72.20221332
    [4] Yu Hang, Zhang Ran, Yang Fan, Li Hua. Molecular dynamics study on the conversion mechanism between momentum and energy components in gas-surface interaction. Acta Physica Sinica, doi: 10.7498/aps.70.20201192
    [5] Zhang Ye, Zhang Ran, Lai Jian-Qi, Li Hua. Effect of macroscopic velocity on accommodation coefficients based on the molecular dynamics method. Acta Physica Sinica, doi: 10.7498/aps.68.20190987
    [6] Chang Xu. Ripples of multilayer graphenes:a molecular dynamics study. Acta Physica Sinica, doi: 10.7498/aps.63.086102
    [7] Xiao Hong-Xing, Long Chong-Sheng. Molecular dynamics simulation of surface energy of low miller index surfaces in UO2. Acta Physica Sinica, doi: 10.7498/aps.62.103104
    [8] Ke Chuan, Zhao Cheng-Li, Gou Fu-Jun, Zhao Yong. Molecular dynamics study of interaction between the H atoms and Si surface. Acta Physica Sinica, doi: 10.7498/aps.62.165203
    [9] He Ping-Ni, Ning Jian-Ping, Qin You-Min, Zhao Cheng-Li, Gou Fu-Jun. Molecular dynamics simulations of low-energy Clatoms etching Si(100) surface. Acta Physica Sinica, doi: 10.7498/aps.60.045209
    [10] Zhao Cheng-Li, Lü Xiao-Dan, Ning Jian-Ping, Qing You-Min, He Ping-Ni, Gou Fu-Jun. Molecular dynamics simulations of energy effectson atorn F interaction with SiC(100). Acta Physica Sinica, doi: 10.7498/aps.60.095203
    [11] Qin You-Min, Zhao Cheng-Li, He Ping-Ni, Gou Fu-Jun, Ning Jian-Ping, Lü Xiao-Dan, Bogaerts A.. Molecular dynamics simulation of temperature effects on CF+3 etching of Si surface. Acta Physica Sinica, doi: 10.7498/aps.59.7225
    [12] Zhang Lin, Zhang Cai-Bei, Qi Yang. Molecular dynamics study on structural change of a Au959 cluster supported on MgO(100) surface at low temperature. Acta Physica Sinica, doi: 10.7498/aps.58.53
    [13] Zhang Zong-Ning, Liu Mei-Lin, Li Wei, Geng Chang-Jian, Zhao Qian, Zhang Lin. Molecular dynamics study of freezing a molten Cu55 cluster on Cu(010)surface. Acta Physica Sinica, doi: 10.7498/aps.58.67
    [14] Liu Mei-Lin, Zhang Zong-Ning, Li Wei, Zhao Qian, Qi Yang, Zhang Lin. Deposition process of MgO thin film on MgO(001) surface simulated by molecular dynamics. Acta Physica Sinica, doi: 10.7498/aps.58.199
    [15] Zhang Chao, Wang Yong-Liang, Yan Chao, Zhang Qing-Yu. Numerical simulation of the influence of substitutional impurity on the interaction between low-energy Pt atoms and Pt(111) surface. Acta Physica Sinica, doi: 10.7498/aps.55.2882
    [16] Wang Hai-Long, Wang Xiu-Xi, Liang Hai-Yi. Molecular dynamics simulation of strain effects on surface melting for metal Cu. Acta Physica Sinica, doi: 10.7498/aps.54.4836
    [17] Xie Guo-Feng, Wang De-Wu, Ying Chun-Tong. Molecular dynamics simulation of Gd adatom diffusion on Cu(110) surface. Acta Physica Sinica, doi: 10.7498/aps.52.2254
    [18] Hu Xiao-Jun, Dai Yong-Bing, He Xian-Chang, Shen He-Sheng, Li Rong-Bin. . Acta Physica Sinica, doi: 10.7498/aps.51.1388
    [19] Chen Jun, Jing Fu-Qian, Zhang Jing-Lin, Chen Dong-Quan. . Acta Physica Sinica, doi: 10.7498/aps.51.2386
    [20] Zhang Chao, Lv Hai-Feng, Zhang Qing-Yu. . Acta Physica Sinica, doi: 10.7498/aps.51.2329
Metrics
  • Abstract views:  28
  • PDF Downloads:  0
  • Cited By: 0
Publishing process
  • Available Online:  17 October 2025
  • /

    返回文章
    返回
    Baidu
    map