Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Synergistic effect and surface morphology of ions and neutral groups in plasma deposition and etching

SONG Liuqin DONG Wan ZHANG Yifan SONG Yuanhong

Citation:

Synergistic effect and surface morphology of ions and neutral groups in plasma deposition and etching

SONG Liuqin, DONG Wan, ZHANG Yifan, SONG Yuanhong
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Low-temperature plasma deposition and etching technologies play a vital role in plasma-assisted manufacturing fields such as semiconductor chip fabrication, flat-panel displays, and photovoltaic devices. The physical and chemical interaction mechanisms between plasma and materials form the fundamental scientific basis for elucidating the nature of process dynamics, optimizing processing parameters, and improving device performance and reliability.In this work, by using a fluid hybrid model coupled with a surface profile evolution model, the plasma discharge characteristics and the deposition/etching surface profile under different discharge parameters are self-consistently simulated, and the simulation results and discussions of some research cases are also presented.During amorphous silicon thin-film deposition, it is found that the radial distribution of electron density generated in the plasma discharge process is non-uniform, which can lead to the non-uniform distribution of neutral and ion fluxes on the substrate surface, as well as the non-uniformity of film thickness or film quality. Moreover, the ion energy distribution strongly influences the composition and bonding configurations in the film, thereby affecting its quality and performance.In the studies of SiO2 etching using fluorocarbon mixed-gas discharges, it is found that under voltage waveform tailoring, adjusting the electrode gap, phase, and harmonic number can flexibly control ion and neutral fluxes. This allows the discharge parameters to be optimized in order to improve etching performance. During Si etching with inductively coupled Ar/Cl2 plasma, the application of tailored bias waveform causes the ion energy to accumulate predominantly in the high-energy range, which can significantly enhance etching efficiency.In summary, this work systematically investigates how the self-consistent coupling between plasma discharge and deposition/etching processes can be achieved through the hybrid simulation, while further elucidating the essential synergistic roles of ions and neutral radicals. It is hoped that these findings will serve as valuable references for the optimizing plasma processes and equipment.
  • 图 1  不同气压(2—4 Torr)下, SiH4/H2混合气体放电中, 放电条件为电极长度11 cm, 电极间距2 cm, 驱动频率13.56 MHz, 电压幅值50 V, 气体比例固定为SiH4/H2 = 1/9 (a)—(c) 周期平均电子密度; (d)—(f) SiH3基团密度的空间分布

    Figure 1.  In the discharge of SiH4/H2 at different pressures (2–4 Torr), the discharge conditions are two parallel plates with a length of 11 cm and a distance of 2 cm between them, driving frequency is 13.56 MHz and a voltage amplitude of 50 V, and SiH4/H2 gas ratio is fixed at 1/9: (a)–(c) Period-averaged electron density; (d)–(f) spatial distribution of SiH3 density.

    图 2  沉积时间为30 s时, 不同气压下SiH4/H2混合气体放电的薄膜的表面形貌径向分布, 放电条件与图1一致 (a) 2 Torr, (b) 3 Torr, (c) 4 Torr

    Figure 2.  Profiles formed after deposition time of 30 s for different pressures: (a) 2 Torr; (b) 3 Torr; (c) 4 Torr. the discharge conditions are the same as in Fig. 1.

    图 3  不同气压(2—4 Torr)下SiH4/H2混合气体放电中的离子能量分布, 放电条件与图1一致 (a) 径向中心处; (b) 电极边缘处接地电极表面

    Figure 3.  The ion energy distribution in SiH4/H2 mixed gas discharge at different pressures (2–4 Torr): (a) At the radial center; (b) ground the electrode surface at the edge of the electrode; the discharge conditions are the same as in Fig. 1.

    图 4  SiH4/H2混合气体放电中, 不同气压(2—4 Torr)下沉积薄膜的氢含量、Ⅱ类反应占比以及空位占比, 放电条件与图1一致

    Figure 4.  The hydrogen content, reaction Ⅱ content and vacancy content for different pressures (2–4 Torr), the discharge conditions are the same as in Fig. 1.

    图 5  SiH4/H2混合气体放电中, 不同SiH4含量(10%—90%)下(a)—(c) 周期平均电子密度和(d)—(f) SiH3基团密度的空间分布. 放电条件: 电极长度 11 cm, 电极间距2 cm, 驱动频率13.56 MHz, 电压幅值50 V, 气压2 Torr

    Figure 5.  Spatially resolved and RF period-averaged electron density (a)–(c) and SiH3 density (d)–(f) for different SiH4 contents (10%–90%). Discharge condition: Two parallel plates with a length of 11 cm and a distance of 2 cm between them. The frequency used in this work is 13.56 MHz and a voltage amplitude of 50 V. The discharge pressure is 2 Torr.

    图 6  沉积时间为30 s时, 不同SiH4含量下SiH4/H2混合气体放电的薄膜的表面形貌径向分布, 放电条件与图5一致 (a) 10%, (b) 50%, (c) 90%

    Figure 6.  Profiles formed after deposition time of 30 s for different SiH4 contents: (a) 10%; (b) 50%; (c) 90%. The discharge conditions are the same as in Fig. 5.

    图 7  不同SiH4含量(10%—90%)下SiH4/H2混合气体放电中(a) 径向中心处和(b) 电极边缘处接地电极表面的离子能量分布, 放电条件与图5一致

    Figure 7.  The ion energy distribution in SiH4/H2 mixed gas discharge at different SiH4 contents (from 10% to 90%): (a) At the radial center; (b) ground the electrode surface at the edge of the electrode. The discharge conditions are the same as in Fig. 5.

    图 8  SiH4/H2混合气体放电中, 不同SiH4含量(10%—90%)下的氢含量、Ⅱ 类反应占比以及空位占比, 放电条件与图5一致

    Figure 8.  The hydrogen content, reaction Ⅱ content and vacancy content for different SiH4 contents (from 10% to 90%), the discharge conditions are the same as in Fig. 5.

    图 9  (a) 不同相位角下双频幅值非对称电压波形; (b) 自偏压和平均离子能量变化情况[31]

    Figure 9.  (a) Dual-frequency tailored voltage waveforms; (b) variations of self-bias voltage and mean ion energy as a function of phase[31].

    图 10  不同相位角$ \theta $下驱动极板处的(a) 离子通量和(b) 中性基团通量[31]

    Figure 10.  (a) Ion fluxes and (b) neutral fluxes at the powered electrode for different phase angle $ \theta $, respectively[31].

    图 11  不同相位角下的刻蚀形貌 (刻蚀时间: 70 s)[31] (a) θ = 15°; (b) θ = 60°; (c) θ = 90°

    Figure 11.  The etching profiles at different phase angle (ething time: 70 s)[31]: (a) θ = 15°; (b) θ = 60°; (c) θ = 90°.

    图 12  不同电极间距下的刻蚀形貌[31] (a) 3 cm; (b) 4 cm; (c) 5 cm

    Figure 12.  Etching profiles for different gap distance[31]: (a) 3 cm; (b) 4 cm; (c) 5 cm.

    图 13  刻蚀时间为150 s时, 在接地电极处的刻蚀形貌 (a) N = 1, (b) N = 2, (c) N = 3; 在功率电极处的刻蚀形貌 (d) N = 1, (e) N = 2, (f) N = 3; 放电条件与图3相同, 灰色部分为光刻胶, 黑色部分为SiO2, 其余颜色表示材料表面上的聚合物或钝化层[35]

    Figure 13.  Etching profiles at the grounded electrode for (a) N = 1, (b) N = 2, (c) N = 3; and at the powered electrode for (d) N = 1, (e) N = 2, (f) N = 3 after an etching time of 150 s, the discharge conditions are the same as those in Fig. 3, grey material is the photoresist, black material is SiO2, other colors represent polymer or passivation layers on the material surface[35].

    图 14  N = 1, 2, 3 (a) 功率电极与接地电极处的总离子通量; (b) CF2, CF和H通量之和; (c) 中性通量与离子通量比值$ (({\varGamma}_{{\text{CF}}_{2}}+ $$ {\varGamma}_{\text{CF}}+\varGamma_{\text{H}})/{\varGamma}_{{i}, \text{Total}}) $; (d) 平均离子能量[35]

    Figure 14.  Total ion flux (a), the sum of the CF2, CF and H fluxes (b), the Syn value (defined as $ (({\varGamma}_{{\text{CF}}_{2}}+{\varGamma}_{\text{CF}}+\varGamma_{\text{H}})/{\varGamma}_{{i}, \text{Total}}) $ (c) , and the mean ion energy (d) at the powered and the grounded electrodes at N = 1, 2, 3[35].

    图 15  (a) 放电腔室结构和网格剖分示意图; (b) 下极板施加的裁剪电压波形

    Figure 15.  (a) The schematic of discharge chamber structure and mesh grid; (b) the schematic of the tailored bias waveform applied to the lower electrode.

    图 16  密度剖面图 (a) Cl; (b) Ar+; (c) Cl+; (d) $ {\text{Cl}}_{2}^{+} $

    Figure 16.  Density profiles: (a) Cl; (b) Ar+; (c) Cl+; (d) $ {\text{Cl}}_{2}^{+} $.

    图 17  离子能量分布 (a) 裁剪电压波形; (b) 射频偏压波形

    Figure 17.  Ion energy distribution: (a) The tailored bias voltage waveform; (b) radio frequency (RF) bias waveform.

    图 18  (a) 裁剪电压波形和(b) 射频偏压波形下的放电中心处刻蚀形貌图(刻蚀时间: 9 s)

    Figure 18.  Etching profiles at the discharge center under the tailored bias waveform (a) and the RF bias waveform (b) (etching time: 9 s).

    Baidu
  • [1]

    帕斯卡·夏伯特, 尼古拉斯·布雷斯韦著 (王友年, 徐军, 宋远红译) 2015 射频等离子体物理学(北京: 科学出版社)

    Chabert P, Braithwait N (translated by Wang Y N, Xu J, Song Y H) 2015 Physics of Radio-Frequency Plasmas (Beijing: Science Press

    [2]

    力伯曼, 里登伯格著 (蒲以康译) 2007 等离子体放电原理与材料处理(北京: 科学出版社)

    Lieberman M A, Lichtenberg A J (translated by Pu Y K) 2007 Principles of Plasma Discharges and Material Processing (Beijing: Science Press

    [3]

    Vossen J L, Kern W 1991 Thin Film Processes II (Academic Press) p525

    [4]

    Yu C, Gao K, Peng C W, He C R, Wang S B, Shi W, Allen V, Zhang J T, Wang D Z, Tian G Y, Zhang Y F, Jia W Z, Song Y H, Hu Y Z, Colwell J, Xing C F, Ma Q, Wu H T, Guo L Y, Dong G Q, Jiang H, Wu H H, Wang X Y, Xu D C, Li K, Peng J, Liu W Z, Chen D, Lennon A, Cao X M, De Wolf S, Zhou J, Yang X B, Zhang X H 2023 Nat. Energy 8 1375Google Scholar

    [5]

    Huang S, Huard C, Shim S, Nam S K, Song I C, Lu S Q, Kushner M J 2019 J. Vacuum Sci. Technol. A 37 031304Google Scholar

    [6]

    Ma X Q, Zhang S Q, Dai Z L, Wang Y N 2017 Plasma Sci. Technol. 19 085502Google Scholar

    [7]

    Huard C M, Sriraman S, Paterson A, Kushner M J 2018 J. Vacuum Sci. Technol. A 36 06B101Google Scholar

    [8]

    Huard C M, Zhang Y T, Sriraman S, Paterson A, Kanarik K J, Kushner M J 2017 J. Vacuum Sci. Technol. A 35 031306Google Scholar

    [9]

    Huard C M 2018 Ph. D. Dissertation (University of Michigan

    [10]

    Funde A M 2011 Ph. D. Dissertation (Pune University

    [11]

    Matsuda A, Goto T 1989 MRS Online Proceedings Library 164 3Google Scholar

    [12]

    Matsuda A 1983 J. Non-Cryst. Solids 59 767

    [13]

    Matsuda A 2004 J. Non-Cryst. Solids 338 1

    [14]

    Crose M G 2018 Ph. D. Dissertation (University of California

    [15]

    Tinck S, Bogaerts A 2012 Plasma Process. Polym. 9 522Google Scholar

    [16]

    Kim H J 2021 Plasma Sources Sci. Technol. 30 065001Google Scholar

    [17]

    Kim H J, Lee K, Park H 2023 Plasma Sources Sci. Technol. 32 115008Google Scholar

    [18]

    Kim H J, Kim J S, Lee H J 2019 J. Appl. Phys. 126 173301Google Scholar

    [19]

    Kim H J, Lee H J 2016 Plasma Sources Sci. Technol. 25 065006Google Scholar

    [20]

    Donkó Z, Schulze J, Heil B G, Czarnetzki U 2009 J. Phys. D. Appl. Phys. 42 025205Google Scholar

    [21]

    Schulze J, Schungel E, Czarnetzki U 2009 J. Phys. D: Appl. Phys. 42 092005Google Scholar

    [22]

    Czarnetzki U, Heil B J, Schulze J, Donkó Z, Mussenbrock T, Brinkmann R P, 2009 J. Phys. : Conf. Ser. 162 012010Google Scholar

    [23]

    Schulze J, Schungel E, Czarnetzki U 2011 Plasma Sources Sci. Technol. 20 015017Google Scholar

    [24]

    Schulze J, Derzsi A, Donkó Z 2011 Plasma Sources Sci. Technol. 20 045008Google Scholar

    [25]

    Bruneau B, Lafleur T, Gans T, Connell D O’, Greb A, Korolov I, Derzsi A, Donkó Z, Brandt S, Schüngel E, Schulze J, Diomede P, Economou D J, Longo S, Johnson E V, Booth J P 2016 Plasma Sources Sci. Technol. 25 01LT02Google Scholar

    [26]

    Bruneau B, Novikova T, Lafleur T, Booth J P, Johnson E V 2014 Plasma Sources Sci. Technol. 23 065010Google Scholar

    [27]

    Ju S P, Weng C I, Chang J G, Hwang C C 2002 Am. Vacuum Soc. 20 946

    [28]

    翟世铭, 廖黄盛, 周耐根, 黄海宾, 周浪 2020 69 076801Google Scholar

    Zhai S M, Liao H S, Zhou N G, Huang H B, Zhou L 2020 Acta Phys. Sin. 69 076801Google Scholar

    [29]

    阮聪, 孙晓民, 宋亦旭 2014 64 038201

    Ruan C, Sun X M, Song Y X 2014 Acta Phys. Sin. 64 038201

    [30]

    贾文柱 2018 博士学位论文(大连: 大连理工大学)

    Jia W Z 2018 Ph. D. Dissertation (Dalian: Dalian University of Technology

    [31]

    董婉 2022 博士学位论文(大连: 大连理工大学)

    Dong W 2022 Ph. D. Dissertation (Dalian: Dalian University of Technology

    [32]

    Zhang Y F, Dong W, Jia W Z, Song Y H 2025 Plasma Sources Sci. Technol. 34 065011Google Scholar

    [33]

    张逸凡 2025 博士学位论文(大连: 大连理工大学)

    Zhang Y F 2025 Ph. D. Dissertation (Dalian: Dalian University of Technology

    [34]

    Dong W, Zhang Y F, Dai Z L, Schulze J, Song Y H, Wang Y N 2022 Plasma Sources Sci. Technol. 31 025006Google Scholar

    [35]

    Dong W, Song L Q, Zhang Y F, Wang L, Song Y H, Schulze J 2025 Plasma Process. Polym. 22 70026Google Scholar

    [36]

    宋柳琴, 贾文柱, 董婉, 张逸凡, 戴忠玲, 宋远红 2022 71 170201Google Scholar

    Song L Q, Jia W Z, Dong W, Zhang Y F, Dai Z L, Song Y H 2022 Acta Phys. Sin. 71 170201Google Scholar

    [37]

    Qu C H, Sakiyama Y, Agarwal P, Kushner M J 2021 J. Vac. Sci. Technol. A 39 052403Google Scholar

    [38]

    MA Z Q 2007 Int. J. Mod. Phys. B 21 4299Google Scholar

    [39]

    Amanatides E, Stamou S, Mataras D 2001 J. Appl. Phys. 90 5786Google Scholar

    [40]

    Kessels W M M, van de Sanden M C M, Severens R J, Schram D C 2000 J. Appl. Phys. 87 3313Google Scholar

    [41]

    Fukawa M, Suzuki S, Guo L H, Kondo M, Matsuda A 2001 Sol. Energy Mater. Sol. Cells 66 217Google Scholar

    [42]

    Abe Y, Ishikawa K, Takeda K, Tsutsumi T, Fukushima A, Kondo H, Sekine M, Hori M 2017 Appl. Phys. Lett. 110 043902Google Scholar

  • [1] Song Liu-Qin, Jia Wen-Zhu, Dong Wan, Zhang Yi-Fan, Dai Zhong-Ling, Song Yuan-Hong. Numerical investigation of SiO2 film deposition enhanced by capacitively coupled discharge plasma. Acta Physica Sinica, doi: 10.7498/aps.71.20220493
    [2] Tan Zai-Shang, Wu Xiao-Meng, Fan Zhong-Yong, Ding Shi-Jin. Effect of thermal annealing on the structure and properties of plasma enhanced chemical vapor deposited SiCOH film. Acta Physica Sinica, doi: 10.7498/aps.64.107701
    [3] He Su-Ming, Dai Shan-Shan, Luo Xiang-Dong, Zhang Bo, Wang Jin-Bin. Preparation of SiON film by plasma enhanced chemical vapor deposition and passivation on Si. Acta Physica Sinica, doi: 10.7498/aps.63.128102
    [4] Wu Jun, Ma Zhi-Bin, Shen Wu-Lin, Yan Lei, Pan Xin, Wang Jian-Hua. Influence of nitrogen in diamond films on plasma etching. Acta Physica Sinica, doi: 10.7498/aps.62.075202
    [5] Yang Hong-Jun, Song Yi-Xu, Zheng Shu-Lin, Jia Pei-Fa. A 3D profile evolution method of ion etching simulation based on compression representation. Acta Physica Sinica, doi: 10.7498/aps.62.208201
    [6] Hou Guo-Fu, Xue Jun-Ming, Yuan Yu-Jie, Zhang Xiao-Dan, Sun Jian, Chen Xin-Liang, Geng Xin-Hua, Zhao Ying. Key issues for high-efficiency silicon thin film solar cells prepared by RF-PECVD under high-pressure-depletion conditions. Acta Physica Sinica, doi: 10.7498/aps.61.058403
    [7] Li Yu-Jie, Xie Kai, Li Xiao-Dong, Xu Jing, Han Yu, Du Pan-Pan. Fabrication of germanium inverse opal three-dimensional photonic crystal by low temperature plasma enhanced chemical vapour deposition techniques and optical properties. Acta Physica Sinica, doi: 10.7498/aps.59.1839
    [8] Ding Yan-Li, Zhu Zhi-Li, Gu Jin-Hua, Shi Xin-Wei, Yang Shi-E, Gao Xiao-Yong, Chen Yong-Sheng, Lu Jing-Xiao. Effect of deposition rate on the scaling behavior of microcrystalline silicon films prepared by very high frequency-plasma enhanced chemical vapor deposition. Acta Physica Sinica, doi: 10.7498/aps.59.1190
    [9] Zhang Xiao-Dan, Sun Fu-He, Xu Sheng-Zhi, Wang Guang-Hong, Wei Chang-Chun, Sun Jian, Hou Guo-Fu, Geng Xin-Hua, Xiong Shao-Zhen, Zhao Ying. Performance optimization of p-i-n type microcrystalline silicon thin films solar cells deposited in single chamber. Acta Physica Sinica, doi: 10.7498/aps.59.1344
    [10] Yuan He, Sun Chang-Zheng, Xu Jian-Ming, Wu Qing, Xiong Bing, Luo Yi. Design and fabrication of multilayer antireflection coating for optoelectronic devices by plasma enhanced chemical vapor deposition. Acta Physica Sinica, doi: 10.7498/aps.59.7239
    [11] Lü Ling, Gong Xin, Hao Yue. Properties of p-type GaN etched by inductively coupled plasma and their improvement. Acta Physica Sinica, doi: 10.7498/aps.57.1128
    [12] Ge Hong, Zhang Xiao-Dan, Yue Qiang, Zhao Jing, Zhao Ying. Study of space voltage distribution between large-area parallel-plate electrodes for very high frequency plasma enhanced chemical vapor deposition. Acta Physica Sinica, doi: 10.7498/aps.57.5105
    [13] Yang Hang-Sheng. Surface growth mechanism of cubic boron nitride thin films prepared by plasma-enhanced chemical vapor deposition. Acta Physica Sinica, doi: 10.7498/aps.55.4238
    [14] Zhang Xiao-Dan, Zhao Ying, Gao Yan-Tao, Zhu Feng, Wei Chang-Chun, Sun Jian, Wang Yan, Geng Xin-Hua, Xiong Shao-Zhen. Study of microcrystalline silicon solar cells fabricated by very high frequency plasma-enhanced chemical vapor deposition. Acta Physica Sinica, doi: 10.7498/aps.54.1899
    [15] Wang Miao, Li Zhen-Hua, Takegawa Hitosi, Saito Yahachi. Study on the definite direction growth of carbon nanotubes by the microwave plasma-enhanced chemical vapro phase deposition. Acta Physica Sinica, doi: 10.7498/aps.53.888
    [16] Zeng Xiang-Bo, Liao Xian-Bo, Wang Bo, Diao Hong-Wei, Dai Song-Tao, Xiang Xian-Bi, Chang Xiu-Lan, Xu Yan-Yue, Hu Zhi-Hua, Hao Hui-Ying, Kong Guang-Lin. Boron-doped silicon nanowires grown by plasmaenhanced chemical vapor deposition. Acta Physica Sinica, doi: 10.7498/aps.53.4410
    [17] Yang Hui-Dong, Wu Chun-Ya, Zhao Ying, Xue Jun-Ming, Geng Xin-Hua, Xiong Shao-Zhen. Investigation on the oxygen contamination in the μc-Si∶H thin film deposited b y VHF-PECVD. Acta Physica Sinica, doi: 10.7498/aps.52.2865
    [18] Yu Wei, Liu Li-Hui, Hou Hai-Hong, Ding Xue-Cheng, Han Li, Fu Guang-Sheng. Silicon nitride films prepared by helicon wave plasam-enhanced chemical vapour deposition. Acta Physica Sinica, doi: 10.7498/aps.52.687
    [19] YE CHAO, NING ZHAO-YUAN, CHENG SHAN-HUA, KANG JIAN. STUDY ON α-C∶F FILMS DEPOSITED BY ELECTRON CYCLOTRONRESONANCE PLASMA CHEMICAL VAPOR DEPOSITION. Acta Physica Sinica, doi: 10.7498/aps.50.784
    [20] NING ZHAO-YUAN, CHENG SHAN-HUA, YE CHAO. CHEMICAL BONDING STRUCTURE OF FLUORINATED AMORPHOUS CARBON FILMS PREPARED BY ELECTRON CYCLOTRON RESONANCE PLASMA CHEMICAL VAPOR DEPOSITION. Acta Physica Sinica, doi: 10.7498/aps.50.566
Metrics
  • Abstract views:  238
  • PDF Downloads:  10
  • Cited By: 0
Publishing process
  • Received Date:  09 September 2025
  • Accepted Date:  29 October 2025
  • Available Online:  31 October 2025
  • /

    返回文章
    返回
    Baidu
    map