Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research on the Hydrogen-triggered Magnetoelectric Transitions in Correlated Oxide Heterostructures

Zhou Xuan-Chi Ji Jia-hui Yao Xiao-hui

Citation:

Research on the Hydrogen-triggered Magnetoelectric Transitions in Correlated Oxide Heterostructures

Zhou Xuan-Chi, Ji Jia-hui, Yao Xiao-hui
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • Hydrogenation or protonation offers a feasible pathway for exploring exotic physical functionality and phenomena within correlated oxide system through introducing an ion degree of freedom. This breakthrough endows with great potential for boosting multidisciplinary device applications in artificial intelligence, correlated electronics and energy conversions. Unlike conventional substitutional chemical doping, hydrogenation enables the controllable and reversible control over the charge-lattice-spin-orbital coupling and magnetoelectric states in correlated system, free of the solid-solution limits. Our findings identify proton evolution as a powerful tuning knob to cooperatively regulate the magnetoelectric transport properties in correlated oxide heterostructures, specifically in metastable VO2 (B)/La0.7Sr0.3MnO3 (LSMO) systems grown via laser molecular beam epitaxy (LMBE). Upon hydrogenation, correlated VO2 (B)/LSMO heterostructure undergoes a reversible magnetoelectric phase transition from a ferromagnetic half-metallic state to a weakly ferromagnetic insulating state, accompanied by a pronounced out-of-plane lattice expansion due to the incorporation of protons and the formation of O-H bonds, as confirmed by X-ray diffraction (XRD). Proton evolution extensively suppresses both the electrical conductivity and ferromagnetic order in pristine VO2 (B)/LSMO system, with a remarkable recovery through dehydrogenation via annealing in an oxygen-rich atmosphere, underscoring the high reversibility of hydrogen-induced magnetoelectric transitions. Spectroscopic analyses related to X-ray photoelectron spectroscopy (XPS) and synchrotron-based soft X-ray absorption spectroscopy (sXAS) provide further insights into the physical origin underlying the hydrogen-mediated magnetoelectric transitions. Hydrogen-related band filling in d-orbital of correlated oxides accounts for the electron localization in VO2 (B)/LSMO heterostructure through hydrogenation, while the suppression in the Mn3+-Mn4+ double exchange instead leads to the magnetic transitions. The present work not only expands the hydrogen-related phase diagram for correlated oxide system but also establishes a versatile pathway for designing exotic magnetoelectric functionalities via ionic evolution, with great potential for developing protonic devices.
  • [1]

    Sun H L, Huo M W, Hu X W, Li J Y, Liu Z J, Han Y F, Tang L Y, Mao Z Q, Yang P T, Wang B S, Cheng J G, Yao D X, Zhang G M, Wang M 2023 Nature 621 493

    [2]

    Pan G A, Segedin D F, LaBollita H, Song Q, Nica E M, Goodge B H, Pierce A T, Doyle S, Novakov S, Carrizales D C, N'Diaye A T, Shafer P, Paik H, Heron J T, Mason J A, Yacoby A, Kourkoutis L F, Erten O, Brooks C M, Botana A S, Mundy J A 2022 Nat. Mater. 21 160

    [3]

    Li D F, Lee K, Wang B Y, Osada M, Crossley S, Lee H R, Cui Y, Hikita Y, Hwang H Y 2019 Nature 572 624

    [4]

    Jeong J, Aetukuri N, Graf T, Schladt T D, Samant M G, Parkin S S 2013 Science 339 1402

    [5]

    Lee D, Chung B, Shi Y, Kim G-Y, Campbell N, Xue F, Song K, Choi S-Y, Podkaminer J P, Kim T H, Ryan P J, Kim J-W, Paudel T R, Kang J-H, Spinuzzi J W, Tenne D A, Tsymbal E Y, Rzchowski M S, Chen L Q, Lee J, Eom C B 2018 Science 362 1037

    [6]

    del Valle J, Vargas N M, Rocco R, Salev P, Kalcheim Y, Lapa P N, Adda C, Lee M H, Wang P Y, Fratino L, Rozenberg M J, Schuller I K 2021 Science 373 907

    [7]

    Zhou X-C, Li H-F 2024 Acta Phys. Sin. 73 117102 [周轩弛,李海帆 2024 73 117102]

    [8]

    Nukala P, Ahmadi M, Wei Y, de Graaf S, Stylianidis E, Chakrabortty T, Matzen S, Zandbergen H W, Björling A, Mannix D, Carbone D, Kooi B, Noheda B 2021 Science 372 630

    [9]

    Wang L, Feng Q, Kim Y, Kim R, Lee K H, Pollard S D, Shin Y J, Zhou H, Peng W, Lee D, Meng W, Yang H, Han J H, Kim M, Lu Q, Noh T W 2018 Nat. Mater. 17 1087

    [10]

    Yang Y, Wang P, Chen J, Zhang D, Pan C, Hu S, Wang T, Yue W, Chen C, Jiang W, Zhu L, Qiu X, Yao Y, Li Y, Wang W, Jiang Y 2024 Nat. Commun. 15 8645

    [11]

    Shen J, Yao Q, Zeng Q, Sun H, Xi X, Wu G, Wang W, Shen B, Liu Q, Liu E 2020 Phys. Rev. Lett. 125 086602

    [12]

    Liu L, Zhou C, Shu X, Li C, Zhao T, Lin W, Deng J, Xie Q, Chen S, Zhou J, Guo R, Wang H, Yu J, Shi S, Yang P, Pennycook S, Manchon A, Chen J 2021 Nat. Nanotechnol. 16 277

    [13]

    Zhou X, Li H, Jiao Y, Zhou G, Ji H, Jiang Y, Xu X 2024 Adv. Funct. Mater. 34 2316536

    [14]

    Zhang H T, Park T J, Islam A, Tran D S J, Manna S, Wang Q, Mondal S, Yu H M, Banik S, Cheng S B, Zhou H, Gamage S, Mahapatra S, Zhu Y M, Abate Y, Jiang N, Sankaranarayanan S, Sengupta A, Teuscher C, Ramanathan S 2022 Science 375 533

    [15]

    Deng S, Yu H, Park T J, Islam A N M N, Manna S, Pofelski A, Wang Q, Zhu Y, Sankaranarayanan S K R S, Sengupta A, Ramanathan S 2023 Sci. Adv. 9 eade4838

    [16]

    Lu N, Zhang Z, Wang Y, Li H-B, Qiao S, Zhao B, He Q, Lu S, Li C, Wu Y, Zhu M, Lyu X, Chen X, Li Z, Wang M, Zhang J, Tsang S C, Guo J, Yang S, Zhang J, Deng K, Zhang D, Ma J, Ren J, Wu Y, Zhu J, Zhou S, Tokura Y, Nan C-W, Wu J, Yu P 2022 Nat. Energy 7 1208

    [17]

    Chen S, Wang Z W, Ren H, Chen Y L, Yan W S, Wang C M, Li B W, Jiang J, Zou C W 2019 Sci. Adv. 5 eaav6815

    [18]

    Zhou X, Li H, Meng F, Mao W, Wang J, Jiang Y, Fukutani K, Wilde M, Fugetsu B, Sakata I, Chen N, Chen J 2022 J. Phys. Chem. Lett. 13 8078

    [19]

    Zhou X C, Mao W, Cui Y C, Zhang H, Liu Q, Nie K Q, Xu X G, Jiang Y, Chen N F, Chen J K 2023 Adv. Funct. Mater. 33 2303416

    [20]

    Yoon H, Choi M, Lim T W, Kwon H, Ihm K, Kim J K, Choi S Y, Son J 2016 Nat. Mater. 15 1113

    [21]

    Shi J, Zhou Y, Ramanathan S 2014 Nat. Commun. 5 4860

    [22]

    Zhou X-C, Jiao Y-J 2024 Acta Phys. Sin. 73 197102 [周轩弛,焦勇杰 2024 73 197102]

    [23]

    Lu N P, Zhang P F, Zhang Q H, Qiao R M, He Q, Li H B, Wang Y J, Guo J W, Zhang D, Duan Z, Li Z L, Wang M, Yang S Z, Yan M Z, Arenholz E, Zhou S Y, Yang W L, Gu L, Nan C W, Wu J, Tokura Y, Yu P 2017 Nature 546 124

    [24]

    Wang Y, Wang J J, Zhang W W, Chao F Y, Li J H, Kong Q H, Qiao F, Zhang L, Huang M, An Q Y 2024 Adv. Funct. Mater. 34 2314761

    [25]

    Zhou X, Jiao Y, Lu W, Guo J, Yao X, Ji J, Zhou G, Ji H, Yuan Z, Xu X 2025 Adv. Sci. 12 2414991

    [26]

    Cao L, Petracic O, Zakalek P, Weber A, Rücker U, Schubert J, Koutsioubas A, Mattauch S, Brückel T 2019 Adv. Mater. 31 1806183

    [27]

    Chen A, Bi Z, Zhang W, Jian J, Jia Q, Wang H 2014 Appl. Phys. Lett. 104 071909

    [28]

    Chen S, Wang Z W, Fan L L, Chen Y L, Ren H, Ji H, Natelson D, Huang Y Y, Jiang J, Zou C W 2017 Phys. Rev. B 96 125130

    [29]

    Chen H, Zhou G, Ji H, Qin Q, Shi S, Shen Q, Yao P, Cao Y, Chen J, Liu Y, Wang H, Lin W, Yang Y, Jia J, Xu X, Chen J, Liu L 2024 Adv. Funct. Mater. 34 2403107

    [30]

    Zhang B, Yang P, Ding J, Chen J, Chow G M 2023 Adv. Sci. 10 2203933

    [31]

    Pofelski A, Jia H, Deng S, Yu H, Park T J, Manna S, Chan M K Y, Sankaranarayanan S K R S, Ramanathan S, Zhu Y 2024 Nano Lett. 24 1974

    [32]

    Li B, Hu M, Ren H, Hu C, Li L, Zhang G, Jiang J, Zou C 2020 J. Phys. Chem. Lett. 11 10045

    [33]

    Zhang Z, Schwanz D, Narayanan B, Kotiuga M, Dura J A, Cherukara M, Zhou H, Freeland J W, Li J R, Sutarto R, He F Z, Wu C Z, Zhu J X, Sun Y F, Ramadoss K, Nonnenmann S S, Yu N F, Comin R, Rabe K M, Sankaranarayanan S, Ramanathan S 2018 Nature 553 68

  • [1] Guo Xi, Zuo Ya-Lu, Cui Bao-Shan, Shen Tie-Long, Sheng Yan-Bin, Xi Li. Ion irradiation modulated magnetic properties of materials and its applications. Acta Physica Sinica, doi: 10.7498/aps.73.20240541
    [2] Zhou Xuan-Chi, Li Hai-Fan. Research on the electronic phase transitions in strongly correlated oxides and multi-field regulation. Acta Physica Sinica, doi: 10.7498/aps.73.20240289
    [3] Sun Yu-Ting, Li Ming-Ming, Wang Ling-Rui, Fan Zhen, Guo Er-Jia, Guo Hai-Zhong. Research progress of control of physical properties of topological phase change oxide films by external field. Acta Physica Sinica, doi: 10.7498/aps.72.20222266
    [4] Ding Fei-Xiang, Rong Xiao-Hui, Wang Hai-Bo, Yang Yang, Hu Zi-Lin, Dang Rong-Bin, Lu Ya-Xiang, Hu Yong-Sheng. Phase transitions of Na-ion layered oxide materials and their influence on properties. Acta Physica Sinica, doi: 10.7498/aps.71.20220291
    [5] Zhang Peng, Piao Hong-Guang, Zhang Ying-De, Huang Jiao-Hong. Research progress of critical behaviors and magnetocaloric effects of perovskite manganites. Acta Physica Sinica, doi: 10.7498/aps.70.20210097
    [6] Zhang Song-Ge, Chen Yu-Tong, Wang Ning, Chai Yang, Long Gen, Zhang Guang-Yu. Probe and manipulation of magnetism of two-dimensional CrI3 crystal. Acta Physica Sinica, doi: 10.7498/aps.70.20202197
    [7] Zhao Shi-Ping, Zhang Xin, Liu Zhi-Hui, Wang Quan, Wang Hua-Lin, Jiang Wei-Wei, Liu Chao-Qian, Wang Nan, Liu Shi-Min, Cui Yun-Xian, Ma Yan-Ping, Ding Wan-Yu, Ju Dong-Ying. Influence of low-energy ammonia ion/group diffusion on electrical properties of indium tin oxide film. Acta Physica Sinica, doi: 10.7498/aps.69.20200860
    [8] Xie Xiu-Hua, Li Bing-Hui, Zhang Zhen-Zhong, Liu Lei, Liu Ke-Wei, Shan Chong-Xin, Shen De-Zhen. Point defects: key issues for II-oxides wide-bandgap semiconductors development. Acta Physica Sinica, doi: 10.7498/aps.68.20191043
    [9] Li Dan, Li Guo-Qing. Effects of oxide isolation layer on magnetic properties of L10 FePt film grown on Si substrate. Acta Physica Sinica, doi: 10.7498/aps.67.20180387
    [10] Cai Xin-Yang, Wang Xin-Wei, Zhang Yu-Ping, Wang Deng-Kui, Fang Xuan, Fang Dan, Wang Xiao-Hua, Wei Zhi-Peng. Reduction of surface plasma loss of indium tin oxide thin films by regulating substrate temperature. Acta Physica Sinica, doi: 10.7498/aps.67.20180794
    [11] Li Guo-Jian, Chang Ling, Liu Shi-Ying, Li Meng-Meng, Cui Wei-Bin, Wang Qiang. Evolutions of different crystalline textures in Sm-Fe film fabricated under high magnetic field and subsequent tuning magnetic properties. Acta Physica Sinica, doi: 10.7498/aps.67.20180212
    [12] Wang Wen-Bin, Zhu Yin-Yan, Yin Li-Feng, Shen Jian. Quantum manipulation of electronic phase separation in complex oxides. Acta Physica Sinica, doi: 10.7498/aps.67.20182007
    [13] Hu Guang-Hai, Jin Xiao-Li, Zhang Qiao-Feng, Xie Jin-Lin, Liu Wan-Dong. Measurement of ion temperature by ion-acoustic waves Landau damping in oxide cathode plasma. Acta Physica Sinica, doi: 10.7498/aps.64.189401
    [14] Hou Qing-Yu, Wu Yun, Zhao Chun-Wang. Simulation and calculation of the Mott phase transition and magnetroelectric performance of Magnli phase titanium suboxides. Acta Physica Sinica, doi: 10.7498/aps.62.237102
    [15] Zhang Min, Wang Xiao-Xia, Luo Ji-Run, Liao Xian-Heng. Preparation and emission characteristic study of plasma-sprayed scandia-doped oxide cathode. Acta Physica Sinica, doi: 10.7498/aps.61.077901
    [16] Pang Xue-Xia, Deng Ze-Chao, Jia Peng-Ying, Liang Wei-Hua. Numerical simulation of NOx species behaviour in atmosphere plasma. Acta Physica Sinica, doi: 10.7498/aps.60.125201
    [17] Yang Xin-Sheng, Zhao Yong. The study of ZnO varistor doped with ferromagnetic manganese oxide. Acta Physica Sinica, doi: 10.7498/aps.57.3188
    [18] LI BAO-HE, XIAN-YU WEN XU, WAN XIN, ZHANG JIAN, SHEN BAO-GEN. COLOSSAL MAGNETORESISTANCE EFFECTS AND MAGNETIC PROPERTIES OF La0.7Sr 0.3MxMn1-xO3 (M=Cr,Fe). Acta Physica Sinica, doi: 10.7498/aps.49.1366
    [19] Zhu Xiang-Rong, Shen Hong-Lie, Shen Qin-Wo, Li Tie, Zou Shi-Chang, Koichi Tsukamoto, Mamoru Okutomi, Takeshi Yanagisawa, Noboru Higuchi. Colossal Magnetoresistance in Two-Element-Doped La-Ca-Ba-Mn-O. Acta Physica Sinica, doi: 10.7498/aps.48.40
    [20] XIAO DING-QUAN, WEI LI-FAN, LI ZI-SEN, ZHU JIAN-GUO, QIAN ZHENG-HONG, PENG WEN-BIN. MODELLING OF MULTI-ION-BEAM REACTIVE COSPUTTERING OF METAL OXIDE THIN FILMS (I)——ESTABLISHMENT OF THE MODEL. Acta Physica Sinica, doi: 10.7498/aps.45.330
Metrics
  • Abstract views:  71
  • PDF Downloads:  0
  • Cited By: 0
Publishing process
  • Available Online:  01 November 2025
  • /

    返回文章
    返回
    Baidu
    map