Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Applications and prospects of non-thermal plasma in defect engineering of energy materials

XIE Zhipeng ZHANG Da LIANG Feng

Citation:

Applications and prospects of non-thermal plasma in defect engineering of energy materials

XIE Zhipeng, ZHANG Da, LIANG Feng
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Non-thermal plasma (NTP), as an advanced technology capable of efficiently synthesizing and modifying materials at near-ambient temperatures, has attracted significant attention in the field of energy materials in recent years. Owing to its high electron temperature and low bulk gas temperature, NTP can significantly enhance the electrochemical performance of electrode materials by creating vacancies, enabling heteroatom doping, and adjusting multiscale defects such as porosity and surface roughness, while preventing thermal damage. The plasma-material surface interaction is a complex system involving mutual influences between the plasma and the material. An in-depth understanding of this mechanism is essential for achieving precise control over defect type, density, and spatial distribution by modifying NTP . This paper systematically summarizes recent advances in the application of NTP for etching and doping energy materials, with special emphasis on the formation mechanisms of defects and their functional role in plasma-surface interactions. The plasma sheath effects, defect generation pathways, and the influence of material morphology on local plasma behavior are discussed in detail. Finally, this paper outlines prospects for future research on NTP-modified energy materials.
  • 图 1  (a) 等离子体鞘层, (b) 空位缺陷, (c) 孔缺陷, (d) 掺杂缺陷示意图

    Figure 1.  Schematic of (a) plasma sheath, (b) vacancy defect, (c) pore defect, and (d) doping detect.

    图 2  材料表面结构对等离子体鞘层的影响示意图

    Figure 2.  Schematic of the influence of material surface structure on the plasma sheath.

    图 3  (a) 在矩形排列的单个纳米管附近离子通量的分布随等离子体密度和纳米管直径变化. 电子温度Te = 2 eV, 离子通量分布相对于相邻纳米管的方向以暗黄色圆圈表示, S1, S2和S3分别表示位于基底表面上方75, 50和25 nm处的纳米管横截面[23]; (b) 在基于射频等离子体的工艺中生长出的尖且长的碳纳米锥体生长机制和扫描电子显微镜图像[40]; (c) 混合阵列的合成示意图以及模型图案内原子密度和电场的相应数值模拟[41]

    Figure 3.  (a) The distribution of ion flux near the single nanotubes arranged in a rectangular pattern varies with plasma density and nanotube diameter, the electron temperature Te = 2 eV, the ion flux distribution is indicated by dark yellow circles relative to the direction of the adjacent nanotubes. S1, S2, and S3 respectively represent the cross-sections of nanotubes located 75, 50, and 25 nm above the substrate surface[23]; (b) the growth mechanism and SEM images of sharp, long carbon nanocones grown in a RF plasma-based process[40]; (c) schematic of the synthesis of a mixed array, and corresponding numerical simulations of the adatom density and electric field within the model pattern[41].

    图 4  (a) Fe—N/C-0和(b) Fe—N/C-120的SEM图像, 等离子体刻蚀对Fe—N/C的结构表征; (c) 拉曼光谱; (d) 氮气吸脱附曲线; (e) 孔径分布; (f) 傅里叶红外光谱[51]

    Figure 4.  SEM images of (a) Fe—N/C-0 and (b) Fe—N/C-120; (c) Raman spectra; (d) N2 adsorption–desorption curves; (e) pore size distributions; (f) FT-IR spectra[51].

    图 5  (a) P-Si/C/Bi复合材料的制备工艺及概念设计; (b) NVP的示意图和第一性原理计算; (c) 优化后的NVP-4N中间层中Na原子的吸附构型及吸附Na的电荷密度差, 黄色和青色电子云分别代表电子积累和耗尽; (d) 计算的NVP-0 N和NVP-4N中Na+的扩散势垒分布; (e), (f) NVP-0N和NVP-4N的映射态密度[58]

    Figure 5.  (a) Fabrication process and conceptual design of P-Si/C/Bi composite; (b) schematic illustration for NVP and first-principles calculation; (c) optimized adsorption configuration and charge density differences of a Na atom in the interlayer: yellow and cyan electron clouds represent electron accumulation and depletion, respectively; (d) calculated diffusion barrier profiles of Na+ for NVP-0N and NVP-4N; (e) pore size distributions, and (e), (f) projected density of states of NVP-0N and NVP-4N[58].

    图 6  (a) 非热等离子体制备等离子体催化电极的合成工艺流程图; (b) 等离子体制备催化电极的步骤示意图; (c) 氮原子掺杂机理; (d) 含氧官能团的引入过程[72]

    Figure 6.  (a) The synthesis procedure diagram of the plasma-prepared catalytic electrode by non-thermal plasma; (b) schematic diagram shows the steps of plasma preparing catalytic electrode; (c) doping mechanism of nitrogen atoms; (d) introduction process of oxygen-containing functional groups[72].

    表 1  氮掺杂反应中涉及的键能表[72]

    Table 1.  The bond energy table involved in the nitrogen doping reaction[72].

    化学键 键能/eV 化学键 键能/eV
    C—H 3.2—4.7 C—C 2.6—5.2
    N—H 2.1—4.7 C—O 0.95—3.0
    C—N 1.2—3.1 C=C 3.3—7.5
    C=O 5.5 O—H 3.4—5.2
    DownLoad: CSV
    Baidu
  • [1]

    Zhang H, Chen L, Dong F, Lu Z W, Lv E M, Dong X L, Li H X, Yuan Z Y, Peng X W, Yang S H, Qiu J S, Guo Z X, Wen Z 2024 Energ. Environ. Sci. 17 6435Google Scholar

    [2]

    Do V H, Lee J M 2024 Chem. Soc. Rev. 53 2693Google Scholar

    [3]

    Zhang Y Q, Liu J J, Xu Y F, Xie C, Wang S Y, Yao X D 2024 Chem. Soc. Rev. 53 10620Google Scholar

    [4]

    Muhammad P, Zada A, Rashid J, Hanif S, Gao Y N, Li C C, Li Y Y, Fan K L, Wang Y L 2024 Adv. Funct. Mater. 34 2314686Google Scholar

    [5]

    Zheng J X, Meng D P, Guo J X, Liu X B, Zhou L, Wang Z 2024 Adv. Mater. 36 2405129Google Scholar

    [6]

    Shen C, Ye T L, Yang P X, Chen G Y 2024 Adv. Mater. 36 2401498Google Scholar

    [7]

    Sun L Z, Pan X, Xie Y N, Zheng J G, Xu S H, L L, Zhao G H 2024 Angew. Chem. Int. Edit. 63 e202402176Google Scholar

    [8]

    Zhang Y Q, Tao L, Xie C, Wang D D, Zou Y Q, Chen R, Wang Y R, Jia C K, Wang S Y 2020 Adv. Mater. 32 1905923Google Scholar

    [9]

    Shi F C, Jiang J Q, Wang X, Gao Y, Chen C, Chen G R, Dudko N, Nevar A A, Zhang D S 2024 Chem. Commun. 60 2700Google Scholar

    [10]

    Deng L L, Ma X P, Lu M T, He Y, Fan R L, Xin Y 2022 Chin. Phys. B, 31 118201Google Scholar

    [11]

    张海宝, 陈强 2021 70 095203Google Scholar

    Zhang H B, Chen Q 2021 Acta Phys. Sin. 70 095203Google Scholar

    [12]

    Morent R, DE G N, Verschuren J, De C C, Kiekens P, Leys C 2008 Surf. Coat. Tech. 202 3427Google Scholar

    [13]

    Ouyang B, Zhang Y, Xia X, Rawat R S, Fan H J 2018 Mater. Today Nano 3 28Google Scholar

    [14]

    Dou S, Tao L, Wang R L, Ei H S, Chen R, Wang S Y 2018 Adv. Mater. 30 1705850Google Scholar

    [15]

    Duan S X, Liu X, Wang Y N, Meng Y D, Alsaedi A, Hayat T, Li J X 2017 Plasma Process. Polym. 14 e1600218Google Scholar

    [16]

    Di L B, Zhang J S, Zhang X L, Wang H Y, Li H, Li Y Q, Bu D C 2021 J. Phys. D Appl. Phys. 54 333001Google Scholar

    [17]

    Wang D D, Zou Y Q, Tao L, Zhang Y Q, Liu Z J, Du S Q, Zang, S Q, Wang S Y 2019 Chin. Chem. Lett. 30 826Google Scholar

    [18]

    李壮, 底兰波, 于锋, 张秀玲 2018 67 215202Google Scholar

    Li Z, Di L B, Yu F, Zhang X L 2018 Acta Phys. Sin. 67 215202Google Scholar

    [19]

    Huang Y W, Yu Q F, Li M, Sun S N, Zhao H, Jin S X, Fan J, Wang J G 2021 Plasma Process. Polym. 18 e2000171Google Scholar

    [20]

    Liang X, Liu P, Qiu Z, ShenS H, Cao F, Zhang Y Q, Chen M H, He X P, Xia Y, Wang C, Wan W J, Zhang, J, Huang H, Gan Y P, Xia X H, Zhang W K 2024 Chem. Eur. J. 30 e202304168Google Scholar

    [21]

    Domonkos M, Ticha P 2023 Ieee T. Plasma Sci. 51 1671Google Scholar

    [22]

    Chang J, Chang J P 2017 J. Phys. D Appl. Phys. 50 253001Google Scholar

    [23]

    Levchenko I, Ostrikov K, Keidar M, Vladimirov S V 2007 Phys. Plasmas 14 113504Google Scholar

    [24]

    Baranov O, Bazaka K, Kersten H, Keidar M. Cvelbar U, Xu S, Levchenko I 2017 Appl. Phys. Rev. 4 041302Google Scholar

    [25]

    Levchenko I, Romanov M, Korobov M 2004 Surf. Coat. Tech. 184 356Google Scholar

    [26]

    Woller K, Whyte D, Wright G 2017 Nucl. Fusion 57 066005Google Scholar

    [27]

    Meyyappan M, Lance D, Alan C, David H 2003 Plasma Sources Sci. T. 12 205.Google Scholar

    [28]

    Ghosh S, Polaki S R, Kamruddin M, Jeong S M, Ostrikov K 2018 J. Phys. D Appl. Phys. 51 145303Google Scholar

    [29]

    Islam N, Hoque M N F, LI W Y, Wang S, Warzywoda J, Fan Z Y 2019 Carbon 141 523Google Scholar

    [30]

    Wu Z, Zhao Y, Jin W, Jia B H, Wang J, Ma T Y 2021 Adv. Funct. Mater. 31 2009070Google Scholar

    [31]

    Zhu J, Mu S 2020 Adv. Funct. Mater. 30 2001097Google Scholar

    [32]

    Anders A, Anders S 1995 Plasma Sources Sci. T. 4 571

    [33]

    Levchenko I, Ostrikov K, Keidar M, Xu S 2005 J. Appl. Phys. 98 064304Google Scholar

    [34]

    Levchenko I, Korobov M, Romanov M, Keidar M 2004 J. Phys. D Appl. Phys. 37 1690Google Scholar

    [35]

    Bogaerts A, Zhang QZ, Zhang Y R, Van L K, Wang W Z 2019 Catal. Today 337 3Google Scholar

    [36]

    Adelodun A A 2020 J. Ind. Eng. Chem. 92 41Google Scholar

    [37]

    Liu C J, Wang J X, Yu K L, Eliasson B, Xia Q, Xue B Z, Zhang Y H 2002 J. Electrostat. 54 149Google Scholar

    [38]

    Tu X, Gallon H J, Whitehead J 2011 J. Phys. D Appl. Phys. 44 482003Google Scholar

    [39]

    Roland U, Holzer F, Kopinke F D 2002 Catal. Today 73 315Google Scholar

    [40]

    Cvelbar U, Ostrikov K, Levchenko I, Mozetic M, Sunkara M K 2009 Appl. Phys. Lett. 94 211502Google Scholar

    [41]

    Cvelbar U, Levchenko I, Filipič G, Mozetič M, Ostrikov K 2012 Appl. Phys. Lett. 100 243103Google Scholar

    [42]

    Gruart M, Feldberg N, Gayral B, Bougerol C, Pouget S, Bellet A E, Garro N, Cros A, Okuno H, Daudin B 2020 Nanotechnology 31 115602Google Scholar

    [43]

    Baranov O, Levchenko I, Bell J M, Lim J W M, Huang S, Xu L, Wang B, Aussems D U B, Xu S, Bazaka K 2018 Mater. Horiz. 5 765Google Scholar

    [44]

    Neyts E C, Bogaerts A 2014 J. Phys. D Appl. Phys. 47 224010Google Scholar

    [45]

    Zhang Y R, Van L K, Neyts E C, Bogaerts A 2016 Appl. Catal. B-Environ. Energy 185 56Google Scholar

    [46]

    Zhang Y R, Neyts E C, Bogaerts A 2016 J. Phys. Chem. C 120 25923Google Scholar

    [47]

    Tian Y, Ye Y F, Wang X J, Peng S, Wei Z, Zhang X, Liu W M 2017 Appl. Catal. A-Gen. 529 127Google Scholar

    [48]

    Tian Y, Wei Z, Wang X J, Peng S, Zhang X, Liu W M 2017 Int. J. Hydrogen Energ. 42 4184Google Scholar

    [49]

    赵雯琪, 张岱, 崔明慧, 杜颖, 张树宇, 区琼荣 2021 70 095208Google Scholar

    Zhao W Q, Zhang D, Cui M H, Du Y, Zhang S Y, Ou Q R 2021 Acta Phys. Sin. 70 095208Google Scholar

    [50]

    Rao P, Yu Y, Wang S, Zhou Y, Wu X, Li K, Qi A Y, Deng P L, Cheng Y G, Li J, Miao Z P, Tian X L 2024 Exploration 4 20230034Google Scholar

    [51]

    Zhong W, Chen J, Zhang P, Deng L B, Yao L, Ren X Z, Li Y Q, Mi H W, Sun L N 2017 J. Mater. Chem. A 5 16605Google Scholar

    [52]

    Zha D W, Jiang S C, Zhang Q, Li J, Jiang Z J, Qin C, Tian X N, Maiyalagan T, Jiang Z Q 2025 Chem. Eng. J. 522 166892Google Scholar

    [53]

    Li Y H, Hung T H, Chen C W 2009 Carbon 47 850Google Scholar

    [54]

    Pasupathi A, Madhu R, Kundu S, Subramaniam Y 2025 J. Power Sources 630 236144Google Scholar

    [55]

    Zhang D Y, Gao H, Li J Y, Sun Y W, Deng Z S, Yuan X Y, Li C C, Chen T X, Chen T X, Peng X W, Wang C, Xu Y, Yang L C, Guo X, Zhao Y F, Huang P, Wang Y, Wang G X, Liu H 2025 Energy Storage Mater. 77 104231Google Scholar

    [56]

    Li H, Yamaguchi T, Matsumoto S, Hoshikawa H, Kumagai T, Okamoto N L, Ichitsubo T 2020 Nat. Commun. 11 1584Google Scholar

    [57]

    Li Z, Gu G Z, Hu S Z, Zou X, Wu G 2019 Chin. J. Catal. 40 1178Google Scholar

    [58]

    Dong P, Zhang D, Guo Y L, Sun A B, Li F P, Zhou Y J, Hou S P, Ren K, Xie Z P, Wu Y, Xue D F, Yang B, Liang F 2025 Energy Storage Mater. 81 104555Google Scholar

    [59]

    Dey A, Chroneos A, Braithwaite N S J, Gandhiraman R P, Krishnamurthy S 2016 Appl. Phys. Rev. 3 021301Google Scholar

    [60]

    Zhou J, Yue H, Qi F, Wang H Q, Chen Y F 2017 Int. J. Hydrogen Energ. 42 27004Google Scholar

    [61]

    Peng K, Cui P, Miao F 2025 Int. J. Hydrogen Energ. 102 1084Google Scholar

    [62]

    Wu S L, Zhang C, Cui X Y, Zhang S, Yang Q, Shao T 2021 J. Phys. D Appl. Phys. 54 265501Google Scholar

    [63]

    Meng D P, Peng X F, Zheng J X, Wang Z 2023 Phys. Chem. Chem. Phys. 25 22679Google Scholar

    [64]

    Myeong S, Ha S, Lim C, Min C G, Ha N, Kim B K, Lee Y S 2024 Electroanal. Chem. 964 118332Google Scholar

    [65]

    Hatakeyama R 2017 Rev. Mod. Plasma Phy. 1 7Google Scholar

    [66]

    Usachov D, Fedorov A, Vilkov O, Senkovskiy B, Adamchuk V K, Yashina L V, Volykhov A A, Farjam M, Verbitskiy N I, Grüneis A, Laubschat C, Vyalikh D V 2014 Nano Lett. 14 4982Google Scholar

    [67]

    Isac D L, Şoriga Ş G, Man I C 2020 J. Phys. Chem. C 124 23177Google Scholar

    [68]

    Liu Y C, Xie Z P, Lu S Q, Peng H Y, Zhang D, Qin J Q, Wu J J, Yang B, Liang F 2024 Dalton T. 53 11454Google Scholar

    [69]

    Ding D, Song Z L, Cheng Z Q, Liu W N, Nie X K, Bian X, Chen Z, Tan W H 2014 J. Mater. Chem. A 2 472Google Scholar

    [70]

    Lin Y C, Lin C Y, Chiu P W 2010 Appl. Phys. Lett. 96 133110Google Scholar

    [71]

    Evlashin S A, Fedorov F S, Chernodoubov D A, Maslakov K I, Dubinin O N, Khmelnitsky R A, Bondareva J V, Zhdanov V L, Pilevsky A A, Sukhanova E V, Popov Z I, Suetin N V 2024 Electroanal. Chem. 956 118091Google Scholar

    [72]

    Yue X F, Xiang H Y, Zhang P, Shu S, Zhao Y X, Zhang J C, Liu J W, Yu D P 2024 Plasma Process. Polym. 21 2300140Google Scholar

    [73]

    Li S, Wang Z, Jiang H, Zhang L M, Ren J Z, Zheng M T, Dong L C, Sun L Y 2016 Chem. Commun. 52 10988Google Scholar

    [74]

    Lu P, Kim D W, Park D W 2019 Plasma Sci. Technol. 21 044005Google Scholar

  • [1] Wang Jing, Gao Shan, Duan Xiang-Mei, Yin Wan-Jian. Influence of defect in perovskite solar cell materials on device performance and stability. Acta Physica Sinica, doi: 10.7498/aps.73.20231631
    [2] Cao Zhen, Hao Da-Peng, Tang Gang, Xun Zhi-Peng, Xia Hui. Influence of cluster shaped defects on fracture process of fiber bundle. Acta Physica Sinica, doi: 10.7498/aps.70.20210310
    [3] Cui Xing-Hua, Xu Qiao-Jing, Shi Biao, Hou Fu-Hua, Zhao Ying, Zhang Xiao-Dan. Research progress of wide bandgap perovskite materials and solar cells. Acta Physica Sinica, doi: 10.7498/aps.69.20200822
    [4] Yin Yuan, Li Ling, Yin Wan-Jian. Theoretical and computational study on defects of solar cell materials. Acta Physica Sinica, doi: 10.7498/aps.69.20200656
    [5] Huang Bing-Quan, Zhou Tie-Ge, Wu Dao-Xiong, Zhang Zhao-Fu, Li Bai-Kui. Properties of vacancies and N-doping in monolayer g-ZnO: First-principles calculation and molecular orbital theory analysis. Acta Physica Sinica, doi: 10.7498/aps.68.20191258
    [6] Liu Hao-Hua, Wang Shao-Hua, Li Bo-Bo, Li Hua-Lin. Defect induced asymmetric soliton transmission in the nonlinear circuit. Acta Physica Sinica, doi: 10.7498/aps.66.100502
    [7] Zhang Xiu-Zhi, Wang Kai-Yue, Li Zhi-Hong, Zhu Yu-Mei, Tian Yu-Ming, Chai Yue-Sheng. Effect of nitrogen on the defect luminescence in diamond. Acta Physica Sinica, doi: 10.7498/aps.64.247802
    [8] Zhang Ming-Lan, Yang Rui-Xia, Li Zhuo-Xin, Cao Xing-Zhong, Wang Bao-Yi, Wang Xiao-Hui. Study on proton irradiation induced defects in GaN thick film. Acta Physica Sinica, doi: 10.7498/aps.62.117103
    [9] Chen Xue-Qiong, Chen Zi-Yang, Pu Ji-Xiong, Zhu Jian-Qiang, Zhang Guo-Wen. Intensity distribution of the flat-topped beam propagating through the thick nonlinear medium with defects. Acta Physica Sinica, doi: 10.7498/aps.62.044213
    [10] Wang Xin-Hua, Pang Lei, Chen Xiao-Juan, Yuan Ting-Ting, Luo Wei-Jun, Zheng Ying-Kui, Wei Ke, Liu Xin-Yu. Investigation on trap by the gate fringecapacitance in GaN HEMT. Acta Physica Sinica, doi: 10.7498/aps.60.097101
    [11] Lu Guang-Xia, Zhang Hui, Zhang Guo-Ying, Liang Ting, Li Dan, Zhu Sheng-Long. Mechanism of the influence of the interaction between interstitial H atom and doped atom on the dehydrogenation performance of LiNH2. Acta Physica Sinica, doi: 10.7498/aps.60.117101
    [12] Zhang Hong-Liang, Lei Hai-Le, Tang Yong-Jian, Luo Jiang-Shan, Li Kai, Deng Xiao-Chen. Thermal capacity of nanocrystalline copper at low temperatures. Acta Physica Sinica, doi: 10.7498/aps.59.471
    [13] Xia Zhi-Lin, Shao Jian-Da, Fan Zheng-Xiu. Effect of bulk inclusion in films on damage probability. Acta Physica Sinica, doi: 10.7498/aps.56.400
    [14] Hao Xiao-Peng, Wang Bao-Yi, Yu Run-Sheng, Wei Long. Zirconium-ion implantation of zircaloy-4 investiged by slow positron beam. Acta Physica Sinica, doi: 10.7498/aps.56.6543
    [15] Wang Bo, Zhao You-Wen, Dong Zhi-Yuan, Deng Ai-Hong, Miao Shan-Shan, Yang Jun. Electron irradiation induced defects in high temperature annealed InP single crystal. Acta Physica Sinica, doi: 10.7498/aps.56.1603
    [16] Wu Shi-Gang, Shao Jian-Da, Fan Zheng-Xiu. Negative-ion element impurities breakdown model. Acta Physica Sinica, doi: 10.7498/aps.55.1987
    [17] Zheng Qing, Zhao Xiao-Peng, Li Ming-Ming, Zhao Jing. Regulating ability of defects on the negative refraction of left-handed metamaterials. Acta Physica Sinica, doi: 10.7498/aps.55.6441
    [18] Chen Zhi-Quan, Kawasuso Atsuo. Vacancy-type defects induced by He-implantation in ZnO studied by a slow positron beam. Acta Physica Sinica, doi: 10.7498/aps.55.4353
    [19] Li Peng-Fei, Yan Xiao-Hong, Wang Ru-Zhi. . Acta Physica Sinica, doi: 10.7498/aps.51.2139
    [20] TANG XUE-FENG, GU MU, TONG HONG-YONG, LIANG LING, YAO MING-ZHEN, CHEN LING-YAN, LIAO JING-YING, SHEN BIN-FU, QU XIANG-DONG, YIN ZHI-WEN, XU WEI-XIN, WANG JING-C HENG. A STUDY ON La-DOPED PbWO4 SCINTILLATING CRYSTAL. Acta Physica Sinica, doi: 10.7498/aps.49.2007
Metrics
  • Abstract views:  393
  • PDF Downloads:  3
  • Cited By: 0
Publishing process
  • Received Date:  01 September 2025
  • Accepted Date:  27 September 2025
  • Available Online:  10 October 2025
  • /

    返回文章
    返回
    Baidu
    map