Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ion energy distribution modulation in RF magnetron sputtering of ITO via auxiliary anode bias

HUANG Tianyuan ZHAO Yifan MO Chaochao MEI Yang ZHANG Xiaoman JI Peiyu WU Xuemei

Citation:

Ion energy distribution modulation in RF magnetron sputtering of ITO via auxiliary anode bias

HUANG Tianyuan, ZHAO Yifan, MO Chaochao, MEI Yang, ZHANG Xiaoman, JI Peiyu, WU Xuemei
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Understanding the dynamics of ions in the magnetron sputtering process of transparent conductive oxide (TCO) films is essential for clarifying the mechanisms of sputtering-induced damage and developing effective suppression strategies. In this work, indium tin oxide (ITO) is used as a cathode target in an RF magnetron sputtering system operating under pure argon atmosphere, and a positively biased auxiliary anode is introduced to modulate the plasma potential and investigate its effect on the ion energy distribution functions (IEDFs) at the substrate position. The ion energy spectra are measured using a commercial energy–mass spectrometer (EQP 1000, Hiden), and the plasma parameters such as potential and electron density are characterized using a radio-frequency compensated Langmuir probe. The results show that the incident positive ions consist mainly of O+, Ar+, In+, Sn+, as well as multiple metal oxide molecular and doubly charged ions. Their energies are determined by the combined effects of the initial ejection or backscattering energy of sputtered particles and the plasma potential. Increasing the auxiliary anode bias leads to an elevation of the plasma potential, thereby enhancing both the kinetic energy and flux of positive ions. In contrast, negative ions such as O and O2 originate predominantly from cathode sputtering, exhibiting broad, multi-peaked energy distributions that are strongly influenced by RF oscillations of the cathode voltage and plasma potential, as well as relaxation effects during ion transport. Heavier metal oxide negative ions (InO, InO2, SnO, SnO2) respond more slowly to RF sheath modulation, with their high-energy peaks converging toward the cathode bias potential. Applying a positive auxiliary anode bias effectively reduces the cathode bias voltage, thereby suppressing the high-energy tail of negative ions without significantly affecting their total energy-integrated intensity. This demonstrates that auxiliary anode biasing provides an effective means for adjusting the ion energy distributions in magnetron sputtering discharges. The proposed approach provides a potential pathway for mitigating sputtering-induced damage and improving the structural and electronic quality of ITO films. Future work will focus on correlating the measured ion energy modulation with comprehensive film characterizations—including optical, electrical, and interfacial analyses—to further verify the physical mechanisms and evaluate the practical effectiveness of damage suppression during TCO deposition.
  • 图 1  基于辅助阳极的ITO射频磁控溅射装置及等离子体诊断系统

    Figure 1.  RF magnetron sputtering system for ITO film deposition with auxiliary anode and integrated plasma diagnostics.

    图 2  ITO射频磁控放电中, 阴极偏置电压$ {V}_{\mathrm{C}0} $、附加阳极电流$ {I}_{\mathrm{A}\mathrm{A}} $及等离子体电势$ {V}_{\mathrm{P}} $随辅助阳极偏压$ {V}_{\mathrm{A}\mathrm{A}} $的变化关系

    Figure 2.  Cathode bias voltage $ {V}_{\mathrm{C}0} $, auxiliary anode current $ {I}_{\mathrm{A}\mathrm{A}} $, and plasma potential $ {V}_{\mathrm{P}} $ as functions of the auxiliary anode bias $ {V}_{\mathrm{A}\mathrm{A}} $ during an ITO RFMS discharge.

    图 3  ITO射频磁控放电中, 不同辅助阳极电压(0—+50 V)对氩同位素离子36Ar+ (m/z = 36)和40Ar+ (m/z = 40)能量分布的影响(气压: 0.6 Pa, 放电功率: 100 W)

    Figure 3.  Effect of different auxiliary anode voltages (0 to +50 V) on the energy distributions of argon isotope ions 36Ar+ (m/z = 36) and 40Ar+ (m/z = 40) in an ITO RFMS discharge (Gas pressure: 0.6 Pa, discharge power: 100 W).

    图 4  ITO射频磁控放电中, 不同辅助阳极偏压(0—+50 V)对36Ar+(m/z = 36), 40Ar2+(m/z = 20), O+(m/z = 16)和O2+(m/z = 32)离子能量分布的影响(气压: 0.6 Pa, 放电功率: 100 W)

    Figure 4.  Energy distributions of positive charged 36Ar+ (m/z = 36), 40Ar+ (m/z = 20), O+ (m/z = 16), and O2+ (m/z = 32) ions in an ITO RFMS discharge (Gas pressure: 0.6 Pa, discharge power: 100 W). Measurements have been carried out for different auxiliary anode voltages ranging from 0 to +50 V.

    图 5  ITO射频磁控放电中, 不同辅助阳极电压(0—+50 V)对In+(m/z = 115), In2+(m/z = 57.5), 118Sn+(m/z = 118), 118Sn2+(m/z = 59)和InSn+(m/z = 233)等金属离子能量分布的影响(气压: 0.6 Pa, 放电功率: 100 W)

    Figure 5.  Effect of different auxiliary anode voltages (0 to +50 V) on the energy distributions of metal ions In+ (m/z = 115), In2+ (m/z = 57.5), 118Sn+ (m/z = 118), 118Sn2+ (m/z = 59), and InSn+ (m/z = 233) in an ITO RFMS discharge (Gas pressure: 0.6 Pa, discharge power: 100 W).

    图 6  ITO射频磁控放电中, 不同辅助阳极电压(0—+50 V)对InO+(m/z = 131), InO2+(m/z = 147), InO3+(m/z = 163), SnO+(m/z = 134), SnO2+(m/z = 150), InSnO+(m/z = 249)和InSnO2+(m/z = 265)等金属氧化物离子能量分布的影响(气压: 0.6 Pa, 放电功率: 100 W)

    Figure 6.  Effect of different auxiliary anode voltages (0 to +50 V) on the energy distributions of metal oxide ions InO+ (m/z = 131), InO2+ (m/z = 147), InO3+ (m/z = 163), SnO+ (m/z = 134), SnO2+ (m/z = 150), InSnO+ (m/z = 249), and InSnO2+ (m/z = 265) in an ITO RFMS discharge (Gas pressure: 0.6 Pa, discharge power: 100 W).

    图 7  ITO射频磁控放电中, 不同辅助阳极电压(0—+50 V)下单电荷离子(Ar+, O+, O2+, In+, Sn+和InSn+)及双电荷离子(Ar2+, In2+和Sn2+)的能量积分强度(气压: 0.6 Pa, 放电功率: 100 W)

    Figure 7.  Energy-integrated count rates of singly charged ions (Ar+, O+, O2+, In+, Sn+ and InSn+) and doubly charged ions (Ar2+, In2+, and Sn2+) in an ITO RFMS discharge at different auxiliary anode voltages from 0 to +50 V (Gas pressure: 0.6 Pa, discharge power: 100 W).

    图 8  ITO射频磁控放电中, 不同辅助阳极电压(0—+50 V)下金属氧化物离子(InO+, InO2+, InO3+, SnO+, SnO2+, InSnO+和InSnO2+)的能量积分强度(气压: 0.6 Pa, 放电功率: 100 W)

    Figure 8.  Energy-integrated count rates of metal oxide ions (InO+, InO2+, InO3+, SnO+, SnO2+, InSnO+, and InSnO2+) in an ITO RFMS discharge at different auxiliary anode voltages from 0 to +50 V (Gas pressure: 0.6 Pa, discharge power: 100 W).

    图 9  ITO射频磁控放电中, 不同辅助阳极偏压(0—+50 V)对O(m/z = 16)和O2(m/z = 32)负离子能量分布的影响(气压: 0.6 Pa, 放电功率: 100 W)

    Figure 9.  Effect of different auxiliary anode voltages (0 to +50 V) on the energy distributions of O (m/z = 16) and O2 (m/z = 32) negative ions in an ITO RFMS discharge (Gas pressure: 0.6 Pa, discharge power: 100 W).

    图 10  ITO射频磁控放电中, 不同辅助阳极电压(0—+50 V)对InO(m/z = 131), InO2(m/z = 147), SnO(m/z = 134)和InO2(m/z = 150)负离子能量分布的影响(气压: 0.6 Pa, 放电功率: 100 W)

    Figure 10.  Effect of different auxiliary anode voltages (0 to +50 V) on the energy distributions of negative ions InO (m/z = 131), InO2 (m/z = 147), SnO (m/z = 134), and SnO2 (m/z = 150) in an ITO RFMS discharge (Gas pressure: 0.6 Pa, discharge power: 100 W).

    图 11  ITO射频磁控放电中, 不同辅助阳极电压(0—+50 V)下负离子(O, O2, InO, InO2, SnO和SnO2)的能量积分强度(气压: 0.6 Pa, 放电功率: 100 W)

    Figure 11.  Energy-integrated intensities of negative ions (O, O2, InO, InO2, SnO, and SnO2) in an ITO RFMS discharge at different auxiliary anode voltages from 0 to +50 V (Gas pressure: 0.6 Pa, discharge power: 100 W).

    图 12  ITO射频磁控放电中, 不同辅助阳极电压(0—+50 V)下基片台表面IEDFs的径向分布情况(气压: 0.6 Pa, 放电功率: 100 W)

    Figure 12.  Radial distributions of IEDFs on the substrate surface under different auxiliary anode voltages from 0 to +50 V during ITO RFMS discharge (Gas pressure: 0.6 Pa, discharge power: 100 W).

    图 13  ITO射频磁控放电中, 辅助阳极电压$ {V}_{\mathrm{A}\mathrm{A}}=0\;\mathrm{V} $条件下近基片台表面等离子体电势Vp及电子密度ne的径向分布情况(气压: 0.6 Pa, 放电功率: 100 W)

    Figure 13.  Radial distributions of plasma potential Vp and electron density ne near the substrate surface under auxiliary anode voltage $ {V}_{\mathrm{A}\mathrm{A}}=0\;\mathrm{V} $ during ITO RF magnetron discharge (Gas pressure: 0.6 Pa, discharge power: 100 W).

    Baidu
  • [1]

    Chavan G T, et al. 2023 Nanomaterials 13 1226Google Scholar

    [2]

    Suemori K 2023 Org. Electron. 116 106764Google Scholar

    [3]

    Li S, et al. 2021 Joule 5 1535Google Scholar

    [4]

    Park G, et al. 2025 Cell Rep. Phys. Sci. 6 102619Google Scholar

    [5]

    Zhao M J, et al. 2022 Vacuum 200 111034Google Scholar

    [6]

    Hossain M I, et al. 2025 Results in Surfaces and Interfaces 18 100383Google Scholar

    [7]

    杨志伟, 韩圣浩, 杨田林, 赵俊卿, 马瑾, 马洪磊 2000 49 1196Google Scholar

    Yang Z W, Han S H, Yang T L, Zhao J Q, Ma J, Ma H L 2000 Acta Phys. Sin. 49 1196Google Scholar

    [8]

    Ishibashi S, et al. 1990 J. Vac. Sci. Technol. , A 8 1403Google Scholar

    [9]

    Dewald W et al. 2009 Thin Solid Films 518 1085Google Scholar

    [10]

    Le. A. H. T et al. 2019 Sol. Energy Mater. Sol. Cells 192 36Google Scholar

    [11]

    Konishi T, Ohdaira K 2017 Thin Solid Films 635 73Google Scholar

    [12]

    Caudevilla D, García-Hemme E, San Andrés E, et al. 2022 Mater. Sci. Semicond. Process 137 106189Google Scholar

    [13]

    Qiu D, et al. 2022 Sol. Energy 231 578Google Scholar

    [14]

    Petroski K A, Sagas J C 2020 Vacuum 182 109703Google Scholar

    [15]

    Hippler R, Cada M, Hubicka Z 2021 J. Vac. Sci. Technol. , A 39 043007Google Scholar

    [16]

    Hippler R, Cada M, Hubicka Z 2021 Plasma Sources Sci. Technol. 30 045003Google Scholar

    [17]

    Huang T Y, et al. 2024 Vacuum 221 112848Google Scholar

    [18]

    Welzel T, Ellmer K 2013 J. Phys. D: Appl. Phys. 46 315202Google Scholar

    [19]

    Toyoda H, et al. 2009 Appl. Phys. Express 2 126001Google Scholar

    [20]

    Li M Y, et al. 2024 Plasma Sci. Technol. 26 075506Google Scholar

    [21]

    Ellmer K, Wendt R, Wiesemann K 2003 Int. J. Mass Spectrom. 223-224 679

    [22]

    Hamers E A G, et al. 1998 Int. J. Mass. Spectrom. 173 91Google Scholar

    [23]

    Belkind A, Jansen F 1998 Surf. Coat. Technol. 99 52Google Scholar

    [24]

    Coburn J W, Kay E 1972 J. Appl. Phys. 43 4965Google Scholar

    [25]

    Woller K B, Whyte D G, Wright G M 2017 Phys. Plasmas 24 053513Google Scholar

    [26]

    Thompson M W 1968 Philosophical Magazine 18 377Google Scholar

    [27]

    Betz G, Husinsky W 2004 Philos. Trans. R. Soc. London, Ser. A 362 177Google Scholar

    [28]

    Pullins S H, Dressler R A, Torrents R, Gerlich D 2000 Z. Phys. Chem. 214 1279

  • [1] XU Yihong, FAN Weihang, WANG Chen. Influence of annealing temperature on the performance of radio frequency magnetron sputtered Sn-doped Ga2O3 films and its solar-blind photodetector. Acta Physica Sinica, doi: 10.7498/aps.74.20240972
    [2] Luo Ju-Xin, Gao Hong-Li, Deng Jin-Xiang, Ren Jia-Hui, Zhang Qing, Li Rui-Dong, Meng Xue. Effects of annealing temperature on properties of gallium oxide thin films and ultraviolet detectors. Acta Physica Sinica, doi: 10.7498/aps.72.20221716
    [3] Zhang Wen-Zhao, Tang Xing-Hua, Li Jia-Qing, Shi Li-Qun. Deuterium retention in carbon-tungsten co-deposition layers prepared by RF magnetron sputtering. Acta Physica Sinica, doi: 10.7498/aps.62.195202
    [4] Guo Hong-Li, Yang Huan-Yin, Tang Huan-Fang, Hou Hai-Jun, Zheng Yong-Lin, Zhu Jian-Guo. Effects of high pressure annealing technique on the structure, morphology and electric properties of 0.65PMN-0.35PT thin films. Acta Physica Sinica, doi: 10.7498/aps.62.130704
    [5] Zhao Kong-Sheng, Xuan Rui-Jie, Han Xiao, Zhang Geng-Ming. Junctionless low-voltage thin-film transistors based on indium-tin-oxide. Acta Physica Sinica, doi: 10.7498/aps.61.197201
    [6] Xu Hui, Wang Shun-Li, Liu Ai-Ping, Chen Ben-Yong, Tang Wei-Hua. Electronic state and its effect on the hydrophilicity of Cu/TiOx composite films. Acta Physica Sinica, doi: 10.7498/aps.59.3601
    [7] Gao Li, Zhang Jian-Min. Photoluminescence of diluted Mg doped ZnO thin films and band-gap change mechanisms. Acta Physica Sinica, doi: 10.7498/aps.59.1263
    [8] Xie Jing, Li Bing, Li Yuan-Jie, Yan Pu, Feng Liang-Huan, Cai Ya-Ping, Zheng Jia-Gui, Zhang Jing-Quan, Li Wei, Wu Li-Li, Lei Zhi, Zeng Guang-Gen. Study of ZnS thin films prepared by RF magnetron sputtering technique. Acta Physica Sinica, doi: 10.7498/aps.59.5749
    [9] Gao Li, Zhang Jian-Min. Preparation of Mg and Al co-doped ZnO thin films with tunable band gap. Acta Physica Sinica, doi: 10.7498/aps.58.7199
    [10] Li Yang-Ping, Liu Zheng-Tang. Plasma emission diagnostics for the optimization of deposition parameters in RF magnetron sputtering of GaP film. Acta Physica Sinica, doi: 10.7498/aps.58.5022
    [11] Wang Zhen-Ning, Jiang Mei-Fu, Ning Zhao-Yuan, Zhu Li. Structure and photoluminescence of Zn2GeO4 polycrystalline films prepared by radio-frequency magnetron sputtering. Acta Physica Sinica, doi: 10.7498/aps.57.6507
    [12] Li Yang-Ping, Liu Zheng-Tang, Liu Wen-Ting, Yan Feng, Chen Jing. Preparation and properties of GeC thin films deposited by reactive RF magnetron sputtering. Acta Physica Sinica, doi: 10.7498/aps.57.6587
    [13] Feng Xian-Jin, Ma Jin, Ge Song-Hua, Ji Feng, Wang Yong-Li, Yang Fan, Ma Hong-Lei. Structural and photoluminescence properties for SnO2:Sb films prepared on Al2O3 substrate. Acta Physica Sinica, doi: 10.7498/aps.56.4872
    [14] Wang Nan, Kong Chun-Yang, Zhu Ren-Jiang, Qin Guo-Ping, Dai Te-Li, Nan Mao, Ruan Hai-Bo. Preparation and characteristics research of p-type ZnO films. Acta Physica Sinica, doi: 10.7498/aps.56.5974
    [15] Li Yang-Ping, Liu Zheng-Tang, Zhao Hai-Long, Liu Wen-Ting, Yan Feng. RF magnetron sputtering of GaP thin film and computer simulation of its depositing process. Acta Physica Sinica, doi: 10.7498/aps.56.2937
    [16] Zhang Xi-Jian, Ma Hong-Lei, Wang Qing-Pu, Ma Jin, Zong Fu-Jian, Xiao Hong-Di, Ji Feng. Effect of annealing on optical properties of MgxZn1-xO thin films deposited at low temperature. Acta Physica Sinica, doi: 10.7498/aps.55.437
    [17] Zhang Xi-Jian, Ma Hong-Lei, Wang Qing-Pu, Ma Jin, Zong Fu-Jian, Xiao Hong-Di, Ji Feng. Structural and optical properties of MgxZn1-xO thin films deposited by radio frequency magnetron sputtering. Acta Physica Sinica, doi: 10.7498/aps.54.4309
    [18] Wang Yu-Heng, Ma Jin, Ji Feng, Yu Xu-Hu, Zhang Xi-Jian, Ma Hong-Lei. Structural and photoluminescence characters of SnO22:Sb thin films pr epared by rf magnetron sputtering. Acta Physica Sinica, doi: 10.7498/aps.54.1731
    [19] Zhang De-Heng, Wang Qing-Pu, Xue Zhong-Ying. Ultra violet photoluminescenc of ZnO films on different substrates. Acta Physica Sinica, doi: 10.7498/aps.52.1484
    [20] LIU HONG-XIANG, WEI HE-LIN, LIU ZU-LI, LIU YAN-HONG, WANG JUN-ZHEN. EFFECT OF THE MAGNETIC MIRROR FIELD ON THE ION ENERGY DISTRIBUTIONS IN A RADIO F REQUENCY PLASMA. Acta Physica Sinica, doi: 10.7498/aps.49.1764
Metrics
  • Abstract views:  298
  • PDF Downloads:  6
  • Cited By: 0
Publishing process
  • Received Date:  29 August 2025
  • Accepted Date:  03 October 2025
  • Available Online:  15 October 2025
  • /

    返回文章
    返回
    Baidu
    map