Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

State-resolved electron capture in slow Ar$^{2+}$-Ar/N$_{2}$ collisions

CUI Shucheng XING Dadi ZHU Xiaolong ZHAO Dongmei GUO Dalong GAO Yong ZHANG Shaofeng DONG Chenzhong MA Xinwen

Citation:

State-resolved electron capture in slow Ar$^{2+}$-Ar/N$_{2}$ collisions

CUI Shucheng, XING Dadi, ZHU Xiaolong, ZHAO Dongmei, GUO Dalong, GAO Yong, ZHANG Shaofeng, DONG Chenzhong, MA Xinwen
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • As a fundamental process in atomic physics, charge exchange relies on quantum state-resolved data that is crucial for fields such as astrophysics and plasma physics. However, there remains a gap in research on multi-electron target systems. This study aims to investigate the dynamic mechanisms of single/double electron capture in collisions between Ar$^{2+}$ ions and Ar atoms or N$_{2}$ molecules at an energy of 40 keV, thereby supplementing high-precision experimental data in this field. The experiment was conducted on the Electron Beam Ion Source (EBIS) platform at the Institute of Modern Physics, Chinese Academy of Sciences, using the Cold Target Recoil Ion Momentum Spectroscopy (COLTRIMS)/reaction microscopes technique. An ion beam containing ground-state Ar$^{2+}$($3s^{2}3p^{4}$: $^{3}$P) and metastable Ar$^{2+}$ ($3s^{2}3p^{4}$: $^{1}$D, $^{1}$S) was used as the projectile, colliding with a supersonic Ar/N$_{2}$ mixed gas target. Three-dimensional momentum of recoil ions was reconstructed through coincidence measurements of recoil ions and scattered ions, and the Q-value and scattering angle distribution were calculated. Theoretical comparisons were performed using the Molecular Coulombic Barrier Model (MCBM).
    Current experimental results indicate that the single-electron capture state populations of the two systems exhibit similarities but differ in contribution ratios: the Q-value spectrum of the Ar$^{2+}$-Ar system contains an additional characteristic peak (corresponding to the process where the projectile ion captures an electron from the $3s$ orbital of the target while its own $3s$ electron is excited to the $3p$ orbital). In contrast, this characteristic peak is absent in the Ar$^{2+}$-N$_{2}$ system due to the easy dissociation of excited N$_{2}^{+}$ ions. For double-electron capture, both systems are dominated by capture to the ground state, but only the Ar$^{2+}$-N$_{2}$ system shows a significant contribution from excited state populations. Comparison of scattering angles reveals that the higher the capture state of the product ion, the larger the corresponding scattering angle and the smaller the impact parameter. This is presumably because electron interactions become more complex at smaller impact parameters, leading to a higher probability of capture to high-energy levels. In the double-electron capture of the Ar$^{2+}$-N$_{2}$ system, only the ground-state channel is populated at small angles (0–1.2 mrad). Additionally, electron capture exhibits a dependence on the impact parameter: as the angle increases (i.e., the impact parameter decreases), the Q-value of the capture reaction becomes smaller, and the reaction tends to be more endothermic.
  • [1]

    Cravens T 1997 Geophys. Res. Lett. 24 105

    [2]

    Isler R 1994 Plasma Phys. Control. Fusion 36 171

    [3]

    Team D 2010 Plasma Sci. Technol. 12 11

    [4]

    Lisse C M, Dennerl K, Englhauser J, Harden M, Marshall F E, Mumma M J, Petre R, Pye J P, Ricketts M J, Schmitt J, Trümper J, West R G 1996 Science 274 205

    [5]

    Wei B R, Zhang R T 2025 Sci. Sin. Phys. Mech. Astron. 55 250008

    [6]

    Cao T, Meng T, Gao Y, Zhang S F, Zhang R T, Yan S, Zhu X L, Wang J, Ma P, Ren B, Xia Z H, Guo D L, Zhang C J, Lin K Z, Xu S, Wei B, Ma X 2023 Astrophys. J. Suppl. Ser. 266 20

    [7]

    Lin K Z, Gao Y, Zhu X L, Zhang S F, Cao T, Guo D L, Shan X, Zhao D M, Chen X J, Ma X 2024 Phys. Rev. A 109 052811

    [8]

    Zhu X B, Xing D D, Lin K Z, Cui S C, Zhu X L, Gao Y, Guo D L, Zhao D M, Zhang S F, Ma X 2024 J. Phys. B:At. Mol. Opt. Phys. 57 045001

    [9]

    Guo D L, Gao J W, Zhang S F, Zhu X L, Gao Y, Zhao D M, Zhang R T, Wu Y, Wang J G, Dubois A, Ma X 2021 Phys. Rev. A 103 032827

    [10]

    Xu J W, Xu C X, Zhang R T, Zhu X L, Feng W T, Gu L, Liang G Y, Guo D L, Gao Y, Zhao D M, Zhang S F, Su M G, Ma X 2021 Astrophys. J. Suppl. Ser. 253 13

    [11]

    Zhu X L, Zhang S F, Gao Y, Guo D L, Xu J W, Zhang R T, Zhao D M, Lin K Z, Zhu X B, Xing D D, Cui S C, Passalidis S, Dubois A, Ma X 2024 Phys. Rev. Lett. 133 173002

    [12]

    Suk H, Guilbaud A, Hird B 1977 Can. J. Phys. 55 1594

    [13]

    Huber B 1980 J. Phys. B:At. Mol. Phys. 13 809

    [14]

    Shields G C, Moran T 1983 J. Phys. B:At. Mol. Phys. 16 3591

    [15]

    Ma P F, Wang J R, Zhang Z X, Meng T M, Xia Z H, Ren B H, Wei L, Yao K, Xiao J, Zou Y M, Tu B S, Wei B R 2023 Nucl. Sci. Tech. 34 156

    [16]

    Meng T, Wu Y, Yin H, Tan X, Ren B, Ma P, Tu B, Yao K, Xiao J, Zou Y, Wei B 2025 Astrophys. J. Suppl. Ser. 279 45

    [17]

    Dörner R, Mergel V, Jagutzki O, Spielberger L, Ullrich J, Moshammer R, Schmidt-Böcking H 2000 Phys. Rep. 330 95

    [18]

    Ullrich J, Moshammer R, Dorn A, Dörner R, Schmidt L P H, Schmidt-Böcking H 2003 Rep. Prog. Phys. 66 1463

    [19]

    Ryufuku H, Sasaki K, Watanabe T 1980 Phys. Rev. A 21 745

    [20]

    Niehaus A 1986 J. Phys. B:At. Mol. Phys. 19 2925

    [21]

    Cornelius K, Wojtkowski K, Olson R E 2000 J. Phys. B:At. Mol. Opt. Phys. 33 2017

    [22]

    Otranto S, Olson R E, Beiersdorfer P 2006 Phys. Rev. A 73 022723

    [23]

    Kallman T, Palmeri P 2007 Rev. Mod. Phys. 79 79

    [24]

    Andersson L, Danared H, Barany A 1987 Nucl. Instrum. Methods Phys. Res. B 23 54

    [25]

    Zygelman B, Cooper D, Ford M, Dalgarno A, Gerratt J, Raimondi M 1992 Phys. Rev. A 46 3846

    [26]

    Stevens J, Peterson R, Pollack E 1983 Phys. Rev. A 27 2396

    [27]

    Kamber E Y, Mathur D, Hasted J B 1982 J. Phys. B:At. Mol. Phys. 15 2051

    [28]

    Kamber E Y, Jonathan P, Brenton A G, Beynon J H 1987 J. Phys. B:At. Mol. Phys. 20 4129

    [29]

    Smith D, Grief D, Adams N 1979 Int. J. Mass Spectrom. Ion Phys. 30 271

    [30]

    Hird B, Ali S 1981 J. Phys. B:At. Mol. Phys. 14 267

    [31]

    Zhu X L, Cui S C, Xing D D, Xu J W, Najjari B, Zhao D M, Guo D L, Gao Y, Zhang R T, Su M G, Zhang S F, Ma X W 2024 Chin. Phys. B 33 023401

    [32]

    Cui S C, Xing D D, Zhu X L, Su M G, Gao Y, Guo D L, Zhao D M, Zhang S F, Fu Y B, Ma X W 2024 Chinese Physics B 33 073401

    [33]

    Li Z X, Lin K Z, Zhu X L, Li Z L, Yuan H, Gao Y, Guo D L, Zhao D M, Zhang S F, Ma X W 2025 Chin. Phys. B 34 053401

    [34]

    Xing D D, Cui S C, Wang X X, Zhang D H, Zhu X B, Lin K Z, Gao Y, Guo D L, Zhao D M, Zhang S F, Zhu X L, Ma X 2025 Phys. Rev. A 112 012812

    [35]

    Zhu X L, Ma X, Li J Y, Schmidt M, Feng W T, Peng H, Xu J W, Zschornack G, Liu H P, Zhang T M, Zhao D M, Guo D L, Huang Z K, Zhou X M, Gao Y, Cheng R, Wang H B, Yang J, Kang L 2019 Nucl. Instrum. Methods Phys. Res. B 460 224

    [36]

    Ma X, Zhang R T, Zhang S F, Zhu X L, Feng W T, Guo D L, Li B, Liu H P, Li C Y, Wang J G, Yan S C, Zhang P J, Wang Q 2011 Phys. Rev. A 83 052707

    [37]

    Kramida A, Yu Ralchenko, Reader J, and NIST ASD Team 2024. NIST Atomic Spectra Database (ver. 5.12),[Online]. Available:https://physics.nist.gov/asd[2025, September 8]. National Institute of Standards and Technology, Gaithersburg, MD.

    [38]

    Kamber E Y, Quintana E J, Pollack E 1993 J. Phys. B:At. Mol. Opt. Phys. 26 113

    [39]

    Kamber E Y, Mathur D, Hasted J B 1982 J. Phys. B:At. Mol. Phys. 15 263

    [40]

    Chen Y H, Johnson R E, Humphris R R, Siegel M W, Boring J W 1975 J. Phys. B:At. Mol. Phys. 8 1527

  • [1] HUANG Houke, WEN Weiqiang, HUANG Zhongkui, WANG Shuxing, TANG Meitang, LI Jie, MAO Lijun, YUAN Yang, WAN Mengyu, LIU Chang, WANG Hanbing, ZHOU Xiaopeng, ZHAO Dongmei, YAN Kaiming, ZHOU Yunbin, YUAN Youjin, YANG Jiancheng, ZHANG Shaofeng, ZHU Linfan, MA Xinwen. Simulation study of precision spectroscopy of dielectronic recombination for highly charged heavy ions at HIAF. Acta Physica Sinica, doi: 10.7498/aps.74.20241589
    [2] NIU Jiajie, ZHANG Weiwei, QI Yueying, GAO Junwen. Theoretical study of state-selective charge exchange processes in collisions between highly charged N6+ ions and H atoms. Acta Physica Sinica, doi: 10.7498/aps.74.20250541
    [3] LIANG Yaqiong, LIANG Guiyun. Solar wind charge-exchange X-ray emission factor based on ACE observation data. Acta Physica Sinica, doi: 10.7498/aps.74.20241603
    [4] ZHANG Ziqi, YAN Shuncheng, TAO Chenyu, YU Xuan, ZHANG Shaofeng, MA Xinwen. Dissociation mechanism of ethane dication via three-body fragmentation. Acta Physica Sinica, doi: 10.7498/aps.74.20250008
    [5] CHENG Yu, REN Jieru, MA Bubo, LIU Yun, ZHAO Ziqian, WEI Wenqing, Dieter H. H. Hoffmann, DENG Zhigang, QI Wei, ZHOU Weimin, CHENG Rui, LI Zhongliang, SONG Lei, LI Yuan, ZHAO Yongtao. Charge transfer process of laser-accelerated low-energy carbon ion beams in porous CHO foams. Acta Physica Sinica, doi: 10.7498/aps.74.20250634
    [6] ZHANG Chongrui, HE Wenliang, CAO Shiquan, XIE Luyou, DONG Chenzhong. Theoretical study on charge-state evolution of carbon ions passing through hydrogen plasma. Acta Physica Sinica, doi: 10.7498/aps.74.20250668
    [7] Wu Yi-Jiao, Meng Tian-Ming, Zhang Xian-Wen, Tan Xu, Ma Pu-Fang, Yin Hao, Ren Bai-Hui, Tu Bing-Sheng, Zhang Rui-Tian, Xiao Jun, Ma Xin-Wen, Zou Ya-Ming, Wei Bao-Ren. Experimental measurement of state selective double electron capture in collision between 1.4–20 keV/u Ar8+ with He. Acta Physica Sinica, doi: 10.7498/aps.73.20241290
    [8] Xu Jia-Wei, Xu Chuan-Xi, Zhang Rui-Tian, Zhu Xiao-Long, Feng Wen-Tian, Zhao Dong-Mei, Liang Gui-Yun, Guo Da-Long, Gao Yong, Zhang Shao-Feng, Su Mao-Gen, Ma Xin-Wen. Experimental measurement of state-selective charge exchange and test of astrophysics soft X-ray emission model. Acta Physica Sinica, doi: 10.7498/aps.70.20201685
    [9] Hai Bang, Zhang Shao-Feng, Zhang Min, Dong Da-Pu, Lei Jian-Ting, Zhao Dong-Mei, Ma Xin-Wen. A tabletop experimental system for investigating ultrafast atomic dynamics based on femtosecond extreme ultraviolet photons. Acta Physica Sinica, doi: 10.7498/aps.69.20201035
    [10] Zhang Min, Yan Shun-Cheng, Gao Yong, Zhang Shao-Feng, Ma Xin-Wen. Methods of calibrating kinetic energy release in dissociation process of molecular dications. Acta Physica Sinica, doi: 10.7498/aps.69.20200901
    [11] He Bin, Ding Ding, Qu Shi-Xian, Wang Jian-Guo. Investigation of state-selective cross-sections for excitation processes of the collisions of He2++ H(1s) in strong magnetic fields. Acta Physica Sinica, doi: 10.7498/aps.62.073401
    [12] J. Ullrich, A. Dorn, Ma Xin-Wen, Xu Shen-Yue, Ren Xue-Guang, T. Pflüger. Dissociative ionization of methane by 54 eV electron impact. Acta Physica Sinica, doi: 10.7498/aps.60.093401
    [13] Guo Da-Long, Ma Xin-Wen, Feng Wen-Tian, Zhang Shao-Feng, Zhu Xiao-Long. Analysis of momentum and energy resolutions of the reaction microscope. Acta Physica Sinica, doi: 10.7498/aps.60.113401
    [14] Ju Zhi-Ping, Cao Wu-Fei, Liu Xiao-Wei. Study of scattering angular distribution of proton using Monte-Carlo method. Acta Physica Sinica, doi: 10.7498/aps.58.174
    [15] Zhao Yi-Qing, Liu Ling, Liu Chun-Lei, Xue Ping, Wang Jian-Guo. Atom-orbital close-coupling calculation of charge exchange processes in collisions of H+ with Li(5d). Acta Physica Sinica, doi: 10.7498/aps.58.3248
    [16] Zhu Xiao-Long, Ma Xin-Wen, Li Bin, Liu Hui-Ping, Chen Lan-Fang, Zhang Shao-Feng, Feng Wen-Tian, Sha Shan, Qian Dong-Bin, Cao Shi-Ping, Zhang Da-Cheng. Experimental differential investigation of state-selective single electron capture in slow He2+-He collisions. Acta Physica Sinica, doi: 10.7498/aps.58.2077
    [17] Cao Shi-Ping, Ma Xin-Wen, Dorn A., Dürr M., Ullrich J.. Correlation of emitted electrons in near threshold double ionization of helium by electron impact. Acta Physica Sinica, doi: 10.7498/aps.56.6386
    [18] Yang Chao-Wen, Miao Jing-Wei, Wang Guang-Lin, Liu Xiao-Dong, Shi Mian-Gong. The electron exchange of MeV hydrogen micro-cluster ions with solids. Acta Physica Sinica, doi: 10.7498/aps.55.5810
    [19] Yang Bai-Fang, Miao Jing-Wei, Yang Chao-Wen, Shi Mian-Gong, Tang A-You, Liu Xiao-Dong. . Acta Physica Sinica, doi: 10.7498/aps.51.55
    [20] JIA XIANG-FU, YAND WEI. ANGULAR DISTRIBUTIONS IN THE LOW-ENERGY (e,2e) REACTION OF Li+. Acta Physica Sinica, doi: 10.7498/aps.47.1783
Metrics
  • Abstract views:  71
  • PDF Downloads:  1
  • Cited By: 0
Publishing process
  • Available Online:  10 October 2025
  • /

    返回文章
    返回
    Baidu
    map