Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Multiphoton microscopy imaging system driven by dual-wavelength-pumped self-phase modulation spectral selection

CHEN Runzhi WANG Xiaoying ZHANG Lihao LIU Yang WU Jihua DIAO Xincai ZHANG Di LI Lianyong CHANG Guoqing XUE Ping JING Gang

Citation:

Multiphoton microscopy imaging system driven by dual-wavelength-pumped self-phase modulation spectral selection

CHEN Runzhi, WANG Xiaoying, ZHANG Lihao, LIU Yang, WU Jihua, DIAO Xincai, ZHANG Di, LI Lianyong, CHANG Guoqing, XUE Ping, JING Gang
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Multiphoton microscopy (MPM) has become an essential research tool in biomedicine. Current MPM systems predominantly rely on Ti:sapphire lasers provided tunable femtosecond pulses at 720–950 nm. To access the second biological transparency window (1000–1350 nm), complex optical parametric oscillators are typically required. urthermore, sources operating in the third biological transparency window (1600–1750 nm) are attracting significant attention for enhanced imaging depth. However, no ultrafast laser source simultaneously covering all three transparency windows exists, thus hindering the widespread application of MPM in life sciences. Here, we demonstrate a fiber-laser-based ultrafast source that generates four-color tunable pulses across 800–1650 nm, covering the full spectral range for multiphoton excitation. This source utilizes our proposed spectral selection technique via self-phase modulation (SESS). SESS ensures SPM-dominated spectral broadening, producing isolated spectral lobes. Filtering the outermost lobes will generate near-transform-limited pulses with broad wavelength tunability. Using this supercontinuum excitation source, we successfully realize label-free imaging of diverse biomedical specimens, validating the performance of MPM empowered by this novel driving source.
  • 图 1  基于双波长泵浦SESS光源的多光子显微镜实验装置. ISO, 光隔离器; WDM, 波分复用器; EDF, 掺铒光纤; SMLD, 半导体激光二极管; OC, 输出耦合器; HNLF, 高非线性光纤; CPA, 啁啾脉冲放大; HWP, 半波片; PBS, 偏振分束器; HR, 高反射镜; SL, 扫描透镜; TL, 管镜; OBJ, 物镜; PMT: 光电倍增管

    Figure 1.  Schematic setup of the multi-photon microscopy driven by dual-color laser enabled SESS source. ISO, isolator; WDM, wavelength-division multiplexing; EDF, erbium-doped fiber; SMLD, semiconductor laser diode; OC, output coupler; HNLF, highly nonlinear fiber; CPA, chirped-pulse amplification; HWP, half-wave plate; PBS, polarization beam splitter; HR, high reflectance mirror; SL, scan lens; TL, tube lens; OBJ, objective lens; PMT, photomultiplier tube.

    图 2  双波长激光放大后的光谱和自相关轨迹 (a) 1040 nm分支的输出光谱; (b) 测量的自相关曲线(红色)和计算的自相关曲线, 对应由1040 nm输出光谱(黑色)计算出的变换极限脉冲; (c) 1550 nm分支的输出光谱; (d) 测量的自相关曲线(红色)和计算的自相关曲线, 对应由1550 nm输出光谱(黑色)给出的变换极限脉冲

    Figure 2.  Spectrum and corresponding autocorrelation of the dual color source after CPA: (a) 1040 nm branch output spectrum; (b) measured autocorrelation trace (red) and calculated autocorrelation trace corresponding to the transform-limited pulse given by the 1040 nm output spectrum (black); (c) 1550 nm branch output spectrum; (d) measured autocorrelation trace (red) and calculated autocorrelation trace corresponding to the transform-limited pulse given by the 1550 nm output spectrum (black).

    图 3  滤波得到的最左/最右的光谱波瓣和相应的脉冲能量  (a) 由4.3 cm的HNLF(NL-1050-ZERO-2)输出的滤波后光谱和相应的脉冲能量; (b) 由9.5 cm的DSF输出的滤波后光谱和相应的脉冲能量

    Figure 3.  Filtered leftmost/rightmost spectral lobes and the corresponding pulse energy: (a) Filtered spectrum and the corresponding pulse energy from 4.3 cm HNLF (NL-1050-ZERO-2); (b) filtered spectrum and the corresponding pulse energy from 9.5 cm DSF.

    图 4  双波长泵浦SESS光源驱动的多光子显微镜的倍频及荧光成像结果 (a) 土豆块茎的SHG/THG图像; (b) 人类胃部活检组织SHG图像; (c) 人类胃部H&E染色切片SHG/THG图像; (d) 人类神经细胞TPEF图像. 白色箭头: 胶原纤维束; 黄色箭头: 胶原纤维. 比例尺: 50 μm

    Figure 4.  Harmonic generation and fluorescence imaging based on multiphoton microscope driven by dual-color laser enabled SESS source: (a) SHG/THG image of potato tuber; (b) SHG image of human gastric biopsy tissue; (c) SHG/THG image of a H&E-stained section of human gastric tissue; (d) TPEF image of a human neuron. White arrows: collagen bundles; yellow arrows: collagen fibers. Scale bar: 50 μm.

    图 5  不同类型胃黏膜的双光子成像结果和相应的H&E染色图像 (a) 正常胃黏膜的TPEF图像; (b) 胃癌的TPEF图像; (c) 萎缩性胃炎的TPEF图像; (d) 正常胃黏膜的H&E染色图像; (e) 胃癌的H&E染色图像; (f) 萎缩性胃炎的H&E染色图像. 红色箭头: 正常胃黏膜上皮细胞核; 橙色箭头: 炎症细胞; 蓝色箭头: 癌变胃黏膜上皮细胞核; 绿色箭头: 杯状细胞核. 比例尺: 30 μm

    Figure 5.  TPEF images and corresponding H&E-stained images of different gastric mucosa: (a) TPEF image of normal gastric mucosa; (b) TPEF image of gastric carcinoma, (c) TPEF image of atrophic gastritis; (d) H&E-stained image of normal gastric mucosa; (e) H&E-stained image of gastric carcinoma; (f) H&E-stained image of atrophic gastritis. Red arrows: normal gastric epithelial cell nuclei, orange arrows: inflammatory cells; blue arrows: cancerous gastric epithelial cell nuclei; green arrows: goblet cell nuclei. Scale bar: 30 μm.

    图 6  肠腺癌组织的多模态成像结果 (a) TPEF图像; (b) TrPEF图像; (c) SHG图像; (d) THG图像; (e) TPEF/SHG/TrPEF/THG叠加图像; (f) 相应的H&E图像. 白色箭头: 肠腺; 红色箭头: 炎症细胞; 蓝色箭头: 杯状细胞分泌的黏液; 白色虚线: 癌变区域. 比例尺: 100 μm

    Figure 6.  Multimodal imaging of intestinal adenocarcinoma tissue: (a) TPEF image; (b) TrPEF image; (c) SHG image; (d) THG image; (e) merging of TPEF/SHG/TrPEF/THG images; (f) corresponding H&E-stained image. White arrow: intestinal glands; red arrow: inflammatory cells; blue arrow: mucus secreted by goblet cells; white dotted line: cancerous area. Scale bar: 100 μm.

    图 7  肝细胞癌组织的多模态成像结果 (a) TPEF图像; (b) TrPEF图像; (c) SHG图像; (d) THG图像; (e) TPEF/SHG/TrPEF/THG叠加图像; (f) 相应的H&E图像. 白色箭头: 肝血窦; 蓝色箭头: 巨噬细胞; 紫色箭头: 小叶间静脉; 红色箭头: 结缔组织; 白色虚线: 肝索; 蓝色虚线: 正常肝小叶; 红色虚线: 癌变区域. 比例尺: 100 μm

    Figure 7.  Multimodal imaging of hepatocellular carcinoma tissue: (a) TPEF image; (b) TrPEF image; (c) SHG image; (d) THG image; (e) merging of TPEF/SHG/TrPEF/THG images; (f) corresponding H&E-stained image. White arrow: hepatic sinusoid; blue arrow: macrophage; purple arrow: interlobular vein; red arrow: connective tissue; white dotted line: hepatic cords; blue dotted line: normal hepatic lobule; red dotted line: cancerous area. Scale bar: 100 μm.

    Baidu
  • [1]

    Adur J, Carvalho H F, Cesar C L, Casco V H 2014 Cancer Inf. 13 67

    [2]

    Perry S W, Burke R M, Brown E B 2012 Ann. Biomed. Eng. 40 277Google Scholar

    [3]

    You S, Tu H, Chaney E J, Sun Y, Zhao Y, Bower A J, Liu Y, Marjanovic M, Sinha S, Pu Y, Boppart S A 2018 Nat. Commun. 9 2125Google Scholar

    [4]

    Huang S H, Heikal A A, Webb W W 2002 Biophys. J. 82 2811Google Scholar

    [5]

    Zipfel W R, Williams R M, Christie R, Nikitin A Y, Hyman B T, Webb W W 2003 Proc. Natl. Acad. Sci. U. S. A. 100 7075Google Scholar

    [6]

    Chu S, Chen I, Liu T, Cheng P, Sun C, Lin B 2001 Opt. Lett. 26 1909Google Scholar

    [7]

    H. Zhang, Y. Chen, D. Cao, Y. Wang, Y. Zhang, J. Zhao 2021 Biomed. Opt. Express 12 1308Google Scholar

    [8]

    Sordillo L A, Pu Y, Pratavieira S, Budansky Y, Alfano R R 2014 J. Biomed. Opt. 19 056004Google Scholar

    [9]

    Shi L, Sordillo L A, Rodríguez-Contreras A, Alfano R 2016 J. Biophotonics 9 38

    [10]

    Wang K, Horton N G, Charan K, Mirocha J D, Gaeta A L 2013 IEEE J. Sel. Top. Quantum Electron. 20 50

    [11]

    Ouzounov D G, Wang T, Wang M, Feng D D, Horton N G, Cruz-Hernández J C, Cheng Y-T, Reimer J, Tolias A S, Nishimura N, Xu C 2017 Nat. Methods 14 388

    [12]

    Horton N G, Wang K, Kobat D, Clark C G, Wise F W, Schaffer C B, Xu C 2013 Nat. Photonics 7 205Google Scholar

    [13]

    Buttolph M L, Mejooli M A, Sidorenko P, Eom C-Y, Schaffer C B, Wise F W 2022 Opt. Lett. 47 545

    [14]

    Travers J 2010 J. Opt. 12 113001Google Scholar

    [15]

    Liu Y, Tu H, Benalcazar W A, Boppart S A 2011 IEEE J. Sel. Top. Quantum Electron. 18 1209

    [16]

    Tu H, Liu Y, Turchinovich D, Marjanovic M, Lyngsø J K, Lægsgaard J, Chaney E J, Zhao Y, You S, Wilson W L, Xu B, Dantus M, Boppart S A 2016 Nat. Photonics 10 534Google Scholar

    [17]

    Dudley J M, Genty G, Coen S 2006 Rev. Mod. Phys. 78 1135Google Scholar

    [18]

    Birks T, Wadsworth W, Russell P S J 2000 Opt. Lett. 25 1415Google Scholar

    [19]

    Liu W, Li C, Zhang Z, Kärtner F X, Chang G Q 2016 Opt. Express 24 15328Google Scholar

    [20]

    Liu W, Chia S H, Chung H Y, Greinert R, Kärtner F X, Chang G Q 2017 Opt. Express 25 6822Google Scholar

    [21]

    Chung H Y, Liu W, Cao Q, Greinert R, Kärtner F X, Chang G Q 2019 IEEE J. Sel. Top. Quantum Electron. 25 6800708

    [22]

    Chung H Y, Greinert R, Kärtner F X, Chang G Q 2019 Biomed. Opt. Express 10 514Google Scholar

    [23]

    Boppart S A, You S, Li L H, Chen J, Tu H 2019 APL Photonics 4 100901Google Scholar

  • [1] JIA Xueqi, DIAO Xincai, CHANG Guoqing. High-power 2-5 μm mid-infrared ultrafast laser based on dual-wavelength femtosecond light source. Acta Physica Sinica, doi: 10.7498/aps.74.20250348
    [2] Liao Ke-Liang, He Qi-Li, Song Yang, Li Rong-Gang, Song Mao-Hua, Li Pan-Yun, Zhao Hai-Feng, Liu Peng, Zhu Pei-Ping. Development of a transmission X-ray nanometer-resolution microscope based on laboratory light source. Acta Physica Sinica, doi: 10.7498/aps.73.20240727
    [3] Wang Jian-Hai, Qian Jian-Qiang, Dou Zhi-Peng, Lin Rui, Xu Ze-Yu, Cheng Peng, Wang Cheng, Li Lei, Li Ying-Zi. Wavelet transform based method of measuring multi-frequency electrostatic force microscopy dynamic process. Acta Physica Sinica, doi: 10.7498/aps.71.20212095
    [4] Wang Xiao-Ying, Xing Yu-Ting, Chen Run-Zhi, Jia Xue-Qi, Wu Ji-Hua, Jiang Jin, Li Lian-Yong, Chang Guo-Qing. Simultaneous label-free autofluorescence-multiharmonic microscopy driven by femtosecond sources based on self-phase modulation enabled spectral selection. Acta Physica Sinica, doi: 10.7498/aps.71.20212282
    [5] Peng Wan-Jing, Liu Peng. Continuously spacing-tunable dual-wavelength erbium-doped fiber laser based on polarization-dependent in-line multimode-single-mode-multimode fiber filter. Acta Physica Sinica, doi: 10.7498/aps.68.20190297
    [6] Lü Zhi-Guo, Yang Zhi, Li Feng, Li Qiang-Long, Wang Yi-Shan, Yang Xiao-Jun. Generation of multi-wavelength femtosecond laser pulse based on nonlinear propagation of high peak power ultrashort laser pulse in single-mode fiber and spectral selectivity technology. Acta Physica Sinica, doi: 10.7498/aps.67.20181026
    [7] Zhu Qi-Guang, Dong Xin-Yu, Wang Chun-Fang, Wang Ning, Chen Wei-Dong. Tunable filtering properties of the ployphyly photonic crystal with double local states. Acta Physica Sinica, doi: 10.7498/aps.64.034209
    [8] Li Zheng-Hua, Li Xiang. Dynamic magnetic imaging by alternating force magnetic force mmicroscopy. Acta Physica Sinica, doi: 10.7498/aps.63.178503
    [9] Xue Hui, Ma Zong-Min, Shi Yun-Bo, Tang Jun, Xue Chen-Yang, Liu Jun, Li Yan-Jun. Magnetic exchange force microscopy using ferromagnetic resonance. Acta Physica Sinica, doi: 10.7498/aps.62.180704
    [10] Zhang Xiao-Qing, He Hao, Hu Ming-Lie, Yan Xin, Zhang Xia, Ren Xiao-Min, Wang Qing-Yue. Optical SHG properties of GaAs nanowires irradiated with multi-wavelength femto-second laser pulses. Acta Physica Sinica, doi: 10.7498/aps.62.076102
    [11] Wang Hua-Ying, Zhang Zhi-Hui, Liao Wei, Song Xiu-Fa, Guo Zhong-Jia, Liu Fei-Fei. Focal depth of digital lensless Fourier transform micro-holographic system. Acta Physica Sinica, doi: 10.7498/aps.61.044208
    [12] Guo Wen-Gang, Hu Hao-Feng, Wang Pan, Wang Xiao-Lei, Zhai Hong-Chen. Time-resolved optical diagnosis of intense femtosecond laser ablation of silica glass. Acta Physica Sinica, doi: 10.7498/aps.60.017901
    [13] Liu Hua-Gang, Hu Ming-Lie, Liu Bo-Wen, Song You-Jian, Chai Lu, Wang Qing-Yue. Study on the high-power, high-repetition-rate and multi-wavelength femtosecond laser system. Acta Physica Sinica, doi: 10.7498/aps.59.3979
    [14] Deng Li, Liao Rui, Liu Ye-Xin, Shou Qian, Wen Jin-Hui, Lin Wei-Zhu. Diagnostics and compression of sub-10 femtosecond laser pulses. Acta Physica Sinica, doi: 10.7498/aps.52.1938
    [15] Wang Qian, Xu Jin-Qiang, Wu Jin, Li Yong-Gui. The imaging of chemical samples with a scanning near-field infrared microscope. Acta Physica Sinica, doi: 10.7498/aps.52.298
    [16] TANG ZHI-LIE, LIANG RUI-SHENG, CHANG HONG-SEN. THE IMAGING THEORY OF TWO-PHOTON AND MULTI-PHOTON CONFOCAL SCANNING MICROSCOPY. Acta Physica Sinica, doi: 10.7498/aps.49.1076
    [17] CHEN GUAN-YING, LI SHU-ZHONG. ANALYSIS OF IMAGE-FORMING MECHANISM FOR A NOVEL STEREO PSEUDO COLOR MICROSCOPE. Acta Physica Sinica, doi: 10.7498/aps.48.23
    [18] LI LONG, LI FANG-HUA, YANG DA-YU, TIAN LING-HUA, LIN ZHEN-JIN. ELECTRON DIFFRACTION AND HIGH RESOLUTION MICRO-SCOPY STUDY ON INCOMMENSURATE MODULATED STRUCTURE IN Ce1+εFe4B4 ALLOY. Acta Physica Sinica, doi: 10.7498/aps.39.788
    [19] LI FANG-HUA, FAN HAN-JIE, YANG DA-YU, FU PING-QIU, KONG YOU-HUA. ELECTRON MICROSCOPY OF HUANGHOITE. Acta Physica Sinica, doi: 10.7498/aps.31.571
    [20] ZHANG SHU-YI, YU CHAO, MIAO YONG-ZHI, TANG ZHENG-YAN, GAO DUN-TANG. SCANNING PHOTOACOUSTIC MICROSCOPY. Acta Physica Sinica, doi: 10.7498/aps.31.704
Metrics
  • Abstract views:  410
  • PDF Downloads:  9
  • Cited By: 0
Publishing process
  • Received Date:  08 August 2025
  • Accepted Date:  22 September 2025
  • Available Online:  30 September 2025
  • /

    返回文章
    返回
    Baidu
    map