Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Progress and Data Assessment of Shear Viscosity at Extremes for Warm and Hot Dense Matters

CHENG Yuqing LIU Haifeng LI Qiong WANG Shuaichuang WANG Lifang FANG Jun GAO Xingyu SUN Bo SONG Haifeng WANG Jianguo

Citation:

Progress and Data Assessment of Shear Viscosity at Extremes for Warm and Hot Dense Matters

CHENG Yuqing, LIU Haifeng, LI Qiong, WANG Shuaichuang, WANG Lifang, FANG Jun, GAO Xingyu, SUN Bo, SONG Haifeng, WANG Jianguo
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • The viscosity of matter under extreme conditions, i.e., warm dense matter (WDM) and hot dense matter (HDM), has significant applications in various areas, such as the design of inertial confinement fusion targets, the study of astrophysical structure evolution, and the investigation of interfacial instability and mixing development under extreme conditions. Since the temperature and pressure range accessible by experimental techniques for viscosity measurement is very limited, the acquisition of viscosity data under extreme conditions mainly relies on theoretical calculations. This work introduces a variety of molecular dynamics (MD) methods and models for calculating the viscosity of WDM and HDM, including quantum MD (QMD), orbital-free MD (OFMD), average atom model combined with hypernetted chain (AAHNC), effective potential theory combined with average atom model (EPT+AA), hybrid kinetics MD (KMD), integrated Yukawa viscosity model (IYVM), Stanton-Murillo transport model (SMT), pseudoion in jellium (PIJ), one-component plasma model (OCP), and random-walk shielding-potential viscosity model (RWSP-VM). Simultaneously, the viscosity of a variety of elements obtained by these methods are shown, ranging from low to high atomic number (Z), i.e., H, C, Al, Fe, Ge, W, U. The accuracy and the applicability of each method are detailed analyzed by comparison. RWSP-VM, which is based on physical modeling and independent of MD data, has comparable accuracy to simulation data over a wide range of temperature and pressure, and is an effcient method for obtaining viscosity data of WDM and HDM. This work will pave the way to the calculation of shear viscosity at extremes, and may play an important role in promoting the relevant applications. The data calculated from RWSP-VM in this work are openly available at https://www.scidb.cn/s/ZrERJf.
  • [1]

    Dornheim T, Groth S, Bonitz M 2018 Phys. Rep. 744 1

    [2]

    Karasiev V V, Sjostrom T, Chakraborty D, Dufty J W, Runge K, Harris F E, Trickey S B 2014 In Graziani F, Desjarlais M P, Redmer R, Trickey S B, editors, Frontiers and Challenges in Warm Dense Matter (Cham: Springer International Publishing), pp 61–85

    [3]

    Graziani F R, Bauer J D, Murillo M S 2014 Phys. Rev. E 90 033104

    [4]

    Regan S, Goncharov V, Sangster T, Campbell E, Betti R, Bates J, Bauer K, Bernat T, Bhandarkar S, Boehly T, Bonino M, Bose A, Cao D, Carlson L, Chapman R, Chapman T, Collins G, Collins T, Craxton R, Delettrez J, Edgell D, Epstein R, Farrell M, Forrest C, Follett R, Frenje J, Froula D, Johnson M G, Gibson C, Gonzalez L, Goyon C, Glebov V, Gopalaswamy V, Greenwood A, Harding D, Hohenberger M, Hu S, Huang H, Hund J, Igumenshchev I, Jacobs-Perkins D, Janezic R, Karasik M, Kelly J, Kessler T, Knauer J, Kosc T, Luo R, Loucks S, Marozas J, Marshall F, Mauldin M, McCrory R, Mckenty P, Michel D, Michel P, Moody J, Myatt J, Nikroo A, Nilson P, Obenschain S, Palastro J, Peebles J, Petrasso R, Petta N, Radha P, Ralph J, Rosenberg M, Sampat S, Schmitt A, Schmitt M, Schoff M, Seka W, Shah R, Rygg J, Shaw J, Short R, Shmayda W, Shoup M, Shvydky A, Solodov A, Sorce C, Stadermann M, Stoeckl C, Sweet W, Taylor C, Taylor R, Theobald W, Turnbull D, Ulreich J, Wittman M, Woo K, Youngblood K, Zuegel J 2018 Nucl. Fusion 59 032007

    [5]

    Bruno D, Catalfamo C, Capitelli M, Colonna G, De Pascale O, Diomede P, Gorse C, Laricchiuta A, Longo S, Giordano D, Pirani F 2010 Phys. Plasmas 17 112315

    [6]

    Yin J W, Pan H, Wu Z H, Hao P C, Duan Z P, Hu X M 2017 Acta Phys. Sin. 66 204701. (in chinese) [殷建伟, 潘昊, 吴子辉, 郝鹏程, 段卓平, 胡晓棉 2017 66 204701]

    [7]

    Allen M P, Tildesley D J 1989 Computer Simulation of Liquids (Oxford: Clarendon Press)

    [8]

    Alfè D, Gillan M J 1998 Phys. Rev. Lett. 81 5161

    [9]

    Wang S, Liu H 2017 In Gervasi O, Murgante B, Misra S, Borruso G, Torre C M, Rocha A M A, Taniar D, Apduhan B O, Stankova E, Cuzzocrea A, editors, Computational Science and Its Applications – ICCSA 2017 (Cham: Springer International Publishing), pp 787–795

    [10]

    Wang S, Zhang G, Sun B, Song H, Tian M, Fang J, Liu H 2019 Chin. J. Comput. Phys. 36 253

    [11]

    Wang C, Long Y, Tian M F, He X T, Zhang P 2013 Phys. Rev. E 87 043105

    [12]

    Wang C, Wang Z B, Chen Q F, Zhang P 2014 Phys. Rev. E 89 023101

    [13]

    Li D, Wang C, Kang W, Yan J, Zhang P 2015 Phys. Rev. E 92 043108

    [14]

    Li Z G, Zhang W, Fu Z J, Dai J Y, Chen Q F, Chen X R 2017 Phys. Plasmas 24 052903

    [15]

    Wang Z Q, Tang J, Hou Y, Chen Q F, Chen X R, Dai J Y, Meng X J, Gu Y J, Liu L, Li G J, Lan Y S, Li Z G 2020 Phys. Rev. E 101 023302

    [16]

    Cheng Y, Wang H, Wang S, Gao X, Li Q, Fang J, Song H, Chu W, Zhang G, Song H, Liu H 2021 AIP Adv. 11 015043

    [17]

    Hou Y, Bredow R, Yuan J, Redmer R 2015 Phys. Rev. E 91 033114

    [18]

    Hou Y, Jin F, Yuan J 2006 Phys. Plasmas 13 093301

    [19]

    Hou Y, Jin F, Yuan J 2007 J. Phys.: Condens. Matter 19 425204

    [20]

    van Leeuwen J, Groeneveld J, de Boer J 1959 Physica (Amsterdam) 25 792

    [21]

    De Boer J, Van Leeuwen J, Groeneveld J 1964 Physica (Amsterdam) 30 2265

    [22]

    Wünsch K, Hilse P, Schlanges M, Gericke D O 2008 Phys. Rev. E 77 056404

    [23]

    Lambert F, Clérouin J, Zérah G 2006 Phys. Rev. E 73 016403

    [24]

    Blanchet A, Torrent M, Clérouin J 2020 Phys. Plasmas 27 122706

    [25]

    Lambert F, Clérouin J, Mazevet S, Gilles D 2007 Contrib. Plasma Phys. 47 272

    [26]

    Brack M, Bhaduri R K 2003 Semiclassical Physics (Boulder: Westview Press)

    [27]

    Daligault J, Baalrud S D, Starrett C E, Saumon D, Sjostrom T 2016 Phys. Rev. Lett. 116 075002

    [28]

    Starrett C E, Saumon D 2013 Phys. Rev. E 87 013104

    [29]

    Starrett C E, Saumon D, Daligault J, Hamel S 2014 Phys. Rev. E 90 033110

    [30]

    Baalrud S D, Daligault J 2013 Phys. Rev. Lett. 110 235001

    [31]

    Baalrud S D, Daligault J 2015 Phys. Rev. E 91 063107

    [32]

    Haxhimali T, Rudd R E, Cabot W H, Graziani F R 2015 Phys. Rev. E 92 053110

    [33]

    Chapman S, Cowling T G 1970 The Mathematical Theory of Non-Uniform Gases (Cambridge, England: Cambridge University Press)

    [34]

    Murillo M S 2008 High Energy Density Phys. 4 49

    [35]

    Johnson Z A, Silvestri L G, Petrov G M, Stanton L G, Murillo M S 2024 Phys. Plasmas 31 082701

    [36]

    Stanton L G, Murillo M S 2016 Phys. Rev. E 93 043203

    [37]

    Arnault P 2013 High Energy Density Phys. 9 711

    [38]

    Daligault J, Rasmussen K O, Baalrud S D 2014 Phys. Rev. E 90 033105

    [39]

    Cheng Y, Liu H, Hou Y, Meng X, Li Q, Liu Y, Gao X, Yuan J, Song H, Wang J 2022 Phys. Rev. E 106 014142

    [40]

    Cheng Y, Gao X, Li Q, Liu Y, Song H, Liu H 2023 arXiv e-prints arXiv:2305.16551

    [41]

    Thomas L H 1927 Math. Proc. Cambridge Philos. Soc. 23 542âffff548

    [42]

    More R M 1985 Adv. At. Mol. Phys. 21 305

    [43]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [44]

    Danel J F, Kazandjian L, Zérah G 2012 Phys. Rev. E 85 066701

    [45]

    Gordon R G, Kim Y S 1972 J. Chem. Phys. 56 3122

    [46]

    Kim Y S, Gordon R G 1974 Phys. Rev. B 9 3548

    [47]

    Hou Y, Fu Y, Bredow R, Kang D, Redmer R, Yuan J 2017 High Energy Density Phys. 22 21

    [48]

    Hou Y, Jin Y, Zhang P, Kang D, Gao C, Redmer R, Yuan J 2021 Matter Radiat. Extrem. 6 026901

    [49]

    Ornstein L, Zernike F 1914 Proc. K. Ned. Akad. Wet. 17 793

    [50]

    Rosenfeld Y 1986 J. Stat. Phys. 42 437

    [51]

    Decoster A, Raviart P A, Markowich P A, Perthame B 1998 Modeling of Collisions (Paris: Gauthier-Villars)

    [52]

    Bastea S 2005 Phys. Rev. E 71 056405

    [53]

    Baus M, Hansen J P 1980 Phys. Rep. 59 1

    [54]

    Grabowski P, Hansen S, Murillo M, Stanton L, Graziani F, Zylstra A, Baalrud S, Arnault P, Baczewski A, Benedict L, Blancard C, ÄffertÃk O, Clérouin J, Collins L, Copeland S, Correa A, Dai J, Daligault J, Desjarlais M, Dharma-wardana M, Faussurier G, Haack J, Haxhimali T, Hayes-Sterbenz A, Hou Y, Hu S, Jensen D, Jungman G, Kagan G, Kang D, Kress J, Ma Q, Marciante M, Meyer E, Rudd R, Saumon D, Shulenburger L, Singleton R, Sjostrom T, Stanek L, Starrett C, Ticknor C, Valaitis S, Venzke J, White A 2020 High Energy Density Phys. 37 100905

    [55]

    Sun H, Kang D, Hou Y, Dai J 2017 Matter Radiat. Extrem. 2 287

    [56]

    Clérouin J, Arnault P, Ticknor C, Kress J D, Collins L A 2016 Phys. Rev. Lett. 116 115003

    [57]

    Kress J, Cohen J S, Kilcrease D, Horner D, Collins L 2011 High Energy Density Phys. 7 155

  • [1] YANG Huan, ZHENG Yujun. Geometric phase in molecular dynamics. Acta Physica Sinica, doi: 10.7498/aps.74.20250388
    [2] LI Zhishuo, CAO Xinrui, WU Shunqing, WU Jianyang, WEN Yuhua, ZHU Zizhong. First-principles study of mechanical properties of Janus monolayer MoSSe under uniaxial tensile strains at different chiral angles. Acta Physica Sinica, doi: 10.7498/aps.74.20250437
    [3] Chen Bei, Wang Xiao-Yun, Liu Tao, Gao Ming, Wen Da-Dong, Deng Yong-He, Peng Ping. Symmetry and order of kinetic heterogeneity in Pd-Si amorphous alloys. Acta Physica Sinica, doi: 10.7498/aps.73.20241051
    [4] Bai Pu, Wang Deng-Jia, Liu Yan-Feng. Molecular dynamics study on effect of wettability on boiling heat transfer of thin liquid films. Acta Physica Sinica, doi: 10.7498/aps.73.20232026
    [5] Hu Ting-He, Li Zhi-Hao, Zhang Qian-Fan. First principles and molecular dynamics simulations of effect of dopants on properties of high strength steel for hydrogen storage vessels. Acta Physica Sinica, doi: 10.7498/aps.73.20231735
    [6] Zhang Qi-Lin, Wang Rui-Feng, Zhou Tong, Wang Yun-Jie, Liu Qi. Molecular dynamics simulation of infrared absorption spectra of one-dimensional ordered single-file water. Acta Physica Sinica, doi: 10.7498/aps.72.20222031
    [7] Lu Xin, Xie Meng-Lin, Liu Jing, Jin Wei, Li Chun, Georgios Lefkidis, Wolfgang Hübner. First-principles study of ultrafast spin dynamics in FemB20 (m = 1, 2) clusters. Acta Physica Sinica, doi: 10.7498/aps.70.20210056
    [8] Chen Yu-Jiang, Jiang Wu-Gui, Lin Yan-Wen, Zheng Pan. A novel triple-walled carbon nanotube screwing oscillator: a molecular dynamics simulation. Acta Physica Sinica, doi: 10.7498/aps.69.20200821
    [9] Huang Bing-Quan, Zhou Tie-Ge, Wu Dao-Xiong, Zhang Zhao-Fu, Li Bai-Kui. Properties of vacancies and N-doping in monolayer g-ZnO: First-principles calculation and molecular orbital theory analysis. Acta Physica Sinica, doi: 10.7498/aps.68.20191258
    [10] Fan Hang, He Guan-Song, Yang Zhi-Jian, Nie Fu-De, Chen Peng-Wan. Theoretical study of interface thermodynamic properties of 1,3,5-triamino-2,4,6-trinitrobenzene based polymer bonded explosives. Acta Physica Sinica, doi: 10.7498/aps.68.20190075
    [11] Deng Yong-He, Wen Da-Dong, Peng Chao, Wei Yan-Ding, Zhao Rui, Peng Ping. Heredity of icosahedrons: a kinetic parameter related to glass-forming abilities of rapidly solidified Cu56Zr44 alloys. Acta Physica Sinica, doi: 10.7498/aps.65.066401
    [12] Lu Tao, Wang Jin, Fu Xu, Xu Biao, Ye Fei-Hong, Mao Jin-Bin, Lu Yun-Qing, Xu Ji. Theoretical calculation of the birefringence of poly-methyl methacrylate by using the density functional theory and molecular dynamics method. Acta Physica Sinica, doi: 10.7498/aps.65.210301
    [13] Luo Ming-Hai, Li Ming-Kai, Zhu Jia-Kun, Huang Zhong-Bing, Yang Hui, He Yun-Bin. First-principles study on thermodynamic properties of CdxZn1-xO alloys. Acta Physica Sinica, doi: 10.7498/aps.65.157303
    [14] Chen Ji, Feng Ye-Xin, Li Xin-Zheng, Wang En-Ge. A fully quantum description of the free-energy in high pressure hydrogen. Acta Physica Sinica, doi: 10.7498/aps.64.183101
    [15] Tang Cui-Ming, Zhao Feng, Chen Xiao-Xu, Chen Hua-Jun, Cheng Xin-Lu. Thermite reaction of Al and α-Fe2O3 at the nanometer interface:ab initio molecular dynamics study. Acta Physica Sinica, doi: 10.7498/aps.62.247101
    [16] Zhou Hua-Guang, Lin Xin, Wang Meng, Huang Wei-Dong. Calculation of crystal-melt interfacial free energy of Cu by molecular dynamics simulation. Acta Physica Sinica, doi: 10.7498/aps.62.056803
    [17] Li Xue-Mei, Han Hui-Lei, He Guang-Pu. Lattice dynamical, dielectric and thermodynamic properties of LiNH2 from first principles. Acta Physica Sinica, doi: 10.7498/aps.60.087104
    [18] Xin Xiao-Gui, Chen Xiang, Zhou Jing-Jing, Shi Si-Qi. A first principles study of the lattice dynamics property of LiFePO4. Acta Physica Sinica, doi: 10.7498/aps.60.028201
    [19] He Jie, Chen Jun, Wang Xiao-Zhong, Lin Li-Bin. The first principles study on mechanical propertiesof He doped grain boundary of Al. Acta Physica Sinica, doi: 10.7498/aps.60.077104
    [20] Li Pei-Juan, Zhou Wei-Wei, Tang Yuan-Hao, Zhang Hua, Shi Si-Qi. Electronic structure,optical and lattice dynamical properties of CeO2:A first-principles study. Acta Physica Sinica, doi: 10.7498/aps.59.3426
Metrics
  • Abstract views:  72
  • PDF Downloads:  1
  • Cited By: 0
Publishing process
  • Available Online:  11 October 2025
  • /

    返回文章
    返回
    Baidu
    map