Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research progress and data assessment of material viscosity under extreme conditions of warm and hot dense matters

CHENG Yuqing LIU Haifeng LI Qiong WANG Shuaichuang WANG Lifang FANG Jun GAO Xingyu SUN Bo SONG Haifeng WANG Jianguo

Citation:

Research progress and data assessment of material viscosity under extreme conditions of warm and hot dense matters

CHENG Yuqing, LIU Haifeng, LI Qiong, WANG Shuaichuang, WANG Lifang, FANG Jun, GAO Xingyu, SUN Bo, SONG Haifeng, WANG Jianguo
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The viscosities of matters under extreme conditions, i.e. warm dense matter (WDM) and hot dense matter (HDM), have significant applications in various fields, such as the design of inertial confinement fusion targets, the astrophysical structure evolution, and the interfacial instability and mixing development under extreme conditions. Since the temperature and pressure ranges accessible by experimental techniques for viscosity measurement are very limited, the acquisition of viscosity data under extreme conditions mainly relies on theoretical calculations. This work introduces a variety of molecular dynamics (MD) methods and models for calculating the viscosities of WDM and HDM, they being quantum MD (QMD), orbital-free MD (OFMD), average atom model combined with hypernetted chain (AAHNC), effective potential theory combined with average atom model (EPT+AA), hybrid kinetics MD (KMD), integrated Yukawa viscosity model (IYVM), Stanton-Murillo transport model (SMT), pseudo-ion in jellium (PIJ), one-component plasma model (OCP), and random-walk shielding-potential viscosity model (RWSP-VM). Simultaneously, the viscosities of various elements obtained by these methods are shown, ranging from low to high atomic number (Z), i.e., H, C, Al, Fe, Ge, W, and U. The accuracy and the applicability of each method are analyzed in detail by comparison. RWSP-VM, which is based on physical modeling and independent of MD data, has comparable accuracy to simulation data over a wide range of temperature and pressure, and is an efficient method of obtaining viscosity data of WDM and HDM. This work will pave the way for calculating the shear viscosities under extreme conditions, and may play an important role in promoting the relevant applications. The data calculated from RWSP-VM in this work are openly available at https://doi.org/10.57760/sciencedb.j00213.00180.
  • 图 1  H的粘性. (a)—(d) 密度分别为0.1, 1, 10, 100 g/cm3. 黑色实线, 红色虚线, 蓝色点线和, 绿色虚点线和青色点点线分别为模型RWSP-VM, SMT, OCP, IYVM和PIJ的由公式计算的结果. 黑色十字, 红色星号, 蓝色方块和绿色圆圈分别为AAHNC, KMD, EPT+AA和OFMD的计算结果, 数据来源文献[54]

    Figure 1.  Shear viscosity of H. (a)–(d) stand for the densities of 0.1, 1, 10, 100 g/cm3, respectively. Black solid, red dashed, blue dotted, and green dash-dot curves stand for the results of RWSP-VM, SMT, OCP, IYVM, and PIJ respectively. Black crosses, red stars, blue squares, and green diamonds stand for the results of AAHNC, KMD, EPT+AA, and OFMD, respectively, which are from Ref.[54].

    图 2  C的粘性. (a)—(d) 密度分别为0.1, 1, 10, 100 g/cm3. 图例与图 1的一致. AAHNC, KMD, EPT+AA和OFMD的数据来源文献[54]

    Figure 2.  Shear viscosity of H. (a)–(d) stand for the densities of 0.1, 1, 10, 100 g/cm3, respectively. The legends are the same as Fig. 1. The results of AAHNC, KMD, EPT+AA, and OFMD are from Ref.[54].

    图 3  Al的粘性. (a)—(d) 密度分别为0.27, 2.7, 8.1, 27 g/cm3. 黑色实线, 红色虚线, 蓝色点线, 绿色虚点线和青色虚点点线分别为模型RWSP-VM, SMT, OCP, IYVM和PIJ的由公式计算的结果. 黑色十字为AAHNC (CMD)的计算结果, 数据来源文献[47]

    Figure 3.  Shear viscosity of Al. (a)–(d) stand for the densities of 0.27, 2.7, 8.1, and 27 g/cm3, respectively. Black solid, red dashed, blue dotted, green dash-dot, and cyan dash-dot-dot curves stand for the results of RWSP-VM, SMT, OCP, IYVM, and PIJ, respectively. Black crosses stand for the results of AAHNC (CMD), which are from Ref.[47].

    图 4  Fe的粘性. (a)—(f) 密度分别为1.6, 4.0, 7.9, 16, 32, 40 g/cm3. 曲线图例与图 3的一致, 除了橙色实线代表EPT+AA[27]. 红色圆圈, 蓝色方块和黑色十字分别为OFMD1[55], OFMD2[27]和AAHNC (CMD)[39]的计算结果

    Figure 4.  Shear viscosity of Fe. (a)–(f) stand for the densities of 1.6, 4.0, 7.9, 16, 32, and 40 g/cm3, respectively. The legends of the curves are the same as Fig. 3. Red circles, blue squares, and black crosses stand for the results of OFMD1[55], OFMD2[27], and AAHNC (CMD)[39], respectively.

    图 5  Ge的粘性. (a)—(c)密度分别为0.53, 5.3, 53 g/cm3. 曲线图例与图 3的一致. 红色十字为OFMD的计算结果[56]

    Figure 5.  Shear viscosity of Ge. (a)–(c) stand for the densities of 0.53, 5.3, and 53 g/cm3, respectively. The legends of the curves are the same as Fig. 3. Red crosses stand for the results of OFMD[56].

    图 6  W的粘性. (a)—(c) 密度分别为2.0, 40, 200 g/cm3. 图例与图5的一致, 紫色虚线表示$ \theta = 10 $对应的温度. OFMD数据来源文献[56]

    Figure 6.  Shear viscosity of W. (a)–(c) stand for the densities of 2.0, 40, and 200 g/cm3, respectively. The legends are the same as Fig. 5. The results of OFMD are from Ref.[56].

    图 7  U的粘性. (a)—(i) 密度分别为$ \rho_0 $的0.1, 1, 2, 3, 4, 5, 6, 8, 10倍, 其中$ \rho_0 = 18.93\ {\rm{g}}/{\rm{cm}}^3 $. 曲线的图例与图 3一致. 黑色圆圈, 红色十字和蓝色叉分别为OFMD[57], AAHNC (CMD)和AAHNC (LMD)[48]的计算结果. (j), (k), (l)分别为(a), (b), (f)的放大图

    Figure 7.  Shear viscosity of U. (a)–(i) stand for the densities of (0.1, 1, 2, 3, 4, 5, 6, 8, and 10)$ \rho_0 $, where $ \rho_0 = 18.93\ {\rm{g}}/{\rm{cm}}^3 $. The legends of the curves are the same as Fig. 3. Black circles, red crosses (+), and blue crosses (×) stand for the results of OFMD[57], AAHNC (CMD), and AAHNC (LMD)[48], respectively. (j), (k), (l) represent the zoom of (a), (b), (f), respectively.

    表 1  约化的碰撞积分(28)—(29)式在(2, 2)阶的拟合系数[36]

    Table 1.  Coefficients for Eqs. (28)–(29) of the reduced collision integrals at index pair of (2, 2)[36]

    $ a_1 $ $ a_2 $ $ a_3 $ $ a_4 $ $ a_5 $
    0.85401 –0.22898 –0.60059 0.80591 –0.30555
    $ b_0 $ $ b_1 $ $ b_2 $ $ b_3 $ $ b_4 $
    0.43475 –0.21147 0.11116 0.19665 0.15195
    DownLoad: CSV

    表 2  (33a)式的拟合系数[38]

    Table 2.  Coefficients for Eq. (33a)[38]

    $ a_0 $ $ a_1 $ $ a_2 $ $ a_3 $
    0.794811 0.0425698 0.00205782 7.03658×10–5
    $ b_0 $ $ b_1 $ $ b_2 $ $ b_3 $ $ b_4 $
    0.862151 0.0429942 –0.000270798 3.25441×10–6 –1.15019×10–8
    DownLoad: CSV

    表 B1  本文使用的基本物理常量以及物质的一些基本物理量

    Table B1.  Fundamental physical constants and some basic physical quantities of the materials used in this work.

    符号 物理量 表达式
    e 元电荷
    $ k_{\rm{B}} $ 玻尔兹曼常量
    $ \hbar $ 约化普朗克常量
    $ m_e $ 电子质量
    $ \varepsilon_0 $ 真空电导率
    $ a_{\rm{ws}} $ Wigner-Seitz半径 $ (4\pi n/3)^{-1/3} $
    $ E_{\rm{F}} $ 费米能量 $ \hbar^2(3 \pi^2 n_e)^{2/3}/(2 m_e) $
    m 离子质量
    n 离子数密度
    $ n_{\mathrm{e}} $ 电离的电子数密度 $ \overline{Z}n $
    $ q^2 $ 电荷平方 $ (\overline{Z}e)^2/(4 \pi \varepsilon_0) $
    T 温度
    Z 原子序数
    $ \overline{Z} $ 平均电离度
    $ \overline{Z^2} $ 电离度方均值
    Γ 耦合参数 $ q^2/(a_{\rm{ws}} k_{\rm{B}} T) $
    θ 电子简并参数 $ k_{\rm{B}} T/E_F $
    κ 屏蔽参数 $ a_{\rm{ws}}/\lambda $
    λ 屏蔽距离 根据模型需要取值
    $ \omega_{\rm{p}} $ 等离子体频率 $ \sqrt{4\pi q^2 n/m} $
    DownLoad: CSV
    Baidu
  • [1]

    Dornheim T, Groth S, Bonitz M 2018 Phys. Rep. 744 1Google Scholar

    [2]

    Karasiev V V, Sjostrom T, Chakraborty D, Dufty J W, Runge K, Harris F E, Trickey S B 2014 In Graziani F, Desjarlais M P, Redmer R, Trickey S B, editors, Frontiers and Challenges in Warm Dense Matter (Cham: Springer International Publishing), pp 61–85

    [3]

    Graziani F R, Bauer J D, Murillo M S 2014 Phys. Rev. E 90 033104Google Scholar

    [4]

    Regan S, Goncharov V, Sangster T, Campbell E, Betti R, Bates J, Bauer K, Bernat T, Bhandarkar S, Boehly T, Bonino M, Bose A, Cao D, Carlson L, Chapman R, Chapman T, Collins G, Collins T, Craxton R, Delettrez J, Edgell D, Epstein R, Farrell M, Forrest C, Follett R, Frenje J, Froula D, Johnson M G, Gibson C, Gonzalez L, Goyon C, Glebov V, Gopalaswamy V, Greenwood A, Harding D, Hohenberger M, Hu S, Huang H, Hund J, Igumenshchev I, Jacobs-Perkins D, Janezic R, Karasik M, Kelly J, Kessler T, Knauer J, Kosc T, Luo R, Loucks S, Marozas J, Marshall F, Mauldin M, McCrory R, Mckenty P, Michel D, Michel P, Moody J, Myatt J, Nikroo A, Nilson P, Obenschain S, Palastro J, Peebles J, Petrasso R, Petta N, Radha P, Ralph J, Rosenberg M, Sampat S, Schmitt A, Schmitt M, Schoff M, Seka W, Shah R, Rygg J, Shaw J, Short R, Shmayda W, Shoup M, Shvydky A, Solodov A, Sorce C, Stadermann M, Stoeckl C, Sweet W, Taylor C, Taylor R, Theobald W, Turnbull D, Ulreich J, Wittman M, Woo K, Youngblood K, Zuegel J 2018 Nucl. Fusion 59 032007

    [5]

    Bruno D, Catalfamo C, Capitelli M, Colonna G, De Pascale O, Diomede P, Gorse C, Laricchiuta A, Longo S, Giordano D, Pirani F 2010 Phys. Plasmas 17 112315Google Scholar

    [6]

    殷建伟, 潘昊, 吴子辉, 郝鹏程, 段卓平, 胡晓棉 2017 66 204701Google Scholar

    Yin J W, Pan H, Wu Z H, Hao P C, Duan Z P, Hu X M 2017 Acta Phys. Sin. 66 204701Google Scholar

    [7]

    Allen M P, Tildesley D J 1989 Computer Simulation of Liquids (Oxford: Clarendon Press

    [8]

    Alfè D, Gillan M J 1998 Phys. Rev. Lett. 81 5161Google Scholar

    [9]

    Wang S, Liu H 2017 In Gervasi O, Murgante B, Misra S, Borruso G, Torre C M, Rocha A M A, Taniar D, Apduhan B O, Stankova E, Cuzzocrea A, editors, Computational Science and Its Applications - ICCSA 2017 (Cham: Springer International Publishing), pp 787–795

    [10]

    Wang S, Zhang G, Sun B, Song H, Tian M, Fang J, Liu H 2019 Chin. J. Comput. Phys. 36 253

    [11]

    Wang C, Long Y, Tian M F, He X T, Zhang P 2013 Phys. Rev. E 87 043105Google Scholar

    [12]

    Wang C, Wang Z B, Chen Q F, Zhang P 2014 Phys. Rev. E 89 023101Google Scholar

    [13]

    Li D, Wang C, Kang W, Yan J, Zhang P 2015 Phys. Rev. E 92 043108Google Scholar

    [14]

    Li Z G, Zhang W, Fu Z J, Dai J Y, Chen Q F, Chen X R 2017 Phys. Plasmas 24 052903Google Scholar

    [15]

    Wang Z Q, Tang J, Hou Y, Chen Q F, Chen X R, Dai J Y, Meng X J, Gu Y J, Liu L, Li G J, Lan Y S, Li Z G 2020 Phys. Rev. E 101 023302Google Scholar

    [16]

    Cheng Y, Wang H, Wang S, Gao X, Li Q, Fang J, Song H, Chu W, Zhang G, Song H, Liu H 2021 AIP Adv. 11 015043Google Scholar

    [17]

    Hou Y, Bredow R, Yuan J, Redmer R 2015 Phys. Rev. E 91 033114Google Scholar

    [18]

    Hou Y, Jin F, Yuan J 2006 Phys. Plasmas 13 093301Google Scholar

    [19]

    Hou Y, Jin F, Yuan J 2007 J. Phys.: Condens. Matter 19 425204Google Scholar

    [20]

    van Leeuwen J, Groeneveld J, de Boer J 1959 Physica (Amsterdam) 25 792Google Scholar

    [21]

    De Boer J, Van Leeuwen J, Groeneveld J 1964 Physica (Amsterdam) 30 2265Google Scholar

    [22]

    Wünsch K, Hilse P, Schlanges M, Gericke D O 2008 Phys. Rev. E 77 056404Google Scholar

    [23]

    Lambert F, Clérouin J, Zérah G 2006 Phys. Rev. E 73 016403Google Scholar

    [24]

    Blanchet A, Torrent M, Clérouin J 2020 Phys. Plasmas 27 122706Google Scholar

    [25]

    Lambert F, Clérouin J, Mazevet S, Gilles D 2007 Contrib. Plasma Phys. 47 272Google Scholar

    [26]

    Brack M, Bhaduri R K 2003 Semiclassical Physics (Boulder: Westview Press

    [27]

    Daligault J, Baalrud S D, Starrett C E, Saumon D, Sjostrom T 2016 Phys. Rev. Lett. 116 075002Google Scholar

    [28]

    Starrett C E, Saumon D 2013 Phys. Rev. E 87 013104Google Scholar

    [29]

    Starrett C E, Saumon D, Daligault J, Hamel S 2014 Phys. Rev. E 90 033110Google Scholar

    [30]

    Baalrud S D, Daligault J 2013 Phys. Rev. Lett. 110 235001Google Scholar

    [31]

    Baalrud S D, Daligault J 2015 Phys. Rev. E 91 063107Google Scholar

    [32]

    Haxhimali T, Rudd R E, Cabot W H, Graziani F R 2015 Phys. Rev. E 92 053110Google Scholar

    [33]

    Chapman S, Cowling T G 1970 The Mathematical Theory of Non-Uniform Gases (Cambridge, England: Cambridge University Press

    [34]

    Murillo M S 2008 High Energy Density Phys. 4 49Google Scholar

    [35]

    Johnson Z A, Silvestri L G, Petrov G M, Stanton L G, Murillo M S 2024 Phys. Plasmas 31 082701Google Scholar

    [36]

    Stanton L G, Murillo M S 2016 Phys. Rev. E 93 043203Google Scholar

    [37]

    Arnault P 2013 High Energy Density Phys. 9 711Google Scholar

    [38]

    Daligault J, Rasmussen K O, Baalrud S D 2014 Phys. Rev. E 90 033105Google Scholar

    [39]

    Cheng Y, Liu H, Hou Y, Meng X, Li Q, Liu Y, Gao X, Yuan J, Song H, Wang J 2022 Phys. Rev. E 106 014142Google Scholar

    [40]

    Cheng Y, Gao X, Li Q, Liu Y, Song H, Liu H 2023 arXiv e-prints arXiv: 2305.16551

    [41]

    Thomas L H 1927 Math. Proc. Cambridge Philos. Soc. 23 542Google Scholar

    [42]

    More R M 1985 Adv. At. Mol. Phys. 21 305

    [43]

    Vanderbilt D 1990 Phys. Rev. B 41 7892Google Scholar

    [44]

    Danel J F, Kazandjian L, Zérah G 2012 Phys. Rev. E 85 066701Google Scholar

    [45]

    Gordon R G, Kim Y S 1972 J. Chem. Phys. 56 3122Google Scholar

    [46]

    Kim Y S, Gordon R G 1974 Phys. Rev. B 9 3548Google Scholar

    [47]

    Hou Y, Fu Y, Bredow R, Kang D, Redmer R, Yuan J 2017 High Energy Density Phys. 22 21Google Scholar

    [48]

    Hou Y, Jin Y, Zhang P, Kang D, Gao C, Redmer R, Yuan J 2021 Matter Radiat. Extrem. 6 026901Google Scholar

    [49]

    Ornstein L, Zernike F 1914 Proc. K. Ned. Akad. Wet. 17 793

    [50]

    Rosenfeld Y 1986 J. Stat. Phys. 42 437Google Scholar

    [51]

    Decoster A, Raviart P A, Markowich P A, Perthame B 1998 Modeling of Collisions (Paris: Gauthier-Villars

    [52]

    Bastea S 2005 Phys. Rev. E 71 056405Google Scholar

    [53]

    Baus M, Hansen J P 1980 Phys. Rep. 59 1Google Scholar

    [54]

    Grabowski P, Hansen S, Murillo M, Stanton L, Graziani F, Zylstra A, Baalrud S, Arnault P, Baczewski A, Benedict L, Blancard C, ÄffertÃk O, Clérouin J, Collins L, Copeland S, Correa A, Dai J, Daligault J, Desjarlais M, Dharma-wardana M, Faussurier G, Haack J, Haxhimali T, Hayes-Sterbenz A, Hou Y, Hu S, Jensen D, Jungman G, Kagan G, Kang D, Kress J, Ma Q, Marciante M, Meyer E, Rudd R, Saumon D, Shulenburger L, Singleton R, Sjostrom T, Stanek L, Starrett C, Ticknor C, Valaitis S, Venzke J, White A 2020 High Energy Density Phys. 37 100905Google Scholar

    [55]

    Sun H, Kang D, Hou Y, Dai J 2017 Matter Radiat. Extrem. 2 287Google Scholar

    [56]

    Clérouin J, Arnault P, Ticknor C, Kress J D, Collins L A 2016 Phys. Rev. Lett. 116 115003Google Scholar

    [57]

    Kress J, Cohen J S, Kilcrease D, Horner D, Collins L 2011 High Energy Density Phys. 7 155Google Scholar

  • [1] Shen Xu, Fu Tao, Wang Shiyi, Hu Hao, Weng Shayuan, Peng Xianghe. First-principles study on the mechanical response and structural evolution of chromium monoboride under complex stress states. Acta Physica Sinica, doi: 10.7498/aps.75.20251295
    [2] YANG Huan, ZHENG Yujun. Geometric phase in molecular dynamics. Acta Physica Sinica, doi: 10.7498/aps.74.20250388
    [3] LI Zhishuo, CAO Xinrui, WU Shunqing, WU Jianyang, WEN Yuhua, ZHU Zizhong. First-principles study of mechanical properties of Janus monolayer MoSSe under uniaxial tensile strains at different chiral angles. Acta Physica Sinica, doi: 10.7498/aps.74.20250437
    [4] Chen Bei, Wang Xiao-Yun, Liu Tao, Gao Ming, Wen Da-Dong, Deng Yong-He, Peng Ping. Symmetry and order of kinetic heterogeneity in Pd-Si amorphous alloys. Acta Physica Sinica, doi: 10.7498/aps.73.20241051
    [5] Bai Pu, Wang Deng-Jia, Liu Yan-Feng. Molecular dynamics study on effect of wettability on boiling heat transfer of thin liquid films. Acta Physica Sinica, doi: 10.7498/aps.73.20232026
    [6] Hu Ting-He, Li Zhi-Hao, Zhang Qian-Fan. First principles and molecular dynamics simulations of effect of dopants on properties of high strength steel for hydrogen storage vessels. Acta Physica Sinica, doi: 10.7498/aps.73.20231735
    [7] Zhang Qi-Lin, Wang Rui-Feng, Zhou Tong, Wang Yun-Jie, Liu Qi. Molecular dynamics simulation of infrared absorption spectra of one-dimensional ordered single-file water. Acta Physica Sinica, doi: 10.7498/aps.72.20222031
    [8] Lu Xin, Xie Meng-Lin, Liu Jing, Jin Wei, Li Chun, Georgios Lefkidis, Wolfgang Hübner. First-principles study of ultrafast spin dynamics in FemB20 (m = 1, 2) clusters. Acta Physica Sinica, doi: 10.7498/aps.70.20210056
    [9] Chen Yu-Jiang, Jiang Wu-Gui, Lin Yan-Wen, Zheng Pan. A novel triple-walled carbon nanotube screwing oscillator: a molecular dynamics simulation. Acta Physica Sinica, doi: 10.7498/aps.69.20200821
    [10] Huang Bing-Quan, Zhou Tie-Ge, Wu Dao-Xiong, Zhang Zhao-Fu, Li Bai-Kui. Properties of vacancies and N-doping in monolayer g-ZnO: First-principles calculation and molecular orbital theory analysis. Acta Physica Sinica, doi: 10.7498/aps.68.20191258
    [11] Fan Hang, He Guan-Song, Yang Zhi-Jian, Nie Fu-De, Chen Peng-Wan. Theoretical study of interface thermodynamic properties of 1,3,5-triamino-2,4,6-trinitrobenzene based polymer bonded explosives. Acta Physica Sinica, doi: 10.7498/aps.68.20190075
    [12] Lu Tao, Wang Jin, Fu Xu, Xu Biao, Ye Fei-Hong, Mao Jin-Bin, Lu Yun-Qing, Xu Ji. Theoretical calculation of the birefringence of poly-methyl methacrylate by using the density functional theory and molecular dynamics method. Acta Physica Sinica, doi: 10.7498/aps.65.210301
    [13] Luo Ming-Hai, Li Ming-Kai, Zhu Jia-Kun, Huang Zhong-Bing, Yang Hui, He Yun-Bin. First-principles study on thermodynamic properties of CdxZn1-xO alloys. Acta Physica Sinica, doi: 10.7498/aps.65.157303
    [14] Chen Ji, Feng Ye-Xin, Li Xin-Zheng, Wang En-Ge. A fully quantum description of the free-energy in high pressure hydrogen. Acta Physica Sinica, doi: 10.7498/aps.64.183101
    [15] Tang Cui-Ming, Zhao Feng, Chen Xiao-Xu, Chen Hua-Jun, Cheng Xin-Lu. Thermite reaction of Al and α-Fe2O3 at the nanometer interface:ab initio molecular dynamics study. Acta Physica Sinica, doi: 10.7498/aps.62.247101
    [16] Zhou Hua-Guang, Lin Xin, Wang Meng, Huang Wei-Dong. Calculation of crystal-melt interfacial free energy of Cu by molecular dynamics simulation. Acta Physica Sinica, doi: 10.7498/aps.62.056803
    [17] Li Xue-Mei, Han Hui-Lei, He Guang-Pu. Lattice dynamical, dielectric and thermodynamic properties of LiNH2 from first principles. Acta Physica Sinica, doi: 10.7498/aps.60.087104
    [18] Xin Xiao-Gui, Chen Xiang, Zhou Jing-Jing, Shi Si-Qi. A first principles study of the lattice dynamics property of LiFePO4. Acta Physica Sinica, doi: 10.7498/aps.60.028201
    [19] He Jie, Chen Jun, Wang Xiao-Zhong, Lin Li-Bin. The first principles study on mechanical propertiesof He doped grain boundary of Al. Acta Physica Sinica, doi: 10.7498/aps.60.077104
    [20] Li Pei-Juan, Zhou Wei-Wei, Tang Yuan-Hao, Zhang Hua, Shi Si-Qi. Electronic structure,optical and lattice dynamical properties of CeO2:A first-principles study. Acta Physica Sinica, doi: 10.7498/aps.59.3426
Metrics
  • Abstract views:  308
  • PDF Downloads:  6
  • Cited By: 0
Publishing process
  • Received Date:  01 July 2025
  • Accepted Date:  06 September 2025
  • Available Online:  11 October 2025
  • /

    返回文章
    返回
    Baidu
    map