Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Synergistic effect of ultrasound transdermal drug delivery based on multi-stage dynamic focal-shifting

GONG Xinyue XUE Honghui SONG Renjie GUO Yang MA Yong TU Juan

Citation:

Synergistic effect of ultrasound transdermal drug delivery based on multi-stage dynamic focal-shifting

GONG Xinyue, XUE Honghui, SONG Renjie, GUO Yang, MA Yong, TU Juan
cstr: 32037.14.aps.74.20251023
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Ultrasound-assisted transdermal drug delivery (UTDD) is a promising non-invasive strategy to overcome the skin barrier. The traditional fixed-focus ultrasound approaches encounter the problems such as limited penetration depth, localized accumulation, and risk of thermal damage. To address these challenges, we propose a phased-array based dynamic focusing strategy, in which the acoustic focus is shifted sequentially along the depth direction. This approach aims to construct a continuous longitudinal acoustic radiation pathway that can sustain particle migration into deeper skin layers. In vivo experiments are conducted with FITC-labeled nanoparticles on rat dorsal skin under three conditions: natural permeation, fixed focus (~0.5 mm beneath the skin), and dynamic focusing (scanned from the surface to 1 mm). After 10-min ultrasound, fluorescence microscopy reveals that fixed focus enhances penetration compared with natural permeation, while dynamic focusing further improves delivery, increasing average depth by 65.7%, maximum depth by 41.2%, and fluorescence intensity by 69.3%. Dynamic focusing also produces a more uniform and continuous deposition band, which is unlike the localized accumulation seen with fixed focus. To elucidate the underlying mechanisms, a two-dimensional finite element model is established in COMSOL Multiphysics. The simulation results reveal that this “multi-focus relay” effect provides a continuous driving force pathway, enabling particles to follow the shifting focal positions. Trajectory analysis confirms that the number of particles reaching deeper layers (up to 5 mm) increases by nearly 14 times under dynamic focusing compared with that in the case of fixed focus, while the width of the lateral distribution extends by 46.1%. In conclusion, both experimental and simulation results demonstrate that phased-array dynamic focusing significantly enhances penetration depth, migration efficiency, and distribution uniformity of nanoparticles in UTDD. By constructing a continuous acoustic radiation pathway in the depth dimension, this approach improves delivery efficiency while mitigating local energy accumulation, providing a safer and more effective strategy for ultrasound-mediated transdermal therapy.
      Corresponding author: TU Juan, juantu@nju.edu.cn
    • Funds: Project supported by the Jiangsu Provincial Science and Technology Plan Special Fund (Key Research and Development Program - Social Development) Project, China (Grant No. BE2023818), the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No. 020414380195), and the National Natural Science Foundation of China (Grant No. 12274220).
    [1]

    Jeong W Y, Kwon M, Choi H E, Kim K S 2021 Biomater. Res. 25 24Google Scholar

    [2]

    Gaikwad S S, Zanje A L, Somwanshi J D 2024 Int. J. Pharm. 652 123856Google Scholar

    [3]

    Wiedersberg S, Guy R H 2014 J. Controlled Release 190 150Google Scholar

    [4]

    Zhang H, Zhai Y J, Yang X Y, Zhai G X 2015 Curr. Pharm. Des. 12 2713Google Scholar

    [5]

    Prausnitz M R, Langer R 2008 Nat. Biotechnol. 26 1261Google Scholar

    [6]

    Polat B E, Deen W M, Langer R, Blankschtein D 2012 J. Controlled Release 158 250Google Scholar

    [7]

    Yu C, Shah A, Amiri N, et al. 2023 Adv. Mater. 35 2300066Google Scholar

    [8]

    Akhtar N, Singh V, Yusuf M, Khan R A 2020 Biomed. Eng.- Biomed. Tech. 65 243Google Scholar

    [9]

    Smith N B 2008 Expert Opin. Drug Deliv. 5 1107Google Scholar

    [10]

    Tian Y H, Liu Z, Tan H Y, Hou J H, Wen X, Yang F, Cheng W 2020 Int. J. Nanomed. 15 401Google Scholar

    [11]

    Sabbagh F, Muhamad I I, Niazmand R, Dikshit P K, Kim B S 2022 Int. J. Biol. Macromol. 203 222Google Scholar

    [12]

    Al-Bataineh O M, Lweesy K, Fraiwan L 2011 1st Middle East Conference on Biomedical Engineering Sharjah, United Arab Emirates, February 21–24, 2011 p316

    [13]

    Maione E, Shung K K, Meyer R J, et al. 2002 IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 49 1430Google Scholar

    [14]

    丁亚军, 钱盛友, 胡继文, 邹孝 2012 61 144301Google Scholar

    Ding Y J, Qian S Y, Hu J W, Zou X 2012 Acta Phys. Sin. 61 144301Google Scholar

    [15]

    徐丰, 陆明珠, 万明习, 方飞 2010 52 1349Google Scholar

    Xu F, Lu M Z, Wan X M, Fang F 2010 Acta Phys. Sin. 52 1349Google Scholar

    [16]

    Burgess A, Shah K, Hough O, Hynynen K 2015 Expert Rev. Neurother. 15 477Google Scholar

    [17]

    Meng Y, Hynynen K, Lipsman N 2021 Nat. Rev. Neurol. 17 7Google Scholar

    [18]

    Biskanaki F, Tertipi N, Sfyri E, Kefala V, Rallis E 2025 Appl. Sci. 15 4958Google Scholar

    [19]

    Özsoy Ç, Lafci B, Reiss M, Deán-Ben X L, Razansky D 2023 Photoacoustics 31 100508Google Scholar

    [20]

    钱骏, 谢伟, 周小伟, 谭坚文, 王智彪, 杜永洪, 李雁浩 2022 71 037201Google Scholar

    Qian J, Xi W, Zhou X W, Tan J W, Wang Z B, Du Y H, Li Y H 2022 Acta Phys. Sin. 71 037201Google Scholar

    [21]

    Zhang H J, Pan Y P, Hou Y, Li M H, Deng J, Wang B C, Hao S L 2024 Small 20 2306944Google Scholar

    [22]

    Caprifico A E, Polycarpou E, Foot P J S, Calabrese G 2020 Trends Pharmacol. Sci. 41 686Google Scholar

    [23]

    Moreno V M, Baeza A, Vallet-Regí M 2021 Acta Biomater. 121 263Google Scholar

    [24]

    Nguyen T T, Nguyen H N, Nghiem T H L, et al. 2024 Sci. Rep. 14 6969Google Scholar

    [25]

    Do Nascimento V M, Nantes Button V L D S, Maia J M, et al. 2003 Medical Imaging San Diego, United States, May 23, 2003 p86

    [26]

    Husseini G A, Pitt W G 2008 Adv. Drug Delivery Rev. 60 1137Google Scholar

    [27]

    Paris J L, Mannaris C, Cabañas M V, Carlisle R, Manzano M, Vallet-Regí M, Coussios C C 2018 Chem. Eng. J. 340 2Google Scholar

    [28]

    Gor'kov L P 1961 Dokl. Akad. Nauk SSSR 140 88

    [29]

    孙芳, 曾周末, 王晓媛, 靳世久, 詹湘琳 2011 60 094301Google Scholar

    Sun F, Zeng Z M, Jin S J, Zhan X L 2011 Acta Phys. Sin. 60 094301Google Scholar

    [30]

    Lintzeri D A, Karimian N, Blume-Peytavi U, Kottner J 2022 J. Eur. Acad. Dermatol. Venereol. 36 1191Google Scholar

  • 图 1  TDD药物吸收途径示意图

    Figure 1.  Schematic diagram of TDD drug absorption pathway

    图 2  (a) 实验操作示意图; (b) 粒子渗透示意图, 其中绿色圆球为荧光粒子

    Figure 2.  (a) Schematic diagram of experimental operation; (b) schematic diagram of particle penetration, where green spheres are fluorescent particles.

    图 3  (a) 聚焦发射的透皮给药原理示意图; (b) 有限元模型结构图

    Figure 3.  (a) Schematic diagram of transdermal drug delivery principle with focused emission; (b) finite element model structure diagram

    图 4  荧光显微镜下的组织切片 (a)自然渗透组; (b)固定焦点聚焦组; (c)动态聚焦组

    Figure 4.  Tissue sections under fluorescence microscope: (a) Natural infiltration group; (b) fixed focus group; (c) dynamic focus group in turn.

    图 5  组织切片荧光图像平均渗透深度、最大渗透深度、荧光积分强度三项指标柱状图

    Figure 5.  Histogram of three indicators: average penetration depth, maximum penetration depth and fluorescence integral intensity of fluorescence images of tissue sections.

    图 6  动态聚焦情况下不同聚焦深度的声场仿真结果(a)焦点位于皮下1 mm; (b)焦点位于皮下2 mm; (c)焦点位于皮下3 mm

    Figure 6.  Simulation results of acoustic field with different focusing depths under dynamic focusing: (a) The focus is 1 mm under the skin; (b) the focus is 2 mm under the skin; (c) the focus is 3 mm under the skin.

    图 7  运动至皮下5 mm处的粒子分布情况, 其中分布宽度为运动至皮下5 mm的粒子左右两端的距离(见图2(b))

    Figure 7.  Distribution of particles moving to 5 mm under the skin. The distribution width is the distance between the left and right ends of particles moving to 5 mm under the skin, as shown in Fig. 2(b).

    图 8  5%, 10%和20%三种占空比条件下, 运动至皮下5 mm处的粒子数量

    Figure 8.  The number of particles moving to 5 mm under the skin under three duty ratios of 5%, 10% and 20%.

    图 9  三种典型位置粒子在两种声场中的三维运动路径(对应粉、绿、紫曲线), 其中黑色虚线描绘了声场焦点中心的变化 (a)固定焦点聚焦声场; (b)动态移焦声场

    Figure 9.  Three-dimensional motion paths of particles in three typical positions (corresponding to pink, green and purple curves) in two kinds of acoustic fields: (a) Acoustic field with fixed focus; (b) dynamically focused acoustic field. The black dotted line depicts the change of the focus center of the sound field.

    表 1  不同聚焦深度下的焦域参数

    Table 1.  Focal parameters at different depth of focus.

    预设焦点皮下深度焦点横向宽度/mm焦点纵向长度/mm
    x/mmy/mm
    0.001.000.933.63
    0.002.000.984.13
    0.003.001.054.56
    DownLoad: CSV
    Baidu
  • [1]

    Jeong W Y, Kwon M, Choi H E, Kim K S 2021 Biomater. Res. 25 24Google Scholar

    [2]

    Gaikwad S S, Zanje A L, Somwanshi J D 2024 Int. J. Pharm. 652 123856Google Scholar

    [3]

    Wiedersberg S, Guy R H 2014 J. Controlled Release 190 150Google Scholar

    [4]

    Zhang H, Zhai Y J, Yang X Y, Zhai G X 2015 Curr. Pharm. Des. 12 2713Google Scholar

    [5]

    Prausnitz M R, Langer R 2008 Nat. Biotechnol. 26 1261Google Scholar

    [6]

    Polat B E, Deen W M, Langer R, Blankschtein D 2012 J. Controlled Release 158 250Google Scholar

    [7]

    Yu C, Shah A, Amiri N, et al. 2023 Adv. Mater. 35 2300066Google Scholar

    [8]

    Akhtar N, Singh V, Yusuf M, Khan R A 2020 Biomed. Eng.- Biomed. Tech. 65 243Google Scholar

    [9]

    Smith N B 2008 Expert Opin. Drug Deliv. 5 1107Google Scholar

    [10]

    Tian Y H, Liu Z, Tan H Y, Hou J H, Wen X, Yang F, Cheng W 2020 Int. J. Nanomed. 15 401Google Scholar

    [11]

    Sabbagh F, Muhamad I I, Niazmand R, Dikshit P K, Kim B S 2022 Int. J. Biol. Macromol. 203 222Google Scholar

    [12]

    Al-Bataineh O M, Lweesy K, Fraiwan L 2011 1st Middle East Conference on Biomedical Engineering Sharjah, United Arab Emirates, February 21–24, 2011 p316

    [13]

    Maione E, Shung K K, Meyer R J, et al. 2002 IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 49 1430Google Scholar

    [14]

    丁亚军, 钱盛友, 胡继文, 邹孝 2012 61 144301Google Scholar

    Ding Y J, Qian S Y, Hu J W, Zou X 2012 Acta Phys. Sin. 61 144301Google Scholar

    [15]

    徐丰, 陆明珠, 万明习, 方飞 2010 52 1349Google Scholar

    Xu F, Lu M Z, Wan X M, Fang F 2010 Acta Phys. Sin. 52 1349Google Scholar

    [16]

    Burgess A, Shah K, Hough O, Hynynen K 2015 Expert Rev. Neurother. 15 477Google Scholar

    [17]

    Meng Y, Hynynen K, Lipsman N 2021 Nat. Rev. Neurol. 17 7Google Scholar

    [18]

    Biskanaki F, Tertipi N, Sfyri E, Kefala V, Rallis E 2025 Appl. Sci. 15 4958Google Scholar

    [19]

    Özsoy Ç, Lafci B, Reiss M, Deán-Ben X L, Razansky D 2023 Photoacoustics 31 100508Google Scholar

    [20]

    钱骏, 谢伟, 周小伟, 谭坚文, 王智彪, 杜永洪, 李雁浩 2022 71 037201Google Scholar

    Qian J, Xi W, Zhou X W, Tan J W, Wang Z B, Du Y H, Li Y H 2022 Acta Phys. Sin. 71 037201Google Scholar

    [21]

    Zhang H J, Pan Y P, Hou Y, Li M H, Deng J, Wang B C, Hao S L 2024 Small 20 2306944Google Scholar

    [22]

    Caprifico A E, Polycarpou E, Foot P J S, Calabrese G 2020 Trends Pharmacol. Sci. 41 686Google Scholar

    [23]

    Moreno V M, Baeza A, Vallet-Regí M 2021 Acta Biomater. 121 263Google Scholar

    [24]

    Nguyen T T, Nguyen H N, Nghiem T H L, et al. 2024 Sci. Rep. 14 6969Google Scholar

    [25]

    Do Nascimento V M, Nantes Button V L D S, Maia J M, et al. 2003 Medical Imaging San Diego, United States, May 23, 2003 p86

    [26]

    Husseini G A, Pitt W G 2008 Adv. Drug Delivery Rev. 60 1137Google Scholar

    [27]

    Paris J L, Mannaris C, Cabañas M V, Carlisle R, Manzano M, Vallet-Regí M, Coussios C C 2018 Chem. Eng. J. 340 2Google Scholar

    [28]

    Gor'kov L P 1961 Dokl. Akad. Nauk SSSR 140 88

    [29]

    孙芳, 曾周末, 王晓媛, 靳世久, 詹湘琳 2011 60 094301Google Scholar

    Sun F, Zeng Z M, Jin S J, Zhan X L 2011 Acta Phys. Sin. 60 094301Google Scholar

    [30]

    Lintzeri D A, Karimian N, Blume-Peytavi U, Kottner J 2022 J. Eur. Acad. Dermatol. Venereol. 36 1191Google Scholar

Metrics
  • Abstract views:  1490
  • PDF Downloads:  32
  • Cited By: 0
Publishing process
  • Received Date:  31 July 2025
  • Accepted Date:  07 September 2025
  • Available Online:  10 September 2025
  • Published Online:  05 November 2025
  • /

    返回文章
    返回
    Baidu
    map