Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Investigation of self-bleaching wavelength of Yb-doped fiber lasers

TAO Mengmeng WANG Yamin WANG Ke CHEN Hongwei SHAO Chongyun LI Qiaomu YE Jingfeng

Citation:

Investigation of self-bleaching wavelength of Yb-doped fiber lasers

TAO Mengmeng, WANG Yamin, WANG Ke, CHEN Hongwei, SHAO Chongyun, LI Qiaomu, YE Jingfeng
cstr: 32037.14.aps.74.20251017
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • In radiation environments, the radiation induced attenuation (RIA) of the active optical fiber can lead to a significant decline in the performance of fiber laser system. An effective way to solve this problem is to bleach the active fiber using pumps at certain wavelengths, namely photo-bleaching. Experiments have shown that output power of irradiated Yb-doped fiber laser experiences remarkable recovery under 976-nm pump. However, under 976-nm pump, signals at both 976 nm and 1070 nm co-exist in Yb-doped fiber. Moreover, it is difficult to distinguish which wavelength is responsible for the photo-bleaching process. Herein, a one-hundred-watt level Yb-doped fiber laser is irradiated with gamma-ray radiation. In the radiation process, a significant output decline from 129 W at 0 Gy to 81 W at 100 Gy is observed. Then, self-bleaching test is conducted with 976-nm pump. After 2-h bleaching, the output power is restored to 111 W, corresponding to a recovery ratio of about 37.0%. To verify the specific wavelength responsible for the performance recovery, photo-bleaching characteristics of Yb-doped fiber lasers are investigated under different pump wavelengths including 915, 976, 1070 and 1550 nm. Experiments show that laser signal at 1 μm waveband is the primary cause for the bleaching of Yb-doped fibers, while, the pump at 915, 976 and 1550 nm can hardly bleach the irradiated Yb-doped fiber. The RIA recovery curves of Yb-doped fibers are measured under different 1070-nm bleaching powers. And, related evolution parameters are obtained through curve fitting. With these parameters, the RIA evolution of the Yb-doped fiber and the corresponding output power evolution of the Yb-doped fiber laser in the radiation and bleaching process are simulated. Comparisons show that the numerical results are consistent with the measurements qualitatively, demonstrating the reliability of the model. This work has guiding significance for predicting the performance of fiber laser systems in radiation and bleaching environments.
      Corresponding author: TAO Mengmeng, taomengmeng@nint.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62105268) and the Open Fund of the State Key Laboratory of Laser Interaction with Matter, China (Grant Nos. SKLLIM2305, SKLLIM2207, SKLLIM2208).
    [1]

    刘福华, 王平, 刘卫平, 谢红刚, 冯刚, 陈绍武, 武俊杰 2015 现代应用物理 6 202

    Liu F H, Wang P, Liu W P, Xie H G, Feng G, Chen S W, Wu J J 2015 Mod. Appl. Phys. 6 202

    [2]

    Girard S, Alessi A, Richard N, et al. 2019 Rev. Phys. 4 100032Google Scholar

    [3]

    Girard S, Kuhnhenn J, Gusarov A, Brichard B, Uffelen M V, Ouerdan Y, Boukenter A, Marcandella C 2013 IEEE Trans. Nucl. Sci. 60 2015Google Scholar

    [4]

    Lezius M, Predehl K, Stöwer W, Turler A, Greiter M, Hoeschen Ch, Thirolf P, Assmann W, Habs D, Prokofiev A, Ekstron C, Hansch T W, Holzwarth R 2012 IEEE Trans. Nucl. Sci. 59 425Google Scholar

    [5]

    李奋飞, 周晓燕, 张魁宝, 陈进湛, 高聪, 张立华, 石兆华, 夏汉定, 叶鑫, 吴卫东, 李波 2020 强激光与粒子束 32 081003Google Scholar

    Li F F, Zhou X Y, Zhang K B, Chen J Z, Gao C, Zhang L H, Shi Z H, Xia H D, Ye X, Wu W D, Li B 2020 High Power Laser Part. Beams 32 081003Google Scholar

    [6]

    邵冲云, 于春雷, 胡丽丽 2020 中国激光 47 0500014Google Scholar

    Shao C Y, Yu C L, Hu L L 2020 Chin. J. Lasers 47 0500014Google Scholar

    [7]

    池俊杰, 姜诗琦, 张琳, 于淼, 王军龙 2018 激光与光电子学进展 55 061406Google Scholar

    Chi J J, Jiang S Q, Zhang L, Yu M, Wang J L 2018 Laser Optoelectron. Progress 55 061406Google Scholar

    [8]

    张汉伟, 王小林, 唐峰, 刘文广, 刘鹏宇, 许晓军, 肖余之, 陈金宝 2020 激光与光电子学进展 57 011406Google Scholar

    Zhang H W, Wang X L, Tang F, Liu W G, Liu P Y, Xu X J, Xiao Y Z, Chen J B 2020 Laser Optoelectron. Prog. 57 011406Google Scholar

    [9]

    Chen Y S, Xu H Z, Xing Y B, Liao L, Wang Y B, Zhang F F, He X L, Li H Q, Peng J G, Yang L Y, Dai N L, Li J Y 2018 Opt. Express 26 20430Google Scholar

    [10]

    Wang Y, Gao C, Peng K, Ni L, Wang X, Zhan H, Li Y, Jiang L, Lin A, Wang J, Jing F 2018 Proceedings of 2018 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR) Hong Kong, China, July 29–August 3, 2018 pF1B. 2

    [11]

    曹涧秋, 周尚德, 刘鹏飞, 黄值河, 王泽锋, 司磊, 陈金宝 2024 73 204202Google Scholar

    Cao J Q, Zhou S D, Liu P F, Huang Z H, Wang Z F, Si L, Chen J B 2024 Acta. Phys. Sin. 73 204202Google Scholar

    [12]

    Xiang G, Chen J, Wang X, Ye Y, Zhang H, Zhang J, Hua W 2024 Opt. Lett. 49 6301Google Scholar

    [13]

    Girard S, Morana A, Ladaci A, Robin T, Mescia L, Bonnefois J, Boutillier M, Mekki J, Paveau A, Cadier B, Marin E, Ouerdane Y, Boukenter A 2018 J. Opt. 20 093001Google Scholar

    [14]

    王博, 曹驰, 邢颍滨, 陈瑰, 戴能利, 李海清, 彭景刚, 李进延 2021 激光与光电子学进展 58 1516012Google Scholar

    Wang B, Cao C, Xing Y B, Chen G, Dai N L, Li H Q, Peng J G, Li J Y 2021 Laser Optoelectron. Prog. 58 1516012Google Scholar

    [15]

    Shao C, Yu C, Zhu Y, Zhou Q, Boulon G, Guzik M, Chen W, Hu L 2022 J. Lumin. 248 118939Google Scholar

    [16]

    Fox B P, Simmons-Potter K, Moore S W, Fisher J H, Meister D C 2009 Proc. SPIE 7434 74340CGoogle Scholar

    [17]

    Mady F, Guttilla A, Benabdesselam M, Blanc W 2019 Opt. Mater. Express 9 2466Google Scholar

    [18]

    Xing Y, Liu Y, Zhao N, Cao R, Wang Y, Yang Y, Peng J, Li H, Yang L, Dai N, Li J 2018 Opt. Lett. 43 1075Google Scholar

    [19]

    Xing Y, Liu Y, Cao R, Liao L, Chu Y, Wang Y, Peng J, Li H, Yang L, Dai N, Li J 2018 OSA Contin. 1 987Google Scholar

    [20]

    Manek-Hönninger I, Boullet J, Cardinal T, Guillen F, Ermeneux S, Podgorski M, Doua R, Salin F 2007 Opt. Express 15 1606Google Scholar

    [21]

    Chávez A, Kir'Yanov A, Barmenkov Y, Ilichev N N 2007 Laser Phys. Lett. 4 734Google Scholar

    [22]

    Gebavi H, Taccheo S, Lablonde L, Cadier B, Robin T, Mechin D, Tregoat D 2013 Opt. Lett. 38 196Google Scholar

    [23]

    Piccoli R, Gebavi H, Lablonde L, et al. 2014 IEEE Photonics Technol. Lett. 26 50Google Scholar

    [24]

    Piccoli R, Robin T, Brand T, Kolotzbach U, Taccheo S 2014 Opt. Express 22 7638Google Scholar

    [25]

    Zhao N, Xing Y, Li J, Liao L, Wang Y, Peng J, Yang L, Dai N, Li H, Li J 2015 Opt. Express 23 25272Google Scholar

    [26]

    刘超平 2017 硕士学位论文 (武汉: 华中科技大学)

    Liu Ch P 2017 M. S. Thesis (Wuhan: Huazhong University of Science & Technology

    [27]

    Friebele E J, Gingerich M E 1981 Appl. Opt. 20 3448Google Scholar

    [28]

    Zotov K V, Likhachev M E, Tomashuk A L, et al. 2008 IEEE Photonics Technol. Lett. 20 1476Google Scholar

    [29]

    Xing Y B, Huang H Q, Zhao N, Liao L, Li J Y, Dai N L 2015 Opt. Lett. 40 681Google Scholar

    [30]

    Xing Y B, Zhao N, Liao L, Wang Y B, Li H Q, Peng J G, Yang L Y, Dai N L, Li J Y 2015 Opt. Express 23 24236Google Scholar

    [31]

    Wang X, Sun S, Zheng Y, Yu M, Li S, Cao Y, Wang J 2023 Appl. Sci. 13 6146Google Scholar

    [32]

    Xiang G B, Zhang H W, Wang X L, et al. 2025 Photonics Res. 13 2362Google Scholar

    [33]

    陈金宝, 相广彪, 王小林, 张汉伟, 张江彬, 华卫红 2024 强激光与粒子束 36 121001Google Scholar

    Chen J B, Xiang G B, Wang X L, Zhang H W, Zhang J B, Hua W H 2024 High Power Laser Part. Beams 36 121001Google Scholar

    [34]

    Xiang G B, Wu J M, Zhang H W, Zhang J B, Chen H W, Wang Y M, Wang X L, Hua W H 2025 IEEE Trans. Nucl. Sci. 72 11Google Scholar

    [35]

    Deschamps T, Vezin H, Gonnet C, Ollier N 2013 Opt. Express 21 8382Google Scholar

    [36]

    Shao Ch, Ren J, Wang F, Ollier N, Xie F, Zhang X, Zhang L, Yu Ch, Hu L 2018 J. Phys. Chem. B 122 2809Google Scholar

    [37]

    Zhang Y, Wang G, Zhao T, Zhang Y, Gao S, Cui X, Zhu Z, Li Z, She S, Hou C, Guo H 2025 J. Lightwave Technol. 43 3899Google Scholar

    [38]

    Tao M, Chen H, Feng G, Luan K, Wang F, Huang K, Ye X 2020 Opt. Express 28 10104Google Scholar

    [39]

    Wang K, Wang Y, Tao M, Cao H, Chen H, Ye J, Shen Y, Wang D 2024 Opt. Commun. 560 130472Google Scholar

    [40]

    Jetschke S, Unger S, Ropke U, Kirchhof J 2007 Opt. Express 15 14838Google Scholar

    [41]

    Jetschke S, Ropke U 2009 Opt. Lett. 34 109Google Scholar

    [42]

    Xie F, Shao C, Wang M, Lou F, Liu M, Yu Ch, Feng S, Ye X, Hu L 2019 J. Lightwave Tchnol. 37 1091Google Scholar

    [43]

    Arai T, Ichii K, Tanigawa S, Fujimaki M 2009 Proceedings of 2009 Conference on Optical Fiber Communication, Technical Digest Series San Diego, March 22–26, 2009 p2873

    [44]

    Tao M, Chen H, Feng G, Wang L, Ye J, Wang Y, Ye X, Chen W 2022 Laser Phys. 32 055101Google Scholar

    [45]

    Tao M, Wang Y, Wang K, Chen H, Ye J, Shen Y, Wang D, Ye X 2025 J. Opt. 54 867Google Scholar

  • 图 1  掺镱光纤激光器辐照、光漂白实验光路结构图(LD, 半导体激光器; PC, 泵浦合束器; HR FBG, 高反光纤光栅; PR FBG, 部分反射光纤光栅; YDF, 掺镱光纤; CPS, 泵浦剥除器; QBH, 防反射输出接头)

    Figure 1.  Setup for the irradiation and photo-bleaching experiments of Yb-doped fiber lasers (LD, laser diode; PC, pump combiner; HR FBG, highly-reflective fiber Bragg grating; PR FBG, partially-reflective fiber Bragg grating; YDF, Yb-doped fiber; CPS, cladding pump striper; QBH, quasi-Brewster head).

    图 2  辐照、漂白前后激光器输出功率特性 (a) 功率演化; (b) 输出功率随泵浦功率变化

    Figure 2.  Output characteristics of Yb-doped fiber lasers before and after radiation and photo-bleaching: (a) Output power evolution; (b) output power vs. pump power.

    图 3  1550 nm漂白下激光功率监测结果 (a) 55 mW; (b) 120 mW

    Figure 3.  Recorded power information under 1550 nm bleaching: (a) 55 mW; (b) 120 mW.

    图 4  1550 nm漂白前后掺镱光纤的后向散射信号

    Figure 4.  Backward scattering signal of Yb-doped fiber before and after 1550 nm bleaching.

    图 5  915 nm/976 nm漂白特性测试光路结构图(EDFL, 掺铒光纤激光器; OC, 耦合器; PM, 功率计)

    Figure 5.  Schematic diagram for 915 nm/976 nm bleaching tests (EDFL, Er-doped fiber laser; OC, output coupler; PM, power-meter).

    图 6  915 nm/976 nm激光漂白下功率测量结果 (a) 915 nm; (b) 976 nm

    Figure 6.  Recorded power information under 915 nm/976 nm bleaching: (a) 915 nm; (b) 976 nm.

    图 7  915 nm/976 nm漂白前后掺镱光纤的后向散射信号

    Figure 7.  Backward scattering signal of Yb-doped fiber before and after 915 nm/976 nm bleaching.

    图 8  500 mW 1070 nm激光漂白下掺镱光纤输出端功率测量结果

    Figure 8.  Recorded power information under 1070 nm bleaching power of 500 mW.

    图 9  1070 nm激光漂白前后掺镱光纤后向散射信号测量结果

    Figure 9.  Backward scattering signal of Yb-doped fiber before and after 1070 nm bleaching.

    图 10  1070 nm激光漂白下掺镱光纤内部辐致损耗演化 (a) 输出端功率; (b) 辐致损耗

    Figure 10.  Radiation induced attenuation parameters of Yb-doped fiber under 1070 nm bleaching: (a) Recorded signal power; (b) radiation induced attenuation.

    图 11  1070 nm激光漂白下掺镱光纤内部辐致损耗演化参数 (a) 时间常数; (b) 稳态辐致损耗

    Figure 11.  Radiation induced attenuation parameters of Yb-doped fiber under 1070 nm bleaching: (a) Time constant; (b) radiation induced attenuation at equilibrium state.

    图 12  不同功率1070 nm激光漂白下仿真模拟结果 (a) 掺镱光纤内部辐致损耗演化; (b) 掺镱光纤激光器输出功率演化

    Figure 12.  Simulation results under 1070 nm bleaching: (a) Radiation induced attenuation inside the YDF; (b) output power evolution of the YDFL.

    表 1  实验所用掺镱光纤信息

    Table 1.  Parameters of the exploited YDF.

    参数 数值 参数 数值
    尺寸/μm 20/400 Yb离子浓度
    /(1025 m–3)
    4.95
    纤芯数值孔径 0.06 Al离子浓度
    /(1026 m–3)
    5.82
    976 nm处吸收
    系数/(dB·m–1)
    1.31 P离子浓度
    /(1026 m–3)
    6.16
    DownLoad: CSV
    Baidu
  • [1]

    刘福华, 王平, 刘卫平, 谢红刚, 冯刚, 陈绍武, 武俊杰 2015 现代应用物理 6 202

    Liu F H, Wang P, Liu W P, Xie H G, Feng G, Chen S W, Wu J J 2015 Mod. Appl. Phys. 6 202

    [2]

    Girard S, Alessi A, Richard N, et al. 2019 Rev. Phys. 4 100032Google Scholar

    [3]

    Girard S, Kuhnhenn J, Gusarov A, Brichard B, Uffelen M V, Ouerdan Y, Boukenter A, Marcandella C 2013 IEEE Trans. Nucl. Sci. 60 2015Google Scholar

    [4]

    Lezius M, Predehl K, Stöwer W, Turler A, Greiter M, Hoeschen Ch, Thirolf P, Assmann W, Habs D, Prokofiev A, Ekstron C, Hansch T W, Holzwarth R 2012 IEEE Trans. Nucl. Sci. 59 425Google Scholar

    [5]

    李奋飞, 周晓燕, 张魁宝, 陈进湛, 高聪, 张立华, 石兆华, 夏汉定, 叶鑫, 吴卫东, 李波 2020 强激光与粒子束 32 081003Google Scholar

    Li F F, Zhou X Y, Zhang K B, Chen J Z, Gao C, Zhang L H, Shi Z H, Xia H D, Ye X, Wu W D, Li B 2020 High Power Laser Part. Beams 32 081003Google Scholar

    [6]

    邵冲云, 于春雷, 胡丽丽 2020 中国激光 47 0500014Google Scholar

    Shao C Y, Yu C L, Hu L L 2020 Chin. J. Lasers 47 0500014Google Scholar

    [7]

    池俊杰, 姜诗琦, 张琳, 于淼, 王军龙 2018 激光与光电子学进展 55 061406Google Scholar

    Chi J J, Jiang S Q, Zhang L, Yu M, Wang J L 2018 Laser Optoelectron. Progress 55 061406Google Scholar

    [8]

    张汉伟, 王小林, 唐峰, 刘文广, 刘鹏宇, 许晓军, 肖余之, 陈金宝 2020 激光与光电子学进展 57 011406Google Scholar

    Zhang H W, Wang X L, Tang F, Liu W G, Liu P Y, Xu X J, Xiao Y Z, Chen J B 2020 Laser Optoelectron. Prog. 57 011406Google Scholar

    [9]

    Chen Y S, Xu H Z, Xing Y B, Liao L, Wang Y B, Zhang F F, He X L, Li H Q, Peng J G, Yang L Y, Dai N L, Li J Y 2018 Opt. Express 26 20430Google Scholar

    [10]

    Wang Y, Gao C, Peng K, Ni L, Wang X, Zhan H, Li Y, Jiang L, Lin A, Wang J, Jing F 2018 Proceedings of 2018 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR) Hong Kong, China, July 29–August 3, 2018 pF1B. 2

    [11]

    曹涧秋, 周尚德, 刘鹏飞, 黄值河, 王泽锋, 司磊, 陈金宝 2024 73 204202Google Scholar

    Cao J Q, Zhou S D, Liu P F, Huang Z H, Wang Z F, Si L, Chen J B 2024 Acta. Phys. Sin. 73 204202Google Scholar

    [12]

    Xiang G, Chen J, Wang X, Ye Y, Zhang H, Zhang J, Hua W 2024 Opt. Lett. 49 6301Google Scholar

    [13]

    Girard S, Morana A, Ladaci A, Robin T, Mescia L, Bonnefois J, Boutillier M, Mekki J, Paveau A, Cadier B, Marin E, Ouerdane Y, Boukenter A 2018 J. Opt. 20 093001Google Scholar

    [14]

    王博, 曹驰, 邢颍滨, 陈瑰, 戴能利, 李海清, 彭景刚, 李进延 2021 激光与光电子学进展 58 1516012Google Scholar

    Wang B, Cao C, Xing Y B, Chen G, Dai N L, Li H Q, Peng J G, Li J Y 2021 Laser Optoelectron. Prog. 58 1516012Google Scholar

    [15]

    Shao C, Yu C, Zhu Y, Zhou Q, Boulon G, Guzik M, Chen W, Hu L 2022 J. Lumin. 248 118939Google Scholar

    [16]

    Fox B P, Simmons-Potter K, Moore S W, Fisher J H, Meister D C 2009 Proc. SPIE 7434 74340CGoogle Scholar

    [17]

    Mady F, Guttilla A, Benabdesselam M, Blanc W 2019 Opt. Mater. Express 9 2466Google Scholar

    [18]

    Xing Y, Liu Y, Zhao N, Cao R, Wang Y, Yang Y, Peng J, Li H, Yang L, Dai N, Li J 2018 Opt. Lett. 43 1075Google Scholar

    [19]

    Xing Y, Liu Y, Cao R, Liao L, Chu Y, Wang Y, Peng J, Li H, Yang L, Dai N, Li J 2018 OSA Contin. 1 987Google Scholar

    [20]

    Manek-Hönninger I, Boullet J, Cardinal T, Guillen F, Ermeneux S, Podgorski M, Doua R, Salin F 2007 Opt. Express 15 1606Google Scholar

    [21]

    Chávez A, Kir'Yanov A, Barmenkov Y, Ilichev N N 2007 Laser Phys. Lett. 4 734Google Scholar

    [22]

    Gebavi H, Taccheo S, Lablonde L, Cadier B, Robin T, Mechin D, Tregoat D 2013 Opt. Lett. 38 196Google Scholar

    [23]

    Piccoli R, Gebavi H, Lablonde L, et al. 2014 IEEE Photonics Technol. Lett. 26 50Google Scholar

    [24]

    Piccoli R, Robin T, Brand T, Kolotzbach U, Taccheo S 2014 Opt. Express 22 7638Google Scholar

    [25]

    Zhao N, Xing Y, Li J, Liao L, Wang Y, Peng J, Yang L, Dai N, Li H, Li J 2015 Opt. Express 23 25272Google Scholar

    [26]

    刘超平 2017 硕士学位论文 (武汉: 华中科技大学)

    Liu Ch P 2017 M. S. Thesis (Wuhan: Huazhong University of Science & Technology

    [27]

    Friebele E J, Gingerich M E 1981 Appl. Opt. 20 3448Google Scholar

    [28]

    Zotov K V, Likhachev M E, Tomashuk A L, et al. 2008 IEEE Photonics Technol. Lett. 20 1476Google Scholar

    [29]

    Xing Y B, Huang H Q, Zhao N, Liao L, Li J Y, Dai N L 2015 Opt. Lett. 40 681Google Scholar

    [30]

    Xing Y B, Zhao N, Liao L, Wang Y B, Li H Q, Peng J G, Yang L Y, Dai N L, Li J Y 2015 Opt. Express 23 24236Google Scholar

    [31]

    Wang X, Sun S, Zheng Y, Yu M, Li S, Cao Y, Wang J 2023 Appl. Sci. 13 6146Google Scholar

    [32]

    Xiang G B, Zhang H W, Wang X L, et al. 2025 Photonics Res. 13 2362Google Scholar

    [33]

    陈金宝, 相广彪, 王小林, 张汉伟, 张江彬, 华卫红 2024 强激光与粒子束 36 121001Google Scholar

    Chen J B, Xiang G B, Wang X L, Zhang H W, Zhang J B, Hua W H 2024 High Power Laser Part. Beams 36 121001Google Scholar

    [34]

    Xiang G B, Wu J M, Zhang H W, Zhang J B, Chen H W, Wang Y M, Wang X L, Hua W H 2025 IEEE Trans. Nucl. Sci. 72 11Google Scholar

    [35]

    Deschamps T, Vezin H, Gonnet C, Ollier N 2013 Opt. Express 21 8382Google Scholar

    [36]

    Shao Ch, Ren J, Wang F, Ollier N, Xie F, Zhang X, Zhang L, Yu Ch, Hu L 2018 J. Phys. Chem. B 122 2809Google Scholar

    [37]

    Zhang Y, Wang G, Zhao T, Zhang Y, Gao S, Cui X, Zhu Z, Li Z, She S, Hou C, Guo H 2025 J. Lightwave Technol. 43 3899Google Scholar

    [38]

    Tao M, Chen H, Feng G, Luan K, Wang F, Huang K, Ye X 2020 Opt. Express 28 10104Google Scholar

    [39]

    Wang K, Wang Y, Tao M, Cao H, Chen H, Ye J, Shen Y, Wang D 2024 Opt. Commun. 560 130472Google Scholar

    [40]

    Jetschke S, Unger S, Ropke U, Kirchhof J 2007 Opt. Express 15 14838Google Scholar

    [41]

    Jetschke S, Ropke U 2009 Opt. Lett. 34 109Google Scholar

    [42]

    Xie F, Shao C, Wang M, Lou F, Liu M, Yu Ch, Feng S, Ye X, Hu L 2019 J. Lightwave Tchnol. 37 1091Google Scholar

    [43]

    Arai T, Ichii K, Tanigawa S, Fujimaki M 2009 Proceedings of 2009 Conference on Optical Fiber Communication, Technical Digest Series San Diego, March 22–26, 2009 p2873

    [44]

    Tao M, Chen H, Feng G, Wang L, Ye J, Wang Y, Ye X, Chen W 2022 Laser Phys. 32 055101Google Scholar

    [45]

    Tao M, Wang Y, Wang K, Chen H, Ye J, Shen Y, Wang D, Ye X 2025 J. Opt. 54 867Google Scholar

  • [1] JIANG Peiheng, SHI Chaodu, FU Shijie, TIAN Hao, SHENG Quan, SHI Wei, SHEN Qihao, ZHOU Dingfu, YAO Jianquan. 130 μJ linear-polarized single-frequency 12-μm-core Er/Yb co-doped fiber amplifier based on pre-shaped seed pulse. Acta Physica Sinica, 2025, 74(2): 024201. doi: 10.7498/aps.74.20241371
    [2] CAO Jianqiu, ZHOU Shangde, LIU Pengfei, HUANG Zhihe, MA Pengfei, WANG Zefeng, SI Lei, CHEN Jinbao. Influence of radiation-induced attenuation on power scalability of single-frequency single-mode Yb-doped fiber amplifiers. Acta Physica Sinica, 2025, 74(13): 134202. doi: 10.7498/aps.74.20250418
    [3] Cao Jian-Qiu, Zhou Shang-De, Liu Peng-Fei, Huang Zhi-He, Wang Ze-Feng, Si Lei, Chen Jin-Bao. Theoretical study on radiation effect on threshold of transverse mode instability of Yb-doped fiber amplifiers. Acta Physica Sinica, 2024, 73(20): 204202. doi: 10.7498/aps.73.20240816
    [4] Wen Yu-Jun, Wang Peng, Xi Xiao-Ming, Zhang Han-Wei, Huang Liang-Jin, Yang Huan, Yan Zhi-Ping, Yang Bao-Lai, Shi Chen, Pan Zhi-Yong, Wang Xiao-Lin, Wang Ze-Feng, Xu Xiao-Jun. Laser diode directly backward pumped high-beam-quality 10-kW fiber laser. Acta Physica Sinica, 2022, 71(24): 244202. doi: 10.7498/aps.71.20221433
    [5] Cao Jian-Qiu, Liu Wen-Bo, Chen Jin-Bao, Lu Qi-Sheng. Modeling the single-mode thermally guiding very-large-mode-area Yb-doped fiber amplifier. Acta Physica Sinica, 2017, 66(6): 064201. doi: 10.7498/aps.66.064201
    [6] Xiong Zhong-Long, Wu Yan, Jing Rui-Ping, Ma Chong, Long Wei-Hui, Zhang Chao-Jun, Cheng Yong-Jin. Performance of Yb-doped silicate glass with thermal bleaching. Acta Physica Sinica, 2016, 65(4): 044208. doi: 10.7498/aps.65.044208
    [7] Jia Yu-Lei, Zhu Zheng, Han Hai-Nian, Tian Wen-Long, Xie Yang, Zhang Long, Wei Zhi-Yi. Generation of octave-spanning super-continuum in tapered single mode fibre pumped by femtosecond Yb:YCOB laser. Acta Physica Sinica, 2015, 64(5): 054206. doi: 10.7498/aps.64.054206
    [8] Fu Kuan, Xu Zhong-Wei, Li Hai-Qing, Peng Jing-Gang, Dai Neng-Li, Li Jin-Yan. Dark pulses and harmonic mode locking in graphene-based passively mode-locked Yb3+-doped fiber laser with all-normal dispersion cavity. Acta Physica Sinica, 2015, 64(19): 194205. doi: 10.7498/aps.64.194205
    [9] Wang Yu-Bao, Qi Xiao-Hui, Shen Yang, Yao Yi-Lei, Xu Zhi-Jing, Pan Yu-Zhai. Ultra-long cavity multi-wavelength Yb-doped fiber laser mode-locked by carbon nanotubes. Acta Physica Sinica, 2015, 64(20): 204205. doi: 10.7498/aps.64.204205
    [10] Huang Hong-Qi, Zhao Nan, Chen Gui, Liao Lei, Liu Zi-Jun, Peng Jing-Gang, Dai Neng-Li. Effects of γ-radiation on Yb-doped fiber. Acta Physica Sinica, 2014, 63(20): 200201. doi: 10.7498/aps.63.200201
    [11] Huang Shi-Sheng, Wang Yong-Gang, Li Hui-Quan, Lin Rong-Yong, Yan Pei-Guang. Experimental studies of multiple pulses in a passively ytterbium-doped fiber laser based on graphene-oxide saturable absorber. Acta Physica Sinica, 2014, 63(8): 084202. doi: 10.7498/aps.63.084202
    [12] Xu Zhong-Wei, Zhang Zu-Xing. All-normal-dispersion multi-wavelength mode-locked dissipative soliton Yb-doped fiber laser. Acta Physica Sinica, 2013, 62(10): 104210. doi: 10.7498/aps.62.104210
    [13] Bai Yang-Bo, Xiang Wang-Hua, Zu Peng, Zhang Gui-Zhong. Wavelength-tunable linear-cavity passively mode-locked Yb-doped fiber laser based on volume Bragg grating. Acta Physica Sinica, 2012, 61(21): 214208. doi: 10.7498/aps.61.214208
    [14] Han Xu, Feng Guo-Ying, Wu Chuan-Long, Jiang Dong-Sheng, Zhou Shou-Huan. Investigation of self-pulsing and self-mode-locking in ytterbium-doped fiber laser. Acta Physica Sinica, 2012, 61(11): 114204. doi: 10.7498/aps.61.114204
    [15] Sheng Yu-Bang, Yang Lü-Yun, Luan Huai-Xun, Liu Zi-Jun, Li Jin-Yan, Dai Neng-Li. Gamma radiation effects on absorption and emission properties of erbium-doped silicate glasses. Acta Physica Sinica, 2012, 61(11): 116301. doi: 10.7498/aps.61.116301
    [16] Liu Yue, Zhang Wei, Feng Xue, Liu Xiao-Ming. Experimental investigation on chaotic behaviors in loss-modulated erbium-doped fiber-ring lasers. Acta Physica Sinica, 2009, 58(5): 2971-2976. doi: 10.7498/aps.58.2971
    [17] Ren Guang-Jun, Zhang Qiang, Wang Peng, Yao Jian-Quan. Study of Nd3+-doped polarization-maintaining fiber laser. Acta Physica Sinica, 2007, 56(7): 3917-3923. doi: 10.7498/aps.56.3917
    [18] Liu Yan-Ge, Zhang Chun-Shu, Sun Ting-Ting, Lu Yun-Fei, Wang Zhi, Yuan Shu-Zhong, Kai Gui-Yun, Dong Xiao-Yi. Clad-pumped Er3+/Yb3+-codoped short pulse fiber laser with high average power output exceeding 2W. Acta Physica Sinica, 2006, 55(9): 4679-4685. doi: 10.7498/aps.55.4679
    [19] Wang Yong-Gang, Ma Xiao-Yu, Fu Sheng-Gui, Fan Wan-De, Li Qiang, Yuan Shu-Zhong, Dong Xiao-Yi, Song Yan-Rong, Zhang Zhi-Gang. Passive Q-switched mode locking of double-clading Yb:fiber laser with ion-implanted GaAs. Acta Physica Sinica, 2004, 53(6): 1810-1814. doi: 10.7498/aps.53.1810
    [20] SUN JUN-QIANG, HUANG DE-XIU, LI ZAI-GUANG. SELF-PULSING IN THE Er3+-DOPED FIBER LASER. Acta Physica Sinica, 1996, 45(6): 960-965. doi: 10.7498/aps.45.960
Metrics
  • Abstract views:  481
  • PDF Downloads:  18
  • Cited By: 0
Publishing process
  • Received Date:  29 July 2025
  • Accepted Date:  25 August 2025
  • Available Online:  05 September 2025
  • Published Online:  05 November 2025
  • /

    返回文章
    返回
    Baidu
    map