Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Analysis and experimental verification of dispersion characteristics of microstrip lines in terahertz low frequency band

XU Zhen LUO Man LIANG Bohan LI Jining ZHANG Jiaxin WANG Tan CHEN Kai XU Degang

Citation:

Analysis and experimental verification of dispersion characteristics of microstrip lines in terahertz low frequency band

XU Zhen, LUO Man, LIANG Bohan, LI Jining, ZHANG Jiaxin, WANG Tan, CHEN Kai, XU Degang
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Terahertz waves have broad application prospects in fields such as food quality, biomedicine, and security communication. However, the dispersion and loss during transmission limit the development of terahertz systems. This study focuses on the dispersion characteristics of microstrip lines in the terahertz low-frequency range. By combining theoretical modeling, numerical simulation, and experimental verification, the dispersion mechanism and key influencing factors of microstrip lines are systematically analyzed, providing theoretical support for low dispersion, high-performance terahertz integrated circuits and systems. This study is based on electromagnetic field theory, dividing microstrip line dispersion into dielectric dispersion, geometric dispersion, and conductor dispersion, and introducing a modified model to overcome the limitations of traditional quasi-static theory in the high frequency range. In this study, the CST time-domain finite difference simulation and terahertz time-domain pulse reflection (TDR) technology are employed to conduct multidimensional simulation and examine three different dielectric constant substrates (2.2, 3, 4.5), wire widths (100–1600 μm), lengths (10–150 mm) and other parameters. The pulse broadening coefficient is introduced to quantitatively evaluate the dispersion characteristics of microstrip lines. The results indicate that the increase in substrate dielectric constant significantly enhances the dispersion effect. When εr increases from 2.2 to 4.5, the increase in equivalent dielectric constant leads to a decrease in pulse transmission speed; When the wire width increases from 100 μm to 1600 μm, the pulse broadening coefficient dominated by geometric dispersion increases from 3.12 to 5.12, with an increase of 38%. However, when the wire length increases from 10 mm to 150 mm, the cumulative dispersion increases the broadening coefficient from 2.12 to 3.18, with an increase of 33%, verifying the sensitivity of width to dispersion control. The simulation result once again shows that due to the small skin depth of terahertz waves on metal surfaces, the difference in conductivity among the three conductor materials of gold, silver, and copper (4.1×107–6.3×107 S/m) can be ignored in terms of dispersion effect. According to the actual measurement and fitting results, the geometric dispersion of microstrip lines is more significant than the dispersion loss caused by length accumulation. In addition, simulation, experimental testing, and theoretical analysis are all in good consistency with each other. The conclusion indicates that optimizing the design of microstrip lines requires priority control of the dielectric constant and wire width of substrate material to suppress the synergistic effect of geometric dispersion and dielectric dispersion, providing quantifiable design criteria for high bandwidth and low distortion transmission in terahertz communication systems, and laying experimental and theoretical foundations for the engineering application of terahertz integrated circuits.
  • 图 1  微带线结构图 (a) 整体结构; (b) 剖面图

    Figure 1.  Microstrip line structure diagram: (a) Overall structure; (b) sectional view.

    图 2  不同介质基底的微带线的TDR仿真信号 (a) 介电常数2.2; (b) 介电常数3; (c) 介电常数4.4

    Figure 2.  TDR simulation signals of microstrip lines with different dielectric substrates: (a) The dielectric constant is 2.2; (b) the dielectric constant is 3; (c) the dielectric constant is 4.4.

    图 3  长度为150 mm, 不同宽度微带线TDR仿真信号 (a), (b) 局部放大图; (c) envolope包络处理

    Figure 3.  TDR simulation signals of microstrip lines with different widths and lengths of 150 mm: (a), (b) Partial enlarged image; (c)envelope processing.

    图 4  不同长度的微带线的TDR仿真信号

    Figure 4.  TDR simulation signals of microstrip lines of different lengths.

    图 5  不同金属导线的TDR仿真信号

    Figure 5.  TDR simulation signals of different metal wires.

    图 6  不同基底的微带线实测反射信号 (a) 长度10 mm; (b) 长度100 mm

    Figure 6.  Reflected signals measured from microstrip lines on different substrates: (a) Length is 10 mm; (b) length is 100 mm.

    图 7  不同宽度的微带线实测反射信号

    Figure 7.  Reflected signals measured from microstrip lines of different widths.

    图 8  不同长度的微带线实测反射信号

    Figure 8.  Reflected signals measured from microstrip lines of different lengths.

    图 9  不同参数的微带线脉冲展宽系数分析

    Figure 9.  Analysis of pulse widening coefficient of microstrip lines with different parameters.

    Baidu
  • [1]

    Okubo K, Manago G, Tanabe T, Yu J, Liu X Y, Sasaki T 2025 Waste Manag. 196 32Google Scholar

    [2]

    Guo H, Hilaili M, Sari B P P, Putri W D R, Ogawa Y 2025 Food Chem. 479 143867Google Scholar

    [3]

    Zhang H T, Wang L J, Tan L, Zhao X T, Tian C H 2024 Spectrosc. Spectr. Anal. 44 2120 (in Chinses) [张红涛, 王龙杰, 谭联, 赵鑫涛 田承浩 2024 光谱学与光谱分析 44 2120]

    Zhang H T, Wang L J, Tan L, Zhao X T, Tian C H 2024 Spectrosc. Spectr. Anal. 44 2120 (in Chinses)

    [4]

    Iftekharul F A M, Naim M N R, Noor K S, Kundu D, Rashed A N Z 2025 Cell Biochem Biophys 83 489

    [5]

    Wekalao J 2025 Plasmonics DOI: 10.1007/s11468-025-02858-z

    [6]

    Wang Y Y, Li H B, Ge M L, Xu D G, Yao J Q 2023 Laser Optoelectron. Prog. 60 18 (in Chinses) [王与烨, 李海滨, 葛梅兰, 徐德刚, 姚建铨 2023 激光与光电子学进展 60 18]

    Wang Y Y, Li H B, Ge M L, Xu D G, Yao J Q 2023 Laser Optoelectron. Prog. 60 18 (in Chinses)

    [7]

    Peng D L, Xu L M, Wu H, Wang T, Xiao H, Cheng L L, Qin Y W 2025 Opt. Express 33 16237Google Scholar

    [8]

    Zeng Z K, Luo S J, Chen M Y, Zhao G P, He C H, Wu H 2024 IEEE Sens. J 24 21

    [9]

    Wei C S, Li Q F, Ma X Y, Yang Y P 2024 Spectrosc. Spectr. Anal. 44 3001 (in Chinses) [魏春生, 李奇峰, 马翔云, 杨云鹏 2024 光谱学与光谱分析 44 3001]

    Wei C S, Li Q F, Ma X Y, Yang Y P 2024 Spectrosc. Spectr. Anal. 44 3001 (in Chinses)

    [10]

    Xue Q, Ji C W, Ma S D, Guo J J, Xu Y J, Chen Q B 2024 IEEE Commun. Surv. Tutor. 26 1520Google Scholar

    [11]

    Wang L, Dai J Y, Ding K S, Zeng H X, Cheng Q, Yang Z Q, Zhang Y X, Zhang Y X, Cui T J 2024 Sci. Adv. 10 eadq8693Google Scholar

    [12]

    Feng Q, Zhao F 2025 Acta Opt. Sin. 45 0806002 (in Chinses) [冯琦, 赵峰 2025 光学学报 45 0806002]

    Feng Q, Zhao F 2025 Acta Opt. Sin. 45 0806002 (in Chinses)

    [13]

    Lees H, Headland D, Murakami S, Fujita M, Withayachumnankul W 2024 APL Photonics 9 036107Google Scholar

    [14]

    Bonmann M, Moradikouchi A, Bryllert T, Sparén A, Folestad S, Johansson J 2024 IEEE Sens. J. 24 20512Google Scholar

    [15]

    Hossain M S, Mohammad S H M, Rahman H, Sen S 2024 Res. Opt. 14 100599Google Scholar

    [16]

    Zhang J Y, Yang X K, Ren J J, Li L J, Zhang D D, Gu J, Xiong W H 2024 Measurement 233 114771Google Scholar

    [17]

    Wang L M, Zhu L J, Sun Y H 2025 J. At. Mol. Phys. 42 041006 (in Chinses) [王利民, 朱立江, 孙延华 2025 原子与分子 42 041006]

    Wang L M, Zhu L J, Sun Y H 2025 J. At. Mol. Phys. 42 041006 (in Chinses)

    [18]

    Huang Y, Kida T, Wakiuchi S, Okatani T, Inomata Ni, Kanamori Y 2024 Adv. Sci. 11 34

    [19]

    李征帆 2017 微带电路 (北京: 清华大学出版社)第99—109页

    Li Z F 2017 Microstrip Circuit (Beijing: Tsinghua University Press) pp99–109

    [20]

    Taiki K, Taiki Y, Ren K, Youngwoo K, Jerdvisanop C, Yuichi H 2022 IEEE Trans. Electromagn. Compat. 64 5

    [21]

    Aditya R, Eric B, Melinda P M, Mohammed F H 2024 IEEE Trans. Signal Power Integr. 3 178Google Scholar

    [22]

    Singh P, Awasthi Y K 2024 IJRASET 13 642

    [23]

    Singh P, Awasthi Y K 2024 Int. J. Res. Appl. Sci. Eng. Techn. 12 1447Google Scholar

    [24]

    殷际杰2004 微波技术与天线—电磁导波与辐射工程(北京: 电子工业出版社)第117页

    Yin J J 2004 Microwave Technoligy and Antenna (Beijing: Publishing House of Electronics Industry) p117

    [25]

    栾秀珍, 王钟葆, 傅世强, 房少军 2017 微波技术与器件 (北京: 清华大学出版社) 第74页

    Luan X Z, Wang Z B, Fu S Q, Fang S J 2017 Microwave Technology and Microwave Devices (Beijing: Tsinghua University Press) p74

    [26]

    Merlyn S, Rastogi A K 2024 Int. J. Sci. Mod. Res. Technol. 16 3

    [27]

    朱晶 2019硕士学位论文(南京: 南京林业大学)

    Zhu J 2019 M. S. Thesis (Nanjing: Nanjing Forestry University

    [28]

    Biswas K 2020 International Conference on Recent Innovations in Engineering and Technology (ICRIET 2020) Tamil Nadu, India, December 4–5, 2020 p1070

    [29]

    Biswas, K, Lakshman D, Bidyut H 2024 IJCSRR 07

    [30]

    Nobuki H, Tadashi N, Naoki H, Momoka T, Hiroki O, Jihoon K 2025 T-MTT 1–12

    [31]

    Gunda K 2019 M. S. Thesis (Universität Hamburg

    [32]

    徐振, 罗曼, 李吉宁, 刘龙海 徐德刚 2024 73 114203Google Scholar

    Xu Z, Luo M, Li J N, Liu L H, Xu D G 2024 Acta Phys. Sin. 73 114203Google Scholar

  • [1] Zhang Xiang, Wang Yue, Zhang Wan-Ying, Zhang Xiao-Ju, Luo Fan, Song Bo-Chen, Zhang Kuang, Shi Wei. Narrow band absorption and sensing properties of the THz metasurface based on single-walled carbon nanotubes. Acta Physica Sinica, doi: 10.7498/aps.73.20231357
    [2] Xu Zhen, Luo Man, Li Ji-Ning, Liu Long-Hai, Xu De-Gang. Experimental study and simulation analysis of transmission characteristics of terahertz metal wire waveguides. Acta Physica Sinica, doi: 10.7498/aps.73.20240279
    [3] Yang Ze-Hao, Liu Zi-Wei, Yang Bo, Zhang Cheng-Long, Cai Chen, Qi Zhi-Mei. Performance simulation of terahertz waveguide resonance biochemical sensor based on nanoporous gold films. Acta Physica Sinica, doi: 10.7498/aps.71.20220722
    [4] Pang Hui-Zhong, Wang Xin, Wang Jun-Lin, Wang Zong-Li, Liu Su-Yalatu, Tian Hu-Qiang. Sensing characteristics of dual band terahertz metamaterial absorber sensor. Acta Physica Sinica, doi: 10.7498/aps.70.20210062
    [5] Yan Zhi-Jin, Shi Wei. Radiation characteristics of terahertz GaAs photoconductive antenna arrays. Acta Physica Sinica, doi: 10.7498/aps.70.20211210
    [6] Jiang Wei, Zhao Huan, Wang Guo-Cui, Wang Xin-Ke, Han Peng, Sun Wen-Feng, Ye Jia-Sheng, Feng Sheng-Fei, Zhang Yan. Birefringence characteristics of magnesium oxide crystal in terahertz frequency region by using terahertz focal plane imaging. Acta Physica Sinica, doi: 10.7498/aps.69.20200766
    [7] Zhang Yao, Sun Shuai, Yan Zhong-Bao, Zhang Guo, Shi Wei, Sheng Quan, Fang Qiang, Zhang Jun-Xiang, Shi Chao-Du, Zhang Gui-Zhong, Yao Jian-Quan. Design and coupling characteristics of terahertz dual-core anti-resonant fiber. Acta Physica Sinica, doi: 10.7498/aps.69.20200662
    [8] Niu Qing-Chen, Gou Jun, Wang Jun, Jiang Ya-Dong. Absorption enhancement of terahertz wave in microbolometers by titanium disk array. Acta Physica Sinica, doi: 10.7498/aps.68.20190902
    [9] Zhou Kang, Li Hua, Wan Wen-Jian, Li Zi-Ping, Cao Jun-Cheng. Group velocity dispersion analysis of terahertz quantum cascade laser frequency comb. Acta Physica Sinica, doi: 10.7498/aps.68.20190217
    [10] Wei Xiang-Fei, He Rui, Zhang Gang, Liu Xiang-Yuan. Terahertz photoconductivity in InAs/GaSb based quantum well system. Acta Physica Sinica, doi: 10.7498/aps.67.20180769
    [11] Mou Yuan, Wu Zhen-Sen, Zhang Geng, Gao Yan-Qing, Yang Zhi-Qiang. Establishment of THz dispersion model of metals based on Kramers-Kronig relation. Acta Physica Sinica, doi: 10.7498/aps.66.120202
    [12] Cui Bin, Yang Yu-Ping, Ma Pin, Yang Xue-Ying, Ma Li-Wen. Optical modulation characteristics of all-dielectric grating at terahertz frequencies. Acta Physica Sinica, doi: 10.7498/aps.65.074209
    [13] Li Dan, Liu Yong, Wang Huai-Xing, Xiao Long-Sheng, Ling Fu-Ri, Yao Jian-Quan. Gain characteristics of grapheme plasmain terahertz range. Acta Physica Sinica, doi: 10.7498/aps.65.015201
    [14] Zhang Yu-Ping, Li Tong-Tong, Lü Huan-Huan, Huang Xiao-Yan, Zhang Hui-Yun. Study on sensing characteristics of I-shaped terahertz metamaterial absorber. Acta Physica Sinica, doi: 10.7498/aps.64.117801
    [15] Jiang Yue-Song, Nie Meng-Yao, Zhang Chong-Hui, Xin Can-Wei, Hua Hou-Qiang. Terahertz scattering property for the coated object of rough surface. Acta Physica Sinica, doi: 10.7498/aps.64.024101
    [16] Wang Rui-Jun, Deng Bin, Wang Hong-Qiang, Qin Yu-Liang. Electromagnetic scattering characteristic of aluminous targets in the terahertz and far infrared region. Acta Physica Sinica, doi: 10.7498/aps.63.134102
    [17] Liu Ya-Qing, Zhang Yu-Ping, Zhang Hui-Yun, Lü Huan-Huan, Li Tong-Tong, Ren Guang-Jun. Study on the gain characteristics of terahertz surface plasma in optically pumped graphene multi-layer structures. Acta Physica Sinica, doi: 10.7498/aps.63.075201
    [18] Dong Hai-Ming. Electrically-controlled nonlinear terahertz optical properties of graphene. Acta Physica Sinica, doi: 10.7498/aps.62.237804
    [19] Fan Guo-Li, Jiang Yue-Song, Liu Li, Li Fang. Analysis on high frequency performance of THz GaAs Schottky mixer diode. Acta Physica Sinica, doi: 10.7498/aps.59.5374
    [20] Zhang Dong-Ke, Zhang Ye-Wen, He Li, Li Hong-Qiang, Chen Hong. Experimental verification of the characteristic of one-dimensional metamaterials by use of lumped-elements L-C. Acta Physica Sinica, doi: 10.7498/aps.54.768
Metrics
  • Abstract views:  252
  • PDF Downloads:  11
  • Cited By: 0
Publishing process
  • Received Date:  27 May 2025
  • Accepted Date:  04 August 2025
  • Available Online:  10 September 2025
  • /

    返回文章
    返回
    Baidu
    map