-
In order to clarify the metamagnetic transition properties and corresponding crystal parameter characteristics of La0.9Pr0.1Fe12B6 alloy, as well as the accompanying magnetocaloric effects, we studied the magnetic phase transition process of the alloy induced by magnetic field and temperature, and the corresponding X-ray diffraction patterns changes, and conducted in-depth comparisons of the magnetocaloric properties under different measurement modes. The results indicate that La0.9Pr0.1Fe12B6 sample mainly consists of about 90 wt.% SrNi12B6 type structural main phase and about 10 wt.% Fe2B and α-Fe,which is consistent with references. During the zero-field increasing temperature process, the magnetic state sequence of the main phase of La0.9Pr0.1Fe12B6 alloy is antiferromagnetic (AFM)→ferromagnetic (FM)→paramagnetic (PM); during the isothermal magnetization process, three types of magnetic field-induced metamagnetic transitions occur in different temperature ranges, namely, two different transitions between AFM and FM states at low temperatures, and a transition between PM and FM states above the Curie temperature(TC). The corresponding critical magnetic field (HC) is much lower than that of the LaFe12B6 parent alloy. On the contrary, the main phase of La0.9Pr0.1Fe12B6 alloy exhibits only PM-FM transition present. This indicates that after the alloy transitions from PM state to FM state during the cooling process, even after the temperature drops to a certain value, it will not transition to AFM state. Similar phenomena also exist in other alloys of LaFe12B6 system. Based on the Néel temperature(TN) and TC obtained the ZFCW modeM-T curves, the magnetic state phase diagram of La0.9Pr0.1Fe12B6 alloy was plotted. The results indicate that as the external magnetic field increases, TC moves linearly towards higher temperatures at a rate of almost 0.48 K/kOe. Conversely, TN1 and TN2 gradually move towards lower temperatures at rates of 0.48 K/kOe and 0.26 K/kOe, respectively. The zero-field and field-variable temperature XRD patterns show that during the magnetic transition between disorder and order states of the main phase in La0.9Pr0.1Fe12B6 alloy, there is a phenomenon of magnetocrystalline coupling. As a result, in addition to the original diffraction peaks of the main phase, some new diffraction peaks that are not observable in the PM state also appear, and their intensity increases with decreasing temperature or increasing magnetic field. Through Retveld refinement XRD patterns under different conditions, it was found that the atomic occupancy of La/Pr and Fe is very stable under different environments, but the atomic occupancy of B varies greatly, which may be the main factor leading to the appearance of new diffraction peaks. In addition, in the temperature dependent magnetic entropy change curve calculated based on isothermal magnetization data in continuous measurement mode, a large magnetic entropy change can be observed near TC due to the magnetic field induced first-order metamagnetic transition of PM-FM. For example, under a magnetic field of 70kOe, the maximum magnetic entropy change near 50K can reach 19J/kg·K, and the relative cooling capacity is about 589.1J/kg. However, under the same measurement mode, the expected large magnetic entropy change due to the AFM-FM metamagnetic transition was not observed. But, when using a discontinuous measurement mode, the large magnetic entropy change accompanying the AFM-FM transition process is also observed. For example, under a magnetic field of 70kOe, the maximum magnetic entropy change near 8K can reach -12J/kg·K.
-
Keywords:
- La0.9Pr0.1Fe12B6alloy /
- magnetic transition /
- magnetocaloric effect
-
[1] Pecharsky V K, Jr Gschneidner K A 1997 Phys.Rev.Lett. 78 4494.
[2] Pecharsky V K, Jr Gschneidner K A 1997 J.Magn.Magn.Mater. 167 L179.
[3] Pecharsky V K, Jr Gschneidner K A 1997 Appl.Phys.Lett. 70 3299.
[4] Levin E M, Pecharsky V K, Jr Gschneidner K A 2000 Phys.Rev.B 262 R14625.
[5] Choe W, Pecharsky V K, Pecharsky A O, Jr Gschneidner K A, Young V G, Jr Miller G 2000 J. Phys.Rev.Lett. 84 4617.
[6] Wada H, Matsuo S, Mitsuda A 2009 Phys.Rev.B 79 092407.
[7] Wada H, Tanabe Y 2001 Appl.Phys.Lett. 79 3302.
[8] Yu S Y, Liu Z H, Liu G D, Chen J L, Cao Z X, Wu G H, Zhang B, Zhang X X 2006 Appl.Phys.Lett. 89 162503.
[9] Han Z D, Wand D H, Zhang C L, Tang S L, Gu B X, Du Y W 2006 Appl.Phys.Lett. 89 182507.
[10] Han Z D, Wang D H, Zhang C L, Xuan H C, Fu B X, Du Y W 2007 Appl.Phys.Lett. 90 042507.
[11] Tegus O, Brückl E, Buschow K H, De Boer F R 2002 Nature 415 150.
[12] Fujieda S, Fujita A, Fukamichi K 2002 Appl.Phys.Lett. 81 1276.
[13] Fujita A, Fujieda S, Fukamichi K, Mitamura H, Goto T 2002 Phys.Rev.B 65 014410.
[14] Hu F X, Ilyn Max, Tishin A M, Sun J R, Wang G J, Chen Y F, Wang F, Cheng Z H, Shen B G 2003 J.Appl.Phys. 93 5503.
[15] Pecharsky V K, Jr Gschneidner K A 1997 J.Alloys.Compd. 260 98.
[16] Krenke T, Acet M, Wassermann E F, Moya X, Manosa L, Planes A 2005 Phys.Rev.B 72 014412.
[17] Hu F X, Shen B G, Sun J R, Wang G J, Chen Z H 2002 Appl.Phys.Lett. 90 826.
[18] Hu W J, Du J, Li B, Zhang Q, Zhang Z D 2008 Appl.Phys.Lett. 92 192505.
[19] Samanta T, Das I, Banerjee S 2007 Appl.Phys.Lett. 91 152506.
[20] Chen J, Shen B G, Dong Q Y, Hu F X, Sun J R 2010 Appl.Phys.Lett. 96 152501.
[21] Diop L V B, Isnard O, Rodríguez-Carvajal J 2016 Phys.Rev.B 93 014440.
[22] Diop L V B, Isnard O 2016 Appl.Phys.Lett. 108 132401.
[23] Diop L V B, Isnard O 2016 J.Appl.Phys. 119 213904.
[24] Diop L V B, Isnard O 2022 Solid State Commun. 341 114568.
[25] Diop L V B, Isnard O 2021 J.Appl.Phys. 129 243902.
[26] Diop L V B, Isnard O 2021 Appl. Phys. Lett. 119 032403.
[27] Ma Z P, Dong X S, Zhang Z Q, Li L W 2021 J.Mater.Sci.Technol. 92138.
[28] Chen X, Mudryk Y, Pathak A K, Pecharsky V K 2021 J.Alloys.Compd. 884 161115.
[29] Fujieda S, Fujita A, Fukamichi K, Hirano N, Nagaya S 2006 J.Alloys.Compd. 408 1165.
[30] Shen J, Gao B, Yan L Q, Li Y X, Zhang H W, Hu F X Sun J R 2007 Chinese Physics 16 3848.
[31] Shen J, Li Y X, Sun J R, Shen B G 2009 Chin.Phys.B 18 2058.
[32] Fujieda S, Fujita A, Fukamichi K 2005 IEEE Trans.Magn. 41 2787.
[33] Fujieda S, Fujita A, Fukamichi K 2007 J.Magn.Magn.Mater. 310 e1006.
[34] Fujieda S, Fujita A, Fukamichi K 2011 J.Phys.D Appl.Phys. 44 064013.
[35] Chen X, Chen Y G, Tang Y B 2011 RARE METALS 309 343.
[36] Zhang C L, Wang D H, Han Z D, Tang S L, Gu B X, Du Y W 2006 Appl.Phys.Lett. 89 122503.
[37] Wang F, Shen B G, Zhang J, Sun J R, Meng F B, Li Y X 2010 Chin.Phys.B 19 513.
[38] Diop L V B, Isnard O 2018 Phys.Rev.B 97 014436.
[39] Wu W X, Xue Z Y, H X, Li X M, Guo Y Q 2009 Sci.China-Phys.Mech.Astron. 39 372 (in Chinese) [吴文霞,薛志勇,洪兴,李岫梅,郭永权 2009中国科学:物理学 力学 天文学 39 372]
[40] Zhao X, Li L, Bao K, Zhu P, Rao Q, Ma S, Liu B, Ge Y, Li D, Cui T 2020 Phys.Chem.Chem.Phys. 22 27425.
[41] Chen X, Chen Y G, Tang Y B 2011 J.Alloys.Compd. 509 8534.
[42] Chen X, Chen Y G, Tang Y B 2011 RARE METALS 309 343.
[43] Chen X, Chen Y G, Tang Y B 2011 J.Magn.Magn.Mater. 323 3177.
[44] Gigüe A, Foldeaki M, Ravi Gopal B, Chahine R, Bose T K, Frydman A, Barclay J A 1999 Phys.Rev.Lett. 83 2262.
[45] Pecharsky V K, Jr Gschneidner K A 1999 J.Appl.Phys. 86 565.
Metrics
- Abstract views: 26
- PDF Downloads: 2
- Cited By: 0