Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Diverse dynamical behaviors and predefined-time synchronization of a simple memristive chaotic system

LAI Qiang WANG Jun HUANG Daxun

Citation:

Diverse dynamical behaviors and predefined-time synchronization of a simple memristive chaotic system

LAI Qiang, WANG Jun, HUANG Daxun
cstr: 32037.14.aps.74.20250954
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The rich dynamical analysis and predefined-time synchronization of simple memristive chaotic systems are of great significance in fully understanding the mechanism of dynamics formation and expanding the potential applications of chaotic systems. A four-dimensional memristive chaotic system with only a single nonlinear term is proposed to reveal various dynamic behaviors under the change of parameters and initial conditions, and to realize effective synchronization control. Based on dissipativity analysis and Lyapunov exponent computation, and combined with bifurcation analysis and multi steady state exploration, it is shown that the system possesses an infinite number of unstable equilibrium points and exhibits homogeneous and heterogeneous multistability, including point attractors, periodic attractors, and chaotic attractors. Moreover, it is found that amplitude modulation of the output signals of the system can be precisely achieved by adjusting internal parameters of the memristor, thus providing a theoretical basis for achieving effective amplitude modulation of periodic and chaotic signals. A predefined-time sliding mode surface with linear and bidirectional power-law nonlinear decay terms is constructed to address synchronization. Sufficient conditions for predefined-time convergence of synchronization errors are derived using Lyapunov stability theory, and a double-stage sliding mode controller with an adjustable upper bound on synchronization time is designed. The resulting control law ensures an adjustable synchronization time bound and rapid error suppression under arbitrary disturbances. Numerical simulations further confirm the effectiveness and robustness of the proposed control scheme, indicating that even under external disturbances or significant variations in initial conditions, the error variables can still converge precisely within the predefined time.
      Corresponding author: LAI Qiang, laiqiang87@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62366014).
    [1]

    Wang M J, Ding J, Li J H, He S B, Zhang X N, Iu H H C, Li Z J 2024 Eur. Phys. J. Plus 139 64Google Scholar

    [2]

    Lai Q, Liu Y J, Fortuna L 2024 IEEE Trans. Circuits Syst. I: Reg. Pap. 71 4665Google Scholar

    [3]

    Luo Y R, Fan C L, Xu C B, Li X Y 2024 Chaos Soliton. Fract. 183 114951Google Scholar

    [4]

    Lai Q, Liu Y 2025 Sci. China Technol. Sci. 68 1320401Google Scholar

    [5]

    赖强, 秦铭宏 2025 贵州师范大学学报(自然科学版) 43 1

    Lai Q, Qin M H 2025 J. Guizhou Normal Univ. (Nat. Sci. Ed. ) 43 1

    [6]

    Yuan Y, Yu F, Tan B H, Huang Y Y, Yao W, Cai S, Lin H R 2025 Chaos 35 013121Google Scholar

    [7]

    Liu Y, Chen L, Li C D, Liu X, Zhou W H, Li K 2023 Soft Comput. 27 18403Google Scholar

    [8]

    Ding L N, Xuan M T 2025 Entropy 27 481Google Scholar

    [9]

    张贵重, 全旭, 刘嵩 2022 71 240502Google Scholar

    Zhang G Z, Quan X, Liu S 2022 Acta Phys. Sin. 71 240502Google Scholar

    [10]

    He Y, Zhang Y Q, He X, Wang X Y 2021 Sci. Rep. 11 6398Google Scholar

    [11]

    Zhang B, Liu L 2023 Mathematics 11 2585Google Scholar

    [12]

    Madani Y A, Aldwoah K, Younis B, Alsharafi M, Osman O, Muflh B 2025 Sci. Rep. 15 14104Google Scholar

    [13]

    Han J P, Zhou L Q 2024 Neurocomputing 610 128612Google Scholar

    [14]

    赵智鹏, 周双, 王兴元 2021 70 230502Google Scholar

    Zhao Z P, Zhou S, Wang X Y 2021 Acta Phys. Sin. 70 230502Google Scholar

    [15]

    Ramamoorthy R, Rajagopal K, Leutcho G D, Krejcar O, Namazi H, Hussain I 2022 Chaos Soliton. Fract. 156 111834Google Scholar

    [16]

    Beyhan S 2024 Chaos Soliton. Fract. 180 114578Google Scholar

    [17]

    Geng X T, Feng J W, Zhao Y, Li N, Wang J Y 2023 Electron. Res. Arch. 31 3291Google Scholar

    [18]

    赖强, 王君 2024 73 180503Google Scholar

    Lai Q, Wang J 2024 Acta Phys. Sin. 73 180503Google Scholar

    [19]

    Tino N, Niamsup P 2021 Front. Appl. Math. Stat. 7 589406Google Scholar

    [20]

    Al-Saggaf U M, Bettayeb M, Djennoune S 2022 Eur. J. Control 63 164Google Scholar

    [21]

    Zhang M J, Zang H Y, Bai L Y 2022 Chaos Soliton. Fract. 164 112745Google Scholar

    [22]

    Yan S H, Wu X Y, Jiang J W 2025 Chaos Soliton. Fract. 196 116337Google Scholar

    [23]

    贾美美, 曹家伟, 白明明 2024 73 170502Google Scholar

    Jia M M, Cao J W, Bai M M 2024 Acta Phys. Sin. 73 170502Google Scholar

    [24]

    Liu Y, Zhu F 2022 Comput. Intel. Neurosc. 2022 3264936

    [25]

    Zheng W, Qu S C, Tang Q, Du X N 2025 J. Vib. Control 31 528-538Google Scholar

    [26]

    包伯成, 胡文, 许建平, 刘中, 邹凌 2011 60 120502Google Scholar

    Bao B C, Hu W, Xu J P, Liu Z, Zou L 2011 Acta Phys. Sin. 60 120502Google Scholar

    [27]

    Li C B, Sprott J C 2016 Optik 127 10389Google Scholar

    [28]

    赖强, 秦铭宏 2025 电子与信息学报 47 1

    Lai Q, Qin M H 2025 J. Electron. Inf. Technol. 47 1

  • 图 1  系统(2)的混沌吸引子 (a) x-y; (b) x-z; (c) y-z; (d) x-w; (e) y-w; (f) z-w

    Figure 1.  Chaotic attractors of system (2): (a) x-y; (b) x-z; (c) y-z; (d) x-w; (e) y-w; (f) z-w.

    图 2  系统(2)关于参数$ a \in [0.8, 0.95] $的数值结果 (a) 分岔图; (b) Lyapunov 指数谱

    Figure 2.  Numerical results of system (2) with parameter $ a \in [0.8, 0.95] $: (a) Bifurcation diagram; (b) Lyapunov exponent spectrum.

    图 3  系统(2)在不同参数a时的吸引子 (a) $ a = 0.8 $; (b) $ a = 0.89 $; (c) $ a = 0.95 $

    Figure 3.  Attractors of system (2) under different values of parameter $ a $: (a) $ a = 0.8 $; (b) $ a = 0.89 $; (c) $ a = 0.95 $.

    图 4  系统(2)关于初值$ [0.1, 0.1, 0.1, w(0)] $, $ w(0) \in [ - 4, 4] $的数值结果 (a) 分岔图; (b) Lyapunov 指数谱

    Figure 4.  Numerical results of system (2) with initial values $ [0.1, 0.1, 0.1, w(0)] $, where $ w(0) \in [ - 4, 4] $: (a) Bifurcation diagram; (b) Lyapunov exponent spectrum.

    图 5  系统(2)的异构多稳态 (a) 一个点吸引子、两个混沌吸引子和三个周期吸引子; (b) 两个周期吸引子和四个混沌吸引子

    Figure 5.  Heterogeneous multistability of system (2): (a) One point attractor, two chaotic attractors, and three periodic attractors; (b) two periodic attractors and four chaotic attractors.

    图 6  系统(2)的混沌信号调幅控制 (a) $ \beta \in [0.1, 0.95] $时各状态变量的最大幅值; (b) 不同$ \beta $对应的混沌吸引子

    Figure 6.  Amplitude modulation control of chaotic signals in system (2): (a) Maximum amplitudes of state variables for $ \beta \in [0.1, 0.95] $; (b) chaotic attractors corresponding to different values of $ \beta $.

    图 7  系统(2)的周期信号调幅控制 (a) $ \beta \in [0.1, 0.95] $时各状态变量的最大幅值; (b) 不同$ \beta $对应的周期吸引子

    Figure 7.  Amplitude modulation control of periodic signals in system (2): (a) Maximum amplitudes of state variables for $ \beta \in [0.1, 0.95] $; (b) periodic attractors corresponding to different values of $ \beta $.

    图 8  不同状态变量收敛轨迹

    Figure 8.  Convergence trajectories of different state variables.

    图 9  误差变量演变轨迹

    Figure 9.  Evolution trajectories of the error variables.

    图 10  初始条件改变的状态变量收敛轨迹

    Figure 10.  Convergence trajectories of state variables under changed initial conditions.

    图 11  初始条件改变的误差演变轨迹

    Figure 11.  Evolution trajectories of error variables under changed initial conditions.

    图 12  多组不同初始条件下收敛时间分析

    Figure 12.  Convergence time analysis under multiple initial conditions.

    图 13  鲁棒性分析

    Figure 13.  Robustness analysis.

    Baidu
  • [1]

    Wang M J, Ding J, Li J H, He S B, Zhang X N, Iu H H C, Li Z J 2024 Eur. Phys. J. Plus 139 64Google Scholar

    [2]

    Lai Q, Liu Y J, Fortuna L 2024 IEEE Trans. Circuits Syst. I: Reg. Pap. 71 4665Google Scholar

    [3]

    Luo Y R, Fan C L, Xu C B, Li X Y 2024 Chaos Soliton. Fract. 183 114951Google Scholar

    [4]

    Lai Q, Liu Y 2025 Sci. China Technol. Sci. 68 1320401Google Scholar

    [5]

    赖强, 秦铭宏 2025 贵州师范大学学报(自然科学版) 43 1

    Lai Q, Qin M H 2025 J. Guizhou Normal Univ. (Nat. Sci. Ed. ) 43 1

    [6]

    Yuan Y, Yu F, Tan B H, Huang Y Y, Yao W, Cai S, Lin H R 2025 Chaos 35 013121Google Scholar

    [7]

    Liu Y, Chen L, Li C D, Liu X, Zhou W H, Li K 2023 Soft Comput. 27 18403Google Scholar

    [8]

    Ding L N, Xuan M T 2025 Entropy 27 481Google Scholar

    [9]

    张贵重, 全旭, 刘嵩 2022 71 240502Google Scholar

    Zhang G Z, Quan X, Liu S 2022 Acta Phys. Sin. 71 240502Google Scholar

    [10]

    He Y, Zhang Y Q, He X, Wang X Y 2021 Sci. Rep. 11 6398Google Scholar

    [11]

    Zhang B, Liu L 2023 Mathematics 11 2585Google Scholar

    [12]

    Madani Y A, Aldwoah K, Younis B, Alsharafi M, Osman O, Muflh B 2025 Sci. Rep. 15 14104Google Scholar

    [13]

    Han J P, Zhou L Q 2024 Neurocomputing 610 128612Google Scholar

    [14]

    赵智鹏, 周双, 王兴元 2021 70 230502Google Scholar

    Zhao Z P, Zhou S, Wang X Y 2021 Acta Phys. Sin. 70 230502Google Scholar

    [15]

    Ramamoorthy R, Rajagopal K, Leutcho G D, Krejcar O, Namazi H, Hussain I 2022 Chaos Soliton. Fract. 156 111834Google Scholar

    [16]

    Beyhan S 2024 Chaos Soliton. Fract. 180 114578Google Scholar

    [17]

    Geng X T, Feng J W, Zhao Y, Li N, Wang J Y 2023 Electron. Res. Arch. 31 3291Google Scholar

    [18]

    赖强, 王君 2024 73 180503Google Scholar

    Lai Q, Wang J 2024 Acta Phys. Sin. 73 180503Google Scholar

    [19]

    Tino N, Niamsup P 2021 Front. Appl. Math. Stat. 7 589406Google Scholar

    [20]

    Al-Saggaf U M, Bettayeb M, Djennoune S 2022 Eur. J. Control 63 164Google Scholar

    [21]

    Zhang M J, Zang H Y, Bai L Y 2022 Chaos Soliton. Fract. 164 112745Google Scholar

    [22]

    Yan S H, Wu X Y, Jiang J W 2025 Chaos Soliton. Fract. 196 116337Google Scholar

    [23]

    贾美美, 曹家伟, 白明明 2024 73 170502Google Scholar

    Jia M M, Cao J W, Bai M M 2024 Acta Phys. Sin. 73 170502Google Scholar

    [24]

    Liu Y, Zhu F 2022 Comput. Intel. Neurosc. 2022 3264936

    [25]

    Zheng W, Qu S C, Tang Q, Du X N 2025 J. Vib. Control 31 528-538Google Scholar

    [26]

    包伯成, 胡文, 许建平, 刘中, 邹凌 2011 60 120502Google Scholar

    Bao B C, Hu W, Xu J P, Liu Z, Zou L 2011 Acta Phys. Sin. 60 120502Google Scholar

    [27]

    Li C B, Sprott J C 2016 Optik 127 10389Google Scholar

    [28]

    赖强, 秦铭宏 2025 电子与信息学报 47 1

    Lai Q, Qin M H 2025 J. Electron. Inf. Technol. 47 1

Metrics
  • Abstract views:  1469
  • PDF Downloads:  44
  • Cited By: 0
Publishing process
  • Received Date:  18 July 2025
  • Accepted Date:  09 August 2025
  • Available Online:  02 September 2025
  • Published Online:  20 October 2025
  • /

    返回文章
    返回
    Baidu
    map