Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Dynamical behavior of graphene dislocations based on crystal phase field model

WANG Hui WU Baiyu ZHEN Leyi ZHOU Wenquan

Citation:

Dynamical behavior of graphene dislocations based on crystal phase field model

WANG Hui, WU Baiyu, ZHEN Leyi, ZHOU Wenquan
cstr: 32037.14.aps.74.20250936
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The study of the evolution of grain boundary (GB) structures and the mechanisms of dislocation motion in graphene is of significance in uncovering the physical essence of plastic deformation behavior of graphene. Currently, the dynamic behavior of graphene GBs under non-mechanical loads has been extensively investigated. However, due to the inherent limitations of existing experimental conditions and simulation methods in terms of temporal and spatial scales, the dynamic evolution process of dislocations in graphene under mechanical tensile loads and their intrinsic correlation with plastic deformation are still poorly understood. In this work, a phase-field crystal (PFC) model based on classical density functional theory (DFT) is adopted. Combining periodic density field variables, the model achieves cross-scale coupling between microscopic crystal structures and macroscopic diffusion time scales, enabling efficient simulation of long-term evolution processes. It is particularly suitable for characterizing microscopic mechanisms involving complex defect evolution in graphene, such as dislocation glide and climb, and GB migration.In this work, the complete deformation process of a graphene bicrystal system containing a GB loop under uniaxial tensile loading is simulated on an atomic scale, including elastic response, elastic-plastic transition, plastic deformation, and fracture. The transformation characteristics of 5|7 dislocation core structures and the topological evolution of the GB loop within the system are systematically investigated. The simulation results reveal that when the applied strain is below a critical value, the system exhibits the elastic response, characterized by a linear relationship between the average response strain and the applied strain. As the strain reaches the critical value, the 5|7 dislocations at the GB loop undergo transformation into 5|7|7|5 dislocations through C—C bond rotation. This transition is accompanied by a significant increase in the strain amplitude at the dislocation cores, marking the onset of plastic deformation. Beyond the critical strain, the system thus enters the plastic deformation stage, during which the GB loop exhibits three different types of evolution behaviors: 1) alternating transformations between 5|7 and 5|7|7|5 dislocation structures driven by repeated C—C bond rotation; 2) a cyclic evolution of dislocations involving “pinning $\rightleftharpoons $ mixed climb/glide motion”, accompanied by energy fluctuations described as “energy storage-dissipation-restorage”; 3) dislocations remaining in a “pinned” state until stress concentration in their core regions initiates transgranular cracking, ultimately leading to ductile fracture of the system.This study provides important theoretical insights into the physical mechanisms underlying the plastic deformation behavior of graphene.
      Corresponding author: ZHOU Wenquan, wqzhou@nwafu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 52002331) and the 14th Five-Year Plan for Educational Science of Shaanxi Province, China (Grant No. SGH22Q197).
    [1]

    Tiwari S K, Sahoo S, Wang N, Huczko A 2020 J. Sci. : Adv. Mater. Devices 5 10Google Scholar

    [2]

    Slepchenkov M M, Glukhova O E 2019 Coatings 9 74Google Scholar

    [3]

    Lherbier A, Dubois S M M, Declerck X, Niquet Y M, Roche S, Charlier J C 2012 Phys. Rev. B 86 75402Google Scholar

    [4]

    Mortazavi B, Ahzi S 2013 Carbon 63 460Google Scholar

    [5]

    Geim A K 2009 Science 324 1530Google Scholar

    [6]

    Hansora D P, Shimpi N G, Mishra S 2015 JOM 67 2855Google Scholar

    [7]

    Dervishi E, Ji Z, Htoon H, Sykora M, Doorn S K 2019 Nanoscale 11 16571Google Scholar

    [8]

    Wong C H, Vijayaraghavan V 2012 Materials Science and Engineering: A 556 420Google Scholar

    [9]

    He L C, Guo S S, Lei J C, Sha Z D, Liu Z S 2014 Carbon 75 124Google Scholar

    [10]

    Fu Y, Ragab T, Basaran C 2016 Comput. Mater. Sci. 124 142Google Scholar

    [11]

    Zhang X L, Zhang J L, Yang M 2020 RSC Adv. 10 19254Google Scholar

    [12]

    Gamboa-Suárez A, Seuret-Hernández H Y, Leyssale J M 2022 Carbon Trends 9 100197Google Scholar

    [13]

    Zandiatashbar A, Lee G H, An S J, et al. 2014 Nat. Commun. 5 3186Google Scholar

    [14]

    Cottrell A H, Bilby B A 1949 Proc. Phys. Soc. London, Sect. A 62 49Google Scholar

    [15]

    Nabarro F R N 1952 Adv. Phys. 1 269Google Scholar

    [16]

    Lehtinen O, Kurasch S, Krasheninnikov A V, Kaiser U 2013 Nat. Commun. 4 2098Google Scholar

    [17]

    Warner J H, Margine E R, Mukai M, Robertson A W, Giustino F, Kirkland A I 2012 Science 337 209Google Scholar

    [18]

    Gong C, Robertson A W, He K, Lee G D, Yoon E, Allen C S, Kirkland A I, Warner J H 2015 ACS Nano 9 10066Google Scholar

    [19]

    Gong C, He K, Chen Q, Robertson A W, Warner J H 2016 ACS Nano 10 9165Google Scholar

    [20]

    Yang Z, Huang Y H, Ma F, Sun Y J, Xu K W, Chu P K 2015 Eur. Phys. J. B 88 135Google Scholar

    [21]

    Grantab R, Shenoy V B, Ruoff R S 2010 Science 330 946Google Scholar

    [22]

    Zhou W Q, Wang J C, Lin B, Wang Z J, Li J J, Huang Z F 2019 Carbon 153 242Google Scholar

    [23]

    高丰, 李欢庆, 宋卓, 赵宇宏 2024 73 248101Google Scholar

    Gao F, Li H Q, Song Z, Zhao Y H 2024 Acta. Phys. Sin. 73 248101Google Scholar

    [24]

    Yang L, Liu J J, Lin Y W, Xu K, Cao X Z, Zhang Z S, Wu J Y 2021 Chem. Mater. 33 8758Google Scholar

    [25]

    Wu J Y, Gong H, Zhang Z S, He J Y, Ariza P, Ortiz M, Zhang Z L 2019 Appl. Mater. Today 15 34Google Scholar

    [26]

    Liu J, Šesták P, Zhang Z, Wu J 2022 Mater. Today Nano 20 100245Google Scholar

    [27]

    Yamanaka A, McReynolds K, Voorhees P W 2017 Acta Mater. 133 160Google Scholar

    [28]

    Li J Y, Ni B, Zhang T, Gao H J 2018 J. Mech. Phys. Solids 120 36Google Scholar

    [29]

    Qi Y, Krajewski P 2007 Acta Mater. 55 1555Google Scholar

    [30]

    Elder K R, Grant M 2004 Phys. Rev. E 70 51605Google Scholar

    [31]

    Elder K R, Katakowski M, Haataja M, Grant M 2002 Phys. Rev. Lett. 88 245701Google Scholar

    [32]

    Swift J, Hohenberg P C 1977 Phys. Rev. A 15 319Google Scholar

    [33]

    Huang Z F, Elder K R, Provatas N 2010 Phys. Rev. E 82 21605Google Scholar

    [34]

    Elder K R, Provatas N, Berry J, Stefanovic P, Grant M 2007 Phys. Rev. B 75 64107Google Scholar

    [35]

    Los J H, Zakharchenko K V, Katsnelson M I, Fasolino A 2015 Phys. Rev. B 91 45415Google Scholar

    [36]

    Singh S K, Neek-Amal M, Peeters F M 2013 Phys. Rev. B 87 134103Google Scholar

    [37]

    Stefanovic P, Haataja M, Provatas N 2006 Phys. Rev. Lett. 96 225504Google Scholar

    [38]

    Tegze G, Bansel G, Tóth G I, Pusztai T, Fan Z, Gránásy L 2009 J. Comput. Phys. 228 1612Google Scholar

    [39]

    Stefanovic P, Haataja M, Provatas N 2009 Phys. Rev. E 80 46107Google Scholar

    [40]

    Heinonen V, Achim C V, Ala-Nissila T 2016 Phys. Rev. E 93 53003Google Scholar

    [41]

    周文权 2019 博士学位论文(西安: 西北工业大学)

    Zhou W Q 2019 Ph. D. Dissertation (Xi’an: Northwestern Polytechnical University

    [42]

    Zhou W Q, Wang J C, Wang Z J, Huang Z F 2019 Phys. Rev. E 99 013302Google Scholar

    [43]

    Taha D, Mkhonta S K, Elder K R, Huang Z F 2017 Phys. Rev. Lett. 118 255501Google Scholar

    [44]

    Wei Y J, Wu J T, Yin H Q, Shi X H, Yang R G, Dresselhaus M 2012 Nat. Mater. 11 759Google Scholar

    [45]

    Wu J T, Wei Y J 2013 J. Mech. Phys. Solids 61 1421Google Scholar

    [46]

    Liu T H, Pao C W, Chang C C 2012 Carbon 50 3465Google Scholar

    [47]

    Li L, Reich S, Robertson J 2005 Phys. Rev. B 72 184109Google Scholar

    [48]

    Kim Y, Ihm J, Yoon E, Lee G D 2011 Phys. Rev. B 84 75445Google Scholar

    [49]

    Blaschke D N, Szajewski B A 2018 Philos. Mag. 98 2397Google Scholar

    [50]

    Bonilla L L, Carpio A, Gong C, Warner J H 2015 Phys. Rev. B 92 155417Google Scholar

  • 图 1  含晶界环的石墨烯双晶体系结构 (a) 石墨烯双晶体系对应的晶格取向分布云图, 插图为晶界环处5|7位错的排列分布图; (b) 图(a)中矩形区域放大图; (c) 图(b)中5|7位错对应的原子结构图及其Burgers矢量(红色箭头所示)

    Figure 1.  Structure of graphene bicrystal system containing a grain boundary (GB) loop: (a) Illustration of lattice orientation in the graphene bicrystal system, with the inset showing the arrangement of 5|7 dislocations at the GB loop; (b) magnified view of the rectangular region in panel (a); (c) atomic structure diagram of the 5|7 dislocation in panel (b) and its Burgers vector (indicated by the red arrow).

    图 2  双晶体系10的脆性断裂过程 (a)—(d) ${\varepsilon _{\text{e}}}$= 0.59%, 5.85%, 6.09%, 7.58%

    Figure 2.  Brittle fracture process in bicrystal system 10: (a)–(d) ${\varepsilon _{\text{e}}}$= 0.59%, 5.85%, 6.09%, 7.58%.

    图 3  石墨烯双晶体系晶界环拓扑结构演化过程示意图, 其中(a)—(d) ${\varepsilon _{\text{e}}}$= 0.59%, 3.25%, 3.72%, 4.19%; (e) 12组不同晶体取向石墨烯双晶体系的平均响应应变${\bar \varepsilon _{yy}}$-外加应变${\varepsilon _{\text{e}}}$响应曲线

    Figure 3.  Schematic diagram of topological structure evolution of the GB loop in the graphene bicrystal systems: (a)–(d) ${\varepsilon _{\text{e}}}$= 0.59%, 3.25%, 3.72%, 4.19%. (e) Response curves of average strain versus applied strain for twelve graphene bicrystal systems with different crystallographic orientations.

    图 4  双晶体系7中晶界环I号位错($\alpha $= 29.5°)在应变作用下的弹性响应过程 (a) 5|7位错微观结构图; (b) 图(a)的局部应变分布云图及压缩应变(CS)值和拉伸应变(TS)值; (c) 5|7位错核心处的平均局部应变(${\bar \varepsilon _{yy}} - \bar \varepsilon _{yy}^0$)-外加应变${\varepsilon _{\text{e}}}$响应曲线

    Figure 4.  Bicrystal system 7, elastic response process of dislocation I ($\alpha $ = 29.5°) in the GB loop under strain: (a) Microstructure of the 5|7 dislocation; (b) strain distribution contour of panel (a) with values of compressive strain (CS) and tensile strain (TS); (c) response curves of average local strain (${\bar \varepsilon _{yy}} - \bar \varepsilon _{yy}^0$) versus applied strain ${\varepsilon _{\text{e}}}$ at the 5|7 dislocation core.

    图 5  弹性响应阶段双晶体系晶界环处5|7位错应变振幅的变化 (a) I号位错; (2) II号位错

    Figure 5.  Variation in strain amplitude at 5|7 dislocations within the grain boundary loop during elastic response stage: (a) Dislocation I; (b) dislocation II.

    图 6  双晶体系10, 晶界环II号位错($\alpha $= 45.3°)结构转变图, 其中(a) ${\varepsilon _{\text{e}}}$= 3.22%, (b) ${\varepsilon _{\text{e}}}$= 3.28%; (c) 弹-塑性转变过程的平均局部应变(${\bar \varepsilon _{yy}} - \bar \varepsilon _{yy}^0$)-外加应变${\varepsilon _{\text{e}}}$响应曲线

    Figure 6.  Elastoplastic transition in bicrystal system 10, microstructural evolution of defect structure transformation at dislocation II ($\alpha $ = 45.3°) in the GB loop: (a) ${\varepsilon _{\text{e}}}$ = 3.22%; (b) ${\varepsilon _{\text{e}}}$ = 3.28%. (c) Response curves of average local strain (${\bar \varepsilon _{yy}} - \bar \varepsilon _{yy}^0$) versus applied strain ${\varepsilon _{\text{e}}}$.

    图 7  不同温度下, 石墨烯双晶体系10微观结构转变图, 其中(a), (b) I号位错; (c), (d) II号位错; (e) 临界应变随温度变化的柱状图

    Figure 7.  Temperature-dependent microstructural transformation in graphene bicrystal system 10: (a), (b) Dislocation I; (c), (d) dislocation II. (e) Bar chart of critical strain versus temperature.

    图 8  双晶体系12, 晶界环I号位错($\alpha $ = 4.5°)在应变作用下的微观结构演化图与应变响应过程 (a)—(e) 位错缺陷结构微观演化图及其所对应的位错核心区域的应变等值线图(${\varepsilon _{\text{e}}}$ = 3.72%, 3.75%, 3.83%, 3.86%, 4.01%); (f)—(j)为对应的演化过程示意图; (k) I号位错的局部能量密度均值-外加应变曲线; (l) 位错核心处的平均局部应变(${\bar \varepsilon _{yy}} - \bar \varepsilon _{yy}^0$)-外加应变${\varepsilon _{\text{e}}}$响应曲线

    Figure 8.  Bicrystal system 12, microstructural evolution and strain response of dislocation I ($\alpha $ = 4.5°) in the GB loop under applied strain: (a)–(e) Microscopic evolution of dislocation defect structures and corresponding strain contour plots at the dislocation core region (${\varepsilon _{\text{e}}}$ = 3.72%, 3.75%, 3.83%, 3.86%, 4.01%); (f)–(j) schematic diagrams of the corresponding evolutionary stages; (k) curve of average local energy density versus applied strain for dislocation I; (l) response curves of average local strain (${\bar \varepsilon _{yy}} - \bar \varepsilon _{yy}^0$) at the dislocation core versus applied strain ${\varepsilon _{\text{e}}}$.

    图 9  双晶体系4, 晶界环II号位错($\alpha $ = 15.3°)在应变作用下的微观结构演化图与应变响应过程 (a)—(f) ${\varepsilon _{\text{e}}}$ = 3.16%, 3.19%, 3.89%, 3.92%, 3.98%, 4.01%; (g) II号位错的局部能量密度均值-外加应变曲线; (h) 位错核心处的平均局部应变(${\bar \varepsilon _{yy}} - \bar \varepsilon _{yy}^0$)-外加应变${\varepsilon _{\text{e}}}$响应曲线

    Figure 9.  Bicrystal system 4, microstructural evolution and strain response of dislocation II ($\alpha $ = 15.3°) in the GB loop under applied strain: (a)–(f) ${\varepsilon _{\text{e}}}$ = 3.16%, 3.19%, 3.89%, 3.92%, 3.98%, 4.01%; (g) curve of average local energy density versus applied strain for dislocation II; (h) response curves of average local strain (${\bar \varepsilon _{yy}} - \bar \varepsilon _{yy}^0$) at the dislocation core versus applied strain ${\varepsilon _{\text{e}}}$.

    图 10  双晶体系4, 晶界环I号位错($\alpha $ = 44.5°)在应变作用下的微观结构演化图与应变响应过程 (a)—(d) ${\varepsilon _{\text{e}}}$ = 3.51%, 3.54%, 3.60%, 4.19%; (e) 所对应的位错核心处的平均局部应变(${\bar \varepsilon _{yy}} - \bar \varepsilon _{yy}^0$)-外加应变${\varepsilon _{\text{e}}}$响应曲线

    Figure 10.  Bicrystal system 4, microstructural evolution and strain response of dislocation I ($\alpha $= 44.5°) in the GB loop under applied strain: (a)–(d) ${\varepsilon _{\text{e}}}$= 3.51%, 3.54%, 3.60%, 4.19%; (e) corresponding response curves of average local strain (${\bar \varepsilon _{yy}} - \bar \varepsilon _{yy}^0$) at the dislocation core versus applied strain ${\varepsilon _{\text{e}}}$.

    图 11  双晶体系3, 晶界环III号位错($\alpha $ = 70.7°)在应变作用下的微观结构图与应变响应过程 (a)—(c) ${\varepsilon _{\text{e}}}$ = 0.59%, 1.76%, 2.93%; (d) 所对应的位错核心处的平均局部应变(${\bar \varepsilon _{yy}} - \bar \varepsilon _{yy}^0$)-外加应变${\varepsilon _{\text{e}}}$响应曲线

    Figure 11.  Bicrystal system 3, microstructural evolution and strain response of dislocation III ($\alpha $ = 70.7°) in the GB loop under applied strain: (a)–(c) ${\varepsilon _{\text{e}}}$ = 0.59%, 1.76%, 2.93%; (d) corresponding response curves of average local strain (${\bar \varepsilon _{yy}} - \bar \varepsilon _{yy}^0$) at the dislocation core versus applied strain ${\varepsilon _{\text{e}}}$.

    表 1  12组石墨烯双晶体系的参数

    Table 1.  Parameters of the twelve graphene bicrystal systems.

    体系
    编号
    晶粒取向角 体系
    旋转
    角度
    $\theta $/(°)
    bY 轴夹角$\alpha $/(°)
    ${\varphi _1}$/(°) ${\varphi _2}$/(°) I号
    位错
    II号
    位错
    III号
    位错
    1 1.1 –1.1 0 59.5 0.3 60.7
    2 6.1 3.9 5 54.5 5.3 65.7
    3 11.1 8.9 10 49.5 10.3 70.7
    4 16.1 13.9 15 44.5 15.3 75.7
    5 21.1 18.9 20 39.5 20.3 80.7
    6 26.1 23.9 25 34.5 25.3 85.7
    7 31.1 28.9 30 29.5 30.3 90.7
    8 36.1 33.9 35 24.5 35.3 95.7
    9 41.1 38.9 40 19.5 40.3 100.7
    10 46.1 43.9 45 14.5 45.3 105.7
    11 51.1 48.9 50 9.5 50.3 110.7
    12 56.1 53.9 55 4.5 55.3 115.7
    DownLoad: CSV
    Baidu
  • [1]

    Tiwari S K, Sahoo S, Wang N, Huczko A 2020 J. Sci. : Adv. Mater. Devices 5 10Google Scholar

    [2]

    Slepchenkov M M, Glukhova O E 2019 Coatings 9 74Google Scholar

    [3]

    Lherbier A, Dubois S M M, Declerck X, Niquet Y M, Roche S, Charlier J C 2012 Phys. Rev. B 86 75402Google Scholar

    [4]

    Mortazavi B, Ahzi S 2013 Carbon 63 460Google Scholar

    [5]

    Geim A K 2009 Science 324 1530Google Scholar

    [6]

    Hansora D P, Shimpi N G, Mishra S 2015 JOM 67 2855Google Scholar

    [7]

    Dervishi E, Ji Z, Htoon H, Sykora M, Doorn S K 2019 Nanoscale 11 16571Google Scholar

    [8]

    Wong C H, Vijayaraghavan V 2012 Materials Science and Engineering: A 556 420Google Scholar

    [9]

    He L C, Guo S S, Lei J C, Sha Z D, Liu Z S 2014 Carbon 75 124Google Scholar

    [10]

    Fu Y, Ragab T, Basaran C 2016 Comput. Mater. Sci. 124 142Google Scholar

    [11]

    Zhang X L, Zhang J L, Yang M 2020 RSC Adv. 10 19254Google Scholar

    [12]

    Gamboa-Suárez A, Seuret-Hernández H Y, Leyssale J M 2022 Carbon Trends 9 100197Google Scholar

    [13]

    Zandiatashbar A, Lee G H, An S J, et al. 2014 Nat. Commun. 5 3186Google Scholar

    [14]

    Cottrell A H, Bilby B A 1949 Proc. Phys. Soc. London, Sect. A 62 49Google Scholar

    [15]

    Nabarro F R N 1952 Adv. Phys. 1 269Google Scholar

    [16]

    Lehtinen O, Kurasch S, Krasheninnikov A V, Kaiser U 2013 Nat. Commun. 4 2098Google Scholar

    [17]

    Warner J H, Margine E R, Mukai M, Robertson A W, Giustino F, Kirkland A I 2012 Science 337 209Google Scholar

    [18]

    Gong C, Robertson A W, He K, Lee G D, Yoon E, Allen C S, Kirkland A I, Warner J H 2015 ACS Nano 9 10066Google Scholar

    [19]

    Gong C, He K, Chen Q, Robertson A W, Warner J H 2016 ACS Nano 10 9165Google Scholar

    [20]

    Yang Z, Huang Y H, Ma F, Sun Y J, Xu K W, Chu P K 2015 Eur. Phys. J. B 88 135Google Scholar

    [21]

    Grantab R, Shenoy V B, Ruoff R S 2010 Science 330 946Google Scholar

    [22]

    Zhou W Q, Wang J C, Lin B, Wang Z J, Li J J, Huang Z F 2019 Carbon 153 242Google Scholar

    [23]

    高丰, 李欢庆, 宋卓, 赵宇宏 2024 73 248101Google Scholar

    Gao F, Li H Q, Song Z, Zhao Y H 2024 Acta. Phys. Sin. 73 248101Google Scholar

    [24]

    Yang L, Liu J J, Lin Y W, Xu K, Cao X Z, Zhang Z S, Wu J Y 2021 Chem. Mater. 33 8758Google Scholar

    [25]

    Wu J Y, Gong H, Zhang Z S, He J Y, Ariza P, Ortiz M, Zhang Z L 2019 Appl. Mater. Today 15 34Google Scholar

    [26]

    Liu J, Šesták P, Zhang Z, Wu J 2022 Mater. Today Nano 20 100245Google Scholar

    [27]

    Yamanaka A, McReynolds K, Voorhees P W 2017 Acta Mater. 133 160Google Scholar

    [28]

    Li J Y, Ni B, Zhang T, Gao H J 2018 J. Mech. Phys. Solids 120 36Google Scholar

    [29]

    Qi Y, Krajewski P 2007 Acta Mater. 55 1555Google Scholar

    [30]

    Elder K R, Grant M 2004 Phys. Rev. E 70 51605Google Scholar

    [31]

    Elder K R, Katakowski M, Haataja M, Grant M 2002 Phys. Rev. Lett. 88 245701Google Scholar

    [32]

    Swift J, Hohenberg P C 1977 Phys. Rev. A 15 319Google Scholar

    [33]

    Huang Z F, Elder K R, Provatas N 2010 Phys. Rev. E 82 21605Google Scholar

    [34]

    Elder K R, Provatas N, Berry J, Stefanovic P, Grant M 2007 Phys. Rev. B 75 64107Google Scholar

    [35]

    Los J H, Zakharchenko K V, Katsnelson M I, Fasolino A 2015 Phys. Rev. B 91 45415Google Scholar

    [36]

    Singh S K, Neek-Amal M, Peeters F M 2013 Phys. Rev. B 87 134103Google Scholar

    [37]

    Stefanovic P, Haataja M, Provatas N 2006 Phys. Rev. Lett. 96 225504Google Scholar

    [38]

    Tegze G, Bansel G, Tóth G I, Pusztai T, Fan Z, Gránásy L 2009 J. Comput. Phys. 228 1612Google Scholar

    [39]

    Stefanovic P, Haataja M, Provatas N 2009 Phys. Rev. E 80 46107Google Scholar

    [40]

    Heinonen V, Achim C V, Ala-Nissila T 2016 Phys. Rev. E 93 53003Google Scholar

    [41]

    周文权 2019 博士学位论文(西安: 西北工业大学)

    Zhou W Q 2019 Ph. D. Dissertation (Xi’an: Northwestern Polytechnical University

    [42]

    Zhou W Q, Wang J C, Wang Z J, Huang Z F 2019 Phys. Rev. E 99 013302Google Scholar

    [43]

    Taha D, Mkhonta S K, Elder K R, Huang Z F 2017 Phys. Rev. Lett. 118 255501Google Scholar

    [44]

    Wei Y J, Wu J T, Yin H Q, Shi X H, Yang R G, Dresselhaus M 2012 Nat. Mater. 11 759Google Scholar

    [45]

    Wu J T, Wei Y J 2013 J. Mech. Phys. Solids 61 1421Google Scholar

    [46]

    Liu T H, Pao C W, Chang C C 2012 Carbon 50 3465Google Scholar

    [47]

    Li L, Reich S, Robertson J 2005 Phys. Rev. B 72 184109Google Scholar

    [48]

    Kim Y, Ihm J, Yoon E, Lee G D 2011 Phys. Rev. B 84 75445Google Scholar

    [49]

    Blaschke D N, Szajewski B A 2018 Philos. Mag. 98 2397Google Scholar

    [50]

    Bonilla L L, Carpio A, Gong C, Warner J H 2015 Phys. Rev. B 92 155417Google Scholar

  • [1] Zheng Qin-Ren, Zhan Fu-Zhi, She Jun-Yi, Wang Jian-Yu, Shi Ruo-Li, Meng Guo-Dong. Influence of morphological characteristics of graphene on its field emission properties. Acta Physica Sinica, 2024, 73(8): 086101. doi: 10.7498/aps.73.20231784
    [2] Gao Feng, Li Huan-Qing, Song Zhuo, Zhao Yu-Hong. Strain induced dislocation evolution at graphene grain boundary by three-mode phase-field crystal method. Acta Physica Sinica, 2024, 73(24): 248101. doi: 10.7498/aps.73.20241368
    [3] Chen Shan-Deng, Bai Qing-Shun, Dou Yu-Hao, Guo Wan-Min, Wang Hong-Fei, Du Yun-Long. Simulation research on nucleation mechanism of graphene deposition assisted by diamond grain boundary. Acta Physica Sinica, 2022, 71(8): 086103. doi: 10.7498/aps.71.20211981
    [4] Yuan Ying-Kuo, Guo Wei-Ling, Du Zai-Fa, Qian Feng-Song, Liu Ming, Wang Le, Xu Chen, Yan Qun, Sun Jie. Applications of graphene transistor optimized fabrication process in monolithic integrated driving gallium nitride micro-light-emitting diode. Acta Physica Sinica, 2021, 70(19): 197801. doi: 10.7498/aps.70.20210122
    [5] Wang Xiao-Yu, Bi Wei-Hong, Cui Yong-Zhao, Fu Guang-Wei, Fu Xing-Hu, Jin Wa, Wang Ying. Synthesis of photonic crystal fiber based on graphene directly grown on air-hole by chemical vapor deposition. Acta Physica Sinica, 2020, 69(19): 194202. doi: 10.7498/aps.69.20200750
    [6] Wang Tian-Hui, Li Ang, Han Bai. First-principles study of graphyne/graphene heterostructure resonant tunneling nano-transistors. Acta Physica Sinica, 2019, 68(18): 187102. doi: 10.7498/aps.68.20190859
    [7] Zhang Xiao-Bo, Qing Fang-Zhu, Li Xue-Song. Clean transfer of chemical vapor deposition graphene film. Acta Physica Sinica, 2019, 68(9): 096801. doi: 10.7498/aps.68.20190279
    [8] Zheng Jia-Jin, Wang Ya-Ru, Yu Ke-Han, Xu Xiang-Xing, Sheng Xue-Xi, Hu Er-Tao, Wei Wei. Field effect transistor photodetector based on graphene and perovskite quantum dots. Acta Physica Sinica, 2018, 67(11): 118502. doi: 10.7498/aps.67.20180129
    [9] Li Hao, Fu Zhi-Bing, Wang Hong-Bin, Yi Yong, Huang Wei, Zhang Ji-Cheng. Preperetions of bi-layer and multi-layer graphene on copper substrates by atmospheric pressure chemical vapor deposition and their mechanisms. Acta Physica Sinica, 2017, 66(5): 058101. doi: 10.7498/aps.66.058101
    [10] Gu Ji-Wei, Wang Jin-Cheng, Wang Zhi-Jun, Li Jun-Jie, Guo Can, Tang Sai. Phase-field crystal modelling the nucleation processes of graphene structures on different substrates. Acta Physica Sinica, 2017, 66(21): 216101. doi: 10.7498/aps.66.216101
    [11] Wang Bin, Feng Ya-Hui, Wang Qiu-Shi, Zhang Wei, Zhang Li-Na, Ma Jin-Wen, Zhang Hao-Ran, Yu Guang-Hui, Wang Gui-Qiang. Hydrogen etching of chemical vapor deposition-grown graphene domains. Acta Physica Sinica, 2016, 65(9): 098101. doi: 10.7498/aps.65.098101
    [12] Guo Can, Wang Jin-Cheng, Wang Zhi-Jun, Li Jun-Jie, Guo Yao-Lin, Tang Sai. Investigation of atom-attaching process of three-dimensional body-center-cubic dendritic growth by phase-field crystal model. Acta Physica Sinica, 2015, 64(2): 028102. doi: 10.7498/aps.64.028102
    [13] Gao Ying-Jun, Quan Si-Long, Deng Qian-Qian, Luo Zhi-Rong, Huang Chuang-Gao, Lin Kui. Phase-field-crystal simulation of edge dislocation climbing and gliding under shear strain. Acta Physica Sinica, 2015, 64(10): 106104. doi: 10.7498/aps.64.106104
    [14] Gao Ying-Jun, Qin He-Lin, Zhou Wen-Quan, Deng Qian-Qian, Luo Zhi-Rong, Huang Chuang-Gao. Phase field crystal simulation of grain boundary annihilation under strain strain at high temperature. Acta Physica Sinica, 2015, 64(10): 106105. doi: 10.7498/aps.64.106105
    [15] Han Lin-Zhi, Zhao Zhan-Xia, Ma Zhong-Quan. Process parameters of large single crystal graphene prepared by chemical vapor deposition. Acta Physica Sinica, 2014, 63(24): 248103. doi: 10.7498/aps.63.248103
    [16] Wang Lang, Feng Wei, Yang Lian-Qiao, Zhang Jian-Hua. The pre-treatment of copper for graphene synthesis. Acta Physica Sinica, 2014, 63(17): 176801. doi: 10.7498/aps.63.176801
    [17] Xie Ling-Yun, Xiao Wen-Bo, Huang Guo-Qing, Hu Ai-Rong, Liu Jiang-Tao. Terahertz absorption of graphene enhanced by one-dimensional photonic crystal. Acta Physica Sinica, 2014, 63(5): 057803. doi: 10.7498/aps.63.057803
    [18] Guo Can, Wang Zhi-Jun, Wang Jin-Cheng, Guo Yao-Lin, Tang Sai. Effect of the direct correlation function on phase diagram of the two-mode phase field crystal model. Acta Physica Sinica, 2013, 62(10): 108104. doi: 10.7498/aps.62.108104
    [19] Xu Yue-Hang, Guo Yun-Chuan, Wu Yun-Qiu, Xu Rui-Min, Yan Bo. Electrical read out of nano-electromechanical system signal by using graphene resonant channel transistor. Acta Physica Sinica, 2012, 61(1): 010701. doi: 10.7498/aps.61.010701
    [20] Wang Wen-Rong, Zhou Yu-Xiu, Li Tie, Wang Yue-Lin, Xie Xiao-Ming. Research on synthesis of high-quality and large-scale graphene films by chemical vapor deposition. Acta Physica Sinica, 2012, 61(3): 038702. doi: 10.7498/aps.61.038702
Metrics
  • Abstract views:  308
  • PDF Downloads:  19
  • Cited By: 0
Publishing process
  • Received Date:  15 July 2025
  • Accepted Date:  05 September 2025
  • Available Online:  24 September 2025
  • Published Online:  05 November 2025
  • /

    返回文章
    返回
    Baidu
    map