Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Synthesis of photonic crystal fiber based on graphene directly grown on air-hole by chemical vapor deposition

Wang Xiao-Yu Bi Wei-Hong Cui Yong-Zhao Fu Guang-Wei Fu Xing-Hu Jin Wa Wang Ying

Citation:

Synthesis of photonic crystal fiber based on graphene directly grown on air-hole by chemical vapor deposition

Wang Xiao-Yu, Bi Wei-Hong, Cui Yong-Zhao, Fu Guang-Wei, Fu Xing-Hu, Jin Wa, Wang Ying
cstr: 32037.14.aps.69.20200750
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The integration of fiber with graphene has greatly expanded the two-dimensional functional materials in the field of photonics research. However, the growth method by using chemical vapor deposition with metal catalytic substrateis limited to the fabrication of a graphene-fiber composite due to inevitably transferring graphene flakes onto the optical fiber surface. In order to fully achieve the interaction between light and graphene material, optical fibers have to be treated with special structure, which greatly damages the fiber structure, resulting in inefficient and harmful manufacturing strategy for the mass production. In this paper, a graphene-photonic crystal fiber (G-PCF) composite is prepared by atmospheric chemical vapor deposition (APCVD), which can directly grow monolayer and multi-layer graphene into the air-hole of photonic crystal fiber. Furthermore, we randomly break a G-PCF and then conduct an electron microscope (SEM) test at the fractured section. It is obvious that a tube-like graphene protruding out of one hole in the fractured area of the G-PCF is observed, thus further demonstrating that a monolayer graphene is grown on the inner hole walls of the PCF as shown in Fig. 2. By changing the process parameters such as growth temperature, duration and gas flow rate of carbon source, the law of the influence of different parameters on the graphene layers is explored. In addition, the uniformity of graphene and defects in the graphene-photonic crystal fiber(G-PCF) are experimentally analyzed. As illustrated in Fig. 7, a 4-cm-long uniform graphene-photonic crystal fiber sample is achieved by controlling the gas flow rate, growth time and the growth temperature. The APCVD method of directly growing graphene onto the inner hole walls of the PCF is simple and effective. The flexible structure and optical control enable the G-PCF to have great potential applications in all-optical devices and photonics. The development of high-quality graphene synthesis and opto-electronics technology ensures its compatibility with the integrated electronics platform and existing optical fiber systems. Moreover, our results will pave the way for 2D materials and optical fiber applications, providing a new idea for the application of graphene to the integration of all-optical fibers.
      Corresponding author: Bi Wei-Hong, whbi@ysu.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant Nos. 2019YFC1407900, 2017YFC1403800), the Key Program of the National Natural Science Foundation of China (Grant No. 61735011), and the Key Research and Development Planning Project of Hebei Province, China (Grant No. 18273302D)
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Li L K, Yu Y J, Ye G J, Ge Q Q, Ou X D, Wu H, Feng D L, Chen H X, Zhang Y B 2014 Nat. Nanotechnol. 9 372Google Scholar

    [3]

    Zhao W, Ghorannevis Z, Chu L, Toh M, Kloc C, Tan P H, Eda G 2012 ACS Nano 7 791

    [4]

    Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L, Hone J 2010 Nat. Nanotechnol. 5 722Google Scholar

    [5]

    Liu C H, Chang Y C, Norris T B, Zhong Z H 2014 Nat. Nanotechnol. 9 273Google Scholar

    [6]

    Xin W, Liu Z B, Sheng Q W, Feng M, Huang L G, Wang P, Jiang W S, Xing F, Liu Y G, Tian J G 2014 Opt. Express 22 10239Google Scholar

    [7]

    Li W, Chen B G, Meng C, Fang W, Xiao Y, Li X Y, Hu Z F, Xu Y X, Tong L M, Wang H Q, Liu W T, Bao J M, Shen R 2014 Nano Lett. 14 955Google Scholar

    [8]

    Martinez A, Fuse K, Yamashita S J 2011 Appl. Phys. Lett. 99 121107Google Scholar

    [9]

    Williams G M, Seger B, Kamat P 2008 ACS Nano 2 1487Google Scholar

    [10]

    Sutter P W, Flege J I, Sutter E A 2008 Nat. Mater. 7 406Google Scholar

    [11]

    Sun J Y, Zhang Y F, Liu Z F 2016 ChemNanoMat 2 212Google Scholar

    [12]

    Guo W, Jing F, Xiao J, Zhou C, Lin Y W, Wang S 2016 Adv. Mater. 28 3152Google Scholar

    [13]

    Xu X Z, Zhang Z H, Qiu L, Zhuang J N, Zhang L, Wang H, Liao C N, Song H D, Qiao R X, Gao P, Hu Z H, Liao L, Liao Z M, Yu D P, Wang E G, Ding F, Peng H L, Liu K H 2016 Nat. Nanotechnol. 11 930Google Scholar

    [14]

    Zhou F, Jin X F, Hao R, Zhang X M, Chi H, Zheng S L 2016 J. Opt. 45 337Google Scholar

    [15]

    Chen J H, Liang Z H, Yuan L R, Li C, Chen M R, Xia Y D, Zhang X J, Xu F, Lu Y Q 2017 Nanoscale 9 3424Google Scholar

    [16]

    Yang X C, Lu Y, Liu B L, Yao J Q 2016 Plasmonics 12 489

    [17]

    Chen K, Zhou X, Cheng X, Qiao R X, Cheng Y, Liu C, Xie Y D, Yu W T, Yao F R, Sun Z P, Wang F, Liu K H, Liu Z F 2019 Nat. Photonics 13 754Google Scholar

    [18]

    张秋慧, 韩敬华, 冯国英, 徐其兴, 丁立中, 卢晓翔 2012 61 234302Google Scholar

    Zhang Q H, Hang J H, Feng G Y, Xu Q X, Ding L Z, Lu X X 2012 Acta Phys. Sin. 61 234302Google Scholar

    [19]

    吴娟霞, 徐华, 张锦 2014 化学学报 72 301Google Scholar

    Wu J X, Xu H, Zhang J 2014 Acta Chim. Sin. 72 301Google Scholar

    [20]

    Malard L M, Pimenta M A, Dresselhaus G, Dresselhaus M S 2009 Phys. Rep. 473 51Google Scholar

    [21]

    Lazzeri M, Attaccalite C, Wirtz L, Mauri F 2008 Phys. Rev. B 78 081406Google Scholar

  • 图 1  石墨烯生长系统示意图

    Figure 1.  Schematic diagram of graphene growth system.

    图 2  (a) 用于生长石墨烯的光子晶体光纤端面SEM图; (b) G-PCF破损端面空气孔处突出的管状石墨烯

    Figure 2.  (a) SEM image of the G-PCF end surface; (b) SEM image of a tube-like graphene protruding out of air-holes of the fractured G-PCF.

    图 3  (a) G-PCF拉曼显微镜成像图; (b) G-PCF拉曼光谱图

    Figure 3.  (a) Raman image of the G-PCF; (b) Raman spectrum of the G-PCF.

    图 4  不同温度下生长的G-PCF拉曼光谱特征参数变化图 (a) G峰半高宽随温度的变化; (b) 2D峰半高宽随温度的变化; (c) I2D/IG随温度的变化; (d) ID/IG随温度的变化

    Figure 4.  Variation diagrams of Raman spectral characteristic parameters of G-PCF grown at different temperatures: (a) FWHMG; (b) FWHM2D; (c) I2D/IG; (d) ID/IG.

    图 5  不同生长时间下生长的G-PCF拉曼光谱特征参数变化图 (a) G峰半高宽随生长时间的变化; (b) 2D峰半高宽随生长时间的变化; (c) I2D/IG随生长时间的变化; (d) ID/IG随生长时间的变化

    Figure 5.  Variation diagrams of Raman spectral characteristic parameters of G-PCF under different growth time: (a) FWHMG; (b) FWHM2D; (c) I2D/IG; (d) ID/IG

    图 6  甲烷流量与G-PCF拉曼光谱的特征参数关系图 (a) G峰半高宽随气体流速的变化; (b) 2D峰半高宽随气体流速的变化; (c) I2 D/IG随气体流速的变化; (d) ID/IG随气体流速的变化

    Figure 6.  Variation diagrams of Raman spectral characteristics parameters of G-PCF by different volume flowrate of Methane: (a) FWHMG; (b) FWHM2D; (c) I2D/IG; (d) ID/IG

    图 7  (a) G-PCF拉曼测试位置示意图; 在9个测试位置上的拉曼光谱特征参数 (b) G峰半高宽, (c) 2D峰半高宽, (d) ID/IG

    Figure 7.  (a) Schematic diagram of Raman test positions of G-PCF; (b) The results of FWHMG, (c) FWHM2D, (d) ID/IG at 9 different test positions

    Baidu
  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Li L K, Yu Y J, Ye G J, Ge Q Q, Ou X D, Wu H, Feng D L, Chen H X, Zhang Y B 2014 Nat. Nanotechnol. 9 372Google Scholar

    [3]

    Zhao W, Ghorannevis Z, Chu L, Toh M, Kloc C, Tan P H, Eda G 2012 ACS Nano 7 791

    [4]

    Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L, Hone J 2010 Nat. Nanotechnol. 5 722Google Scholar

    [5]

    Liu C H, Chang Y C, Norris T B, Zhong Z H 2014 Nat. Nanotechnol. 9 273Google Scholar

    [6]

    Xin W, Liu Z B, Sheng Q W, Feng M, Huang L G, Wang P, Jiang W S, Xing F, Liu Y G, Tian J G 2014 Opt. Express 22 10239Google Scholar

    [7]

    Li W, Chen B G, Meng C, Fang W, Xiao Y, Li X Y, Hu Z F, Xu Y X, Tong L M, Wang H Q, Liu W T, Bao J M, Shen R 2014 Nano Lett. 14 955Google Scholar

    [8]

    Martinez A, Fuse K, Yamashita S J 2011 Appl. Phys. Lett. 99 121107Google Scholar

    [9]

    Williams G M, Seger B, Kamat P 2008 ACS Nano 2 1487Google Scholar

    [10]

    Sutter P W, Flege J I, Sutter E A 2008 Nat. Mater. 7 406Google Scholar

    [11]

    Sun J Y, Zhang Y F, Liu Z F 2016 ChemNanoMat 2 212Google Scholar

    [12]

    Guo W, Jing F, Xiao J, Zhou C, Lin Y W, Wang S 2016 Adv. Mater. 28 3152Google Scholar

    [13]

    Xu X Z, Zhang Z H, Qiu L, Zhuang J N, Zhang L, Wang H, Liao C N, Song H D, Qiao R X, Gao P, Hu Z H, Liao L, Liao Z M, Yu D P, Wang E G, Ding F, Peng H L, Liu K H 2016 Nat. Nanotechnol. 11 930Google Scholar

    [14]

    Zhou F, Jin X F, Hao R, Zhang X M, Chi H, Zheng S L 2016 J. Opt. 45 337Google Scholar

    [15]

    Chen J H, Liang Z H, Yuan L R, Li C, Chen M R, Xia Y D, Zhang X J, Xu F, Lu Y Q 2017 Nanoscale 9 3424Google Scholar

    [16]

    Yang X C, Lu Y, Liu B L, Yao J Q 2016 Plasmonics 12 489

    [17]

    Chen K, Zhou X, Cheng X, Qiao R X, Cheng Y, Liu C, Xie Y D, Yu W T, Yao F R, Sun Z P, Wang F, Liu K H, Liu Z F 2019 Nat. Photonics 13 754Google Scholar

    [18]

    张秋慧, 韩敬华, 冯国英, 徐其兴, 丁立中, 卢晓翔 2012 61 234302Google Scholar

    Zhang Q H, Hang J H, Feng G Y, Xu Q X, Ding L Z, Lu X X 2012 Acta Phys. Sin. 61 234302Google Scholar

    [19]

    吴娟霞, 徐华, 张锦 2014 化学学报 72 301Google Scholar

    Wu J X, Xu H, Zhang J 2014 Acta Chim. Sin. 72 301Google Scholar

    [20]

    Malard L M, Pimenta M A, Dresselhaus G, Dresselhaus M S 2009 Phys. Rep. 473 51Google Scholar

    [21]

    Lazzeri M, Attaccalite C, Wirtz L, Mauri F 2008 Phys. Rev. B 78 081406Google Scholar

Metrics
  • Abstract views:  10234
  • PDF Downloads:  142
  • Cited By: 0
Publishing process
  • Received Date:  18 May 2020
  • Accepted Date:  17 June 2020
  • Available Online:  29 September 2020
  • Published Online:  05 October 2020
  • /

    返回文章
    返回
    Baidu
    map