Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

High-performance fiber ring laser torsion sensor based on polarization-maintaining photonic crystal fibers

GUO Yuying DU Mengzhu GAO Wei WANG Xin SHENG Xinzhi LOU Shuqin LIAN Zhenggang

Citation:

High-performance fiber ring laser torsion sensor based on polarization-maintaining photonic crystal fibers

GUO Yuying, DU Mengzhu, GAO Wei, WANG Xin, SHENG Xinzhi, LOU Shuqin, LIAN Zhenggang
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Torsion information is important for rotating systems, industrial monitoring, transportation engineering, and medical equipment. Optical fiber torsion sensors have significant advantages, such as immune to electromagnetic interference, small size, and light weight. Sagnac loop interferometer (SI) torsion sensors have attracted much attention due to their compact structure, high sensitivity, excellent stability, and low cost. However, their nonlinear response limits the measurement range, while the wide full width at half maximum and low signal-to-noise ratio (SNR) reduce the resolution of torsion sensors. To solve these problems, a fiber ring laser torsion sensor (FRLTS) based on homemade polarization-maintaining photonic crystal fiber (PM-PCF) is proposed in this work. The torsion sensor introduces a PM-PCF based SI into the erbium-doped fiber ring cavity as a filter and torsion sensor device. The interference spectrum of SI is derived by the transmission matrix method and simulated, and then the sensing principle of the sensor is obtained. Subsequently, the experimental system is set up to study the lasing output characteristics and torsion response of the FRLTS. By taking advantage of the narrow linewidth and high signal-to-noise ratio (SNR) of fiber ring lasers, a high-resolution fiber torsion sensor is successfully obtained. The experimental results show that the maximum linear torsion measurement range of the sensor can be extended to 480° (from –260° to 220°), the maximum torsion sensitivity is 0.032 nm/(°), and the resolution is as high as 0.681°. Furthermore, in a temperature range from 20 ℃ to 95 ℃, the temperature-induced wavelength variation is only 4×10–3 nm/℃, corresponding to a torsion angle measurement error of 0.16(°)/℃. Compared with existing reports, its temperature stability is increased by 37.5 times, while the temperature-induced error in angle measurements is reduced by 9.375 times. The proposed FRLTS not only successfully achieves high-resolution and wide-range torsion sensing, but also effectively suppresses cross-sensitivity caused by temperature. Therefore, the torsion sensor has significant potential applications in fields such as aerospace and robotics where precise measurement of minute torsion angle is required in special environments.
  • 图 1  基于PM-PCF-SI的光纤环形激光器 (a) 自研PM-PCF扫描电镜端面图; (b) 基于SI的掺铒光纤环形激光器原理示意图

    Figure 1.  Fiber ring laser based on PM-PPCF-SI: (a) SEM diagram of the cross section of homemade PM-PCF; (b) schematic diagram of Erbium-doped fiber ring laser based on PM-PCF-SI.

    图 2  SI滤波器的扭转响应光谱 (a) 滤波谱随扭转角度的变化(仿真); (b) 滤波器谐振峰波长随扭转角度的变化(仿真); (c) 滤波谱随扭转角度的变化(实验); (d) 滤波器谐振峰波长随扭转角度的变化(实验)

    Figure 2.  The torsion response spectrum of the SI filter: (a) Variation of the filter spectrum with the torsion angle (simulation); (b) variation of the peak wavelength of the filter with the torsion angle (simulation); (c) variation of the filter spectrum with the torsion angle (experiment); (d) variation of peak wavelength of the filter with torsion angle (experiment).

    图 3  基于SI的激光器扭转传感器实验装置示意图

    Figure 3.  Schematic of the experimental device for the laser torsion sensor based on SI.

    图 4  单波长激光输出及其稳定性 (a) 60 min内输出激光光谱; (b) 60 min内激光功率和波长随时间的变化

    Figure 4.  Single wavelength lasing output and output stability: (a) Single wavelength lasing output spectrum within 60 min; (b) the variation of laser power and wavelength within 60 mins.

    图 5  基于PM-PCF-SI的激光器扭转传感器的扭转响应 (a) 不同扭转角度下的激光光谱; (b) 激光波长随扭转角度的变化

    Figure 5.  Torsion response of the laser torsion sensor based on PM-PCF-SI: (a) Laser spectra at different torsion angles; (b) the variation of laser wavelength with the torsion angle.

    图 6  不同长度PM-PCF对应的激光调谐范围 (a) 47 cm; (b) 27 cm; (c) 15 cm

    Figure 6.  Corresponding output laser tuning range of different lengths of PM-PCF: (a) 47 cm; (b) 27 cm; (c) 15 cm.

    图 7  顺时针施加扭转时, 激光输出波长随扭转角度的变化 (a) 输出激光峰值波长随扭转角度的变化情况; (b) 输出激光波长与扭转角度的关系

    Figure 7.  The variation of the lasing wavelength with torsion angle when torsion is applied along clockwise direction: (a) Variation of the output laser wavelength with the torsion angle; (b) the relationship between laser wavelength and torsion angle.

    图 8  逆时针施加扭转时, 激光输出波长随扭转角度的变化 (a) 输出激光峰值波长随扭转角度的变化情况; (b) 激光波长与扭转角度的关系

    Figure 8.  The variation of the lasing wavelength with torsion angle when torsion is applied along counterclockwise direction: (a) Variation of the output laser wavelength with the torsion angle; (b) the relationship between laser wavelength and torsion angle.

    图 9  顺时针及逆时针施加扭转时, 矢量扭转角度的测量 (a) 输出激光峰值波长随扭转角度的变化情况; (b) 激光波长与扭转角度的关系

    Figure 9.  Measurement of the vector torsion angle when torsion is applied clockwise and counterclockwise: (a) Variation of the output laser wavelength with the torsion angle; (b) the relationship between output laser wavelength and torsion angle.

    图 10  扭转传感器的迟滞性

    Figure 10.  Hysteresis of the torsion sensor.

    图 11  在20—95 ℃范围内扭转传感器的温度稳定性 (a) 输出激光光谱; (b) 输出激光波长随温度的波动

    Figure 11.  Temperature stability of the torsion sensor in the range from 20 ℃ to 95 ℃: (a) Output laser spectrum; (b) the fluctuation of the output laser wavelength with temperature.

    表 1  各类型激光传感器性能对比

    Table 1.  Performance comparison of various types of laser sensors.

    Type Structures Linear response range Sensitivity Resolution Direction Temperature
    error
    Refs.
    FRLTS LPG based FRLRS 47° (–23.5°—23.5°)
    200 rad/m (–100—100 rad/m)
    0.0062 nm/(°)
    0.084 nm/(rad/m)
    4.33°
    0.12 rad/m
    Yes [27]
    PMF based FRLTS 300° (0°—300°) 0.043 nm/(°) 2.45° Yes [19]
    Side-Polished MZI Fiber based FRLTS 160° (–80°—80°)
    11.2 rad/m (–5.6 rad/m—5.6 rad/m)
    0.019 nm/(°)
    0.27 nm(/rad/m)
    Yes [23]
    elliptical-core based FRLTS 340° (–340°—0°) 0.1 nm/(°) 0.43° Yes 1.5° [21]
    SSAF based FRLTS 380° (–380°—0°)
    16.6 rad/m (–16.6 rad/m—0 rad/m)
    0.0625 nm/(°)
    1.97 nm/(rad/m)
    4.73°
    0.015 rad/m
    Yes [20]
    PM-PCF based FRLTS 480° (–260°—220°)
    –16.8 rad/m—14.22 rad/m
    (31.02 rad/m)
    0.032 nm/(°)
    0.5 nm/(rad/m)
    0.681°
    0.06 rad/m
    Yes 0.16° This
    work
    DownLoad: CSV
    Baidu
  • [1]

    Cui J X, Cheng X, Gunawardena D S, Leong C Y, Dash J N, Lau A P T, Tam H Y 2024 Opt. Laser Technol. 174 110548Google Scholar

    [2]

    Cao J Q, Wang B, Huang B S, Lou S Q, Sheng Z F, Chu P K 2024 J. Lightwave Technol. 42 5743Google Scholar

    [3]

    López-Higuera J M, Cobo L R, Incera A Q, Cobo A 2011 J. Lightwave Technol. 29 587Google Scholar

    [4]

    Yin G L, Xu Z, Ma J M, Zhu T 2022 J. Lightwave Technol. 41 1851

    [5]

    Zheng Y C, Li J J, Liu Y, Li Y, Qu S L 2023 J. Lightwave Technol. 42 2513

    [6]

    Duan J A, Xie Z, Wang C, Zhou J Y, Li H T, Luo Z, Chu D K, Sun X Y 2016 Opt. Laser Technol. 83 94Google Scholar

    [7]

    Lin C Y, Wang L A, Chern G W 2001 J. Lightwave Technol. 19 1159Google Scholar

    [8]

    朱涛, 饶云江, 莫秋菊 2006 55 249Google Scholar

    Zhu T, Rao Y J, Mo Q J 2006 Acta Phys. Sin. 55 249Google Scholar

    [9]

    Ghasemi P, Yam S S H 2022 J. Lightwave Technol. 40 1224Google Scholar

    [10]

    Yin G L, Fu Q J, Yang P X, Zhu T 2022 Opt. Laser Technol. 156 108461Google Scholar

    [11]

    Cao J Q, Lou S Q, Huang B S, Gu S, Jia H Q, Sheng X Z, Wang X 2023 Opt. Fiber Technol. 80 103431Google Scholar

    [12]

    Zhang R W, Liu X J, Shang Q H, Yang J R 2023 J. Lightwave Technol. 42 921

    [13]

    Shi L L, Zhu T, Fan Y E, Chiang K S, Rao Y J 2011 Opt. Commun. 284 5299Google Scholar

    [14]

    娄淑琴, 鹿文亮, 王鑫 2013 62 090701Google Scholar

    Lou S Q, Lu W L, Wang X 2013 Acta Phys. Sin. 62 090701Google Scholar

    [15]

    Chen W G, Lou S Q, Wang L W, Zou H, Lu W L, Jian S S 2011 IEEE Photonics Technol. Lett. 23 1639Google Scholar

    [16]

    Huang B, Shu X W 2018 Opt. Express 26 4563Google Scholar

    [17]

    Htein L, Gunawardena D S, Liu Z Y, Tam H Y 2020 Opt. Express 28 33841Google Scholar

    [18]

    Lin W H, Shao L Y, Vai M I, Shum P P, Liu S Q, Liu Y B, Zhao F, Xiao D R, Liu Y H, Tan Y D, Wang W Z 2021 J. Lightwave Technol. 39 3350Google Scholar

    [19]

    Liu X J, Wang F J, Yang J R, Zhang X D, Du X L 2019 Sensors 19 3613Google Scholar

    [20]

    Cao J Q, Guo Y Y, Gao W, Wang X, Lou S Q, Sheng Z F 2024 IEEE Sens. J. 25 4647

    [21]

    Ma X K, Lou S Q, Cao J Q, Huang B S 2025 Infrared Phys. Techn. 147 105776Google Scholar

    [22]

    郭玉颖, 杜梦珠, 高炜, 曹佳琦, 盛新志, 娄淑琴, 廉正刚 2025 中国激光 52 1306003Google Scholar

    Guo Y Y, Du M Z, Gao W, Cao J Q, Sheng X Z, Lou S Q, Lian Z G 2025 Chin. J. Lasers 52 1306003Google Scholar

    [23]

    Bo W, Liu B, Liu J, He X D, Yuan J H, Wu Q 2022 IEEE Sens. J. 22 7779Google Scholar

    [24]

    Zu P, Chan C C, Jin Y X, Gong T X, Zhang Y F, Chen L H, Dong X Y 2011 IEEE Photonics Technol. Lett. 23 920Google Scholar

    [25]

    Chen W G, Lou Q S, Wang L W, Zou H, Lu W L, Jian S S 2011 IEEE Photonics Technol. Lett. 23 1639Google Scholar

    [26]

    Chiavaioli F, Gouveia C A J, Jorge P A S, Baldini F 2017 Biosensors 7 23Google Scholar

    [27]

    Shi L L, Zhu T, Fan Y E, Chiang K S, Rao Y J 2011 Opt. Commun. 284 5299Google Scholar

  • [1] Yang Ya-Tao, Zou Yuan, Zeng Qiong, Song Yu-Feng, Wang Ke, Wang Zhen-Hong. Mode-locked fiber laser with coexistence of m ultiple solitons and noise-like pulses. Acta Physica Sinica, doi: 10.7498/aps.71.20220250
    [2] Xia Qing-Gan, Xiao Wen-Bo, Li Jun-Hua, Jin Xin, Ye Guo-Ming, Wu Hua-Ming, Ma Guo-Hong. Optimization of thermal performance of cladding power stripper in fiber laser. Acta Physica Sinica, doi: 10.7498/aps.69.20191093
    [3] Chen Yi-Sha, Liao Lei, Li Jin-Yan. Experimental study on influence of fiber numerical aperture on mode instability threshold of ytterbium fiber oscillator. Acta Physica Sinica, doi: 10.7498/aps.68.20182257
    [4] Zhou Zi-Chao, Wang Xiao-Lin, Tao Ru-Mao, Zhang Han-Wei, Su Rong-Tao, Zhou Pu, Xu Xiao-Jun. Theoretical study of the temperature distribution in high power gain fiber of gradient doping. Acta Physica Sinica, doi: 10.7498/aps.65.104204
    [5] Zhang Li-Ming, Zhou Shou-Huan, Zhao Hong, Zhang Kun, Hao Jin-Ping, Zhang Da-Yong, Zhu Chen, Li Yao, Wang Xiong-Fei, Zhang Hao-Bin. 780 W narrow linewidth all fiber laser. Acta Physica Sinica, doi: 10.7498/aps.63.134205
    [6] Hao Hui, Xia Wei, Wang Ming, Guo Dong-Mei, Ni Xiao-Qi. Self-mixing interference effect based on fiber laser. Acta Physica Sinica, doi: 10.7498/aps.63.234202
    [7] Zhou Rui, Zhang Jing, Hu Man-Li, Feng Zhong-Yao, Gao Hong, Yang Yang, Zhang Jing-Hua, Qiao Xue-Guang. A vibration detection system based on two-stage polarization maintaining fiber Sagnac loop fiber laser. Acta Physica Sinica, doi: 10.7498/aps.61.014216
    [8] Fang Xiao-Hui, Hu Ming-Lie, Song You-Jian, Xie Chen, Chai Lu, Wang Qing-Yue. Mode locked multi-core photonic crystal fiber laser. Acta Physica Sinica, doi: 10.7498/aps.60.064208
    [9] Zhang Xin, Hu Ming-Lie, Song You-Jian, Chai Lu, Wang Qing-Yue. Dissipative-soliton mode locked laser based on large-mode-area photonic crystal fiber. Acta Physica Sinica, doi: 10.7498/aps.59.1863
    [10] Song You-Jian, Hu Ming-Lie, Xie Chen, Chai Lu, Wang Qing-Yue. Approaching 100 nJ pulse energy output from a mode-locked photonic crystal fiber laser. Acta Physica Sinica, doi: 10.7498/aps.59.7105
    [11] Jiang Jian, Chang Jian-Hua, Feng Su-Juan, Mao Qing-He. Mid-IR multiwavelength difference frequency generation laser source based on fiber lasers. Acta Physica Sinica, doi: 10.7498/aps.59.7892
    [12] Yan Feng-Ping, Wei Huai, Fu Yong-Jun, Wang Lin, Zheng Kai, Mao Xiang-Qiao, Liu Peng, Peng Jiang, Liu Li-Song, Jian Shui-Sheng. Tm3+ doped cladding pumped silica optic fiber laser. Acta Physica Sinica, doi: 10.7498/aps.58.6300
    [13] Zhang Yuan-Xian, Pu Xiao-Yun, Zhu Kun, Han De-Yu, Jiang Nan. Threshold characteristics of evanescent-wave pumped whispering-gallery-mode fiber laser. Acta Physica Sinica, doi: 10.7498/aps.58.3179
    [14] Zhang Chi, Hu Ming-Lie, Song You-Jian, Zhang Xin, Chai Lu, Wang Qing-Yue. An Yb-doped large-mode-area photonic crystal fiber mode-locking laser with free output coupler. Acta Physica Sinica, doi: 10.7498/aps.58.7727
    [15] Ren Guang-Jun, Wei Zhen, Yao Jian-Quan. Q-switched pulse polarization-maintaining Nd3+-doped fiber laser. Acta Physica Sinica, doi: 10.7498/aps.58.941
    [16] Yan Feng-Ping, Mao Xiang-Qiao, Wang Lin, Fu Yong-Jun, Wei Huai, Zheng Kai, Gong Tao-Rong, Liu Peng, Tao Pei-Lin, Jian Shui-Sheng. High stability mono-wavelength output optical fiber laser based on polarization-maintaining erbium-doped fiber. Acta Physica Sinica, doi: 10.7498/aps.58.6296
    [17] Wang Jing, Zheng Kai, Li Jian, Liu Li-Song, Chen Gen-Xiang, Jian Shui-Sheng. Research on tunable erbium-doped ring fiber laser based on a high-birefringence Sagnac loop: theory and experiment. Acta Physica Sinica, doi: 10.7498/aps.58.7695
    [18] Lei Bing, Feng Ying, Liu Ze-Jin. Phase locking of three fiber lasers using an all-fiber coupling loop. Acta Physica Sinica, doi: 10.7498/aps.57.6419
    [19] Wang Jian-Ming, Duan Kai-Liang, Wang Yi-Shan. Experimental study of coherent beam combining of two fiber lasers. Acta Physica Sinica, doi: 10.7498/aps.57.5627
    [20] Ren Guang-Jun, Zhang Qiang, Wang Peng, Yao Jian-Quan. Study of Nd3+-doped polarization-maintaining fiber laser. Acta Physica Sinica, doi: 10.7498/aps.56.3917
Metrics
  • Abstract views:  401
  • PDF Downloads:  0
  • Cited By: 0
Publishing process
  • Received Date:  11 July 2025
  • Accepted Date:  11 August 2025
  • Available Online:  02 September 2025
  • /

    返回文章
    返回
    Baidu
    map