Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Transient two-photon transitions excited by chirped pulse

REN Liqing YANG Yida WEI Yingchun

Citation:

Transient two-photon transitions excited by chirped pulse

REN Liqing, YANG Yida, WEI Yingchun
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • In general cases of strong field excitation, the Stark effect has a significant influence on transient two-photon transitions, and the analytic description of this process is quite challenging. By combining analytical solutions and numerical simulations, the transient two-photon transition processes excited by weak and strong chirped pulses are systematically investigated, showing the important influences of parameters such as light field intensity, chirp factor, and detuning on the time-domain evolution of two-photon transition probabilities. Firstly, an approximate analytical expression is derived for the amplitude of the time-domain two-photon transition probability by using the second-order perturbation theory. This analytical solution indicates that the transient two-photon transition process under weak field excitation is similar to the Fresnel rectangular edge diffraction effect. As the light field intensity increases, the influence of the Stark effect on two-photon transitions also intensifies. Secondly, through a series of approximations, the approximate analytical solutions of the Schrödinger equation under strong field interactions are obtained. The analytical solutions show that the strong field Stark effect induces energy level to split, which disrupts the symmetry of the time-domain two-photon transition probability distribution, and its frequency domain process is similar to the “double-slit interference” effect. The research results indicate that the efficiency of population transfer during strong field excitation is closely related to the light field intensity, while the chirp factor can not only regulate the efficiency and time position of population transfer but also change the oscillation frequency of the population probability in the time domain. This work offers new insights into describing the time-domain evolution of the population probability under strong field excitation and lays a scientific basis for research on two-photon microscopy imaging.
  • 图 1  飞秒啁啾脉冲驱动下双光子跃迁的激发方案 (a) 二能级原子系统中双光子跃迁模型; (b) 飞秒啁啾脉冲的高斯线形包络(蓝色)和相位分布(橙色)

    Figure 1.  Excitation scheme of two-photon transition by a femtosecond chirped pulse: (a) Two-photon transition model in a two-level atomic system; (b) Gaussian profile envelope (blue) and the phase distribution (orange) of the femtosecond chirped pulse.

    图 2  弱场激发时终态布居概率以及波函数实部和虚部随着时间和啁啾因子的变化 (a) 终态布居概率随着时间和啁啾因子的变化; (b), (c) 图(a)中两个不同啁啾因子值(红色α = –0.05 fs2和蓝色圆圈α = 0)条件下终态布居概率随着时间的演化; (d) 终态波函数实部随着时间和啁啾因子的变化; (e), (f) 图(d)中两个不同啁啾因子值(红色和蓝色圆圈)条件下终态波函数实部随着时间的演化; (g) 终态波函数虚部随着时间和啁啾因子的变化; (h), (i) 图(g)中两个不同啁啾因子值(红色和蓝色圆圈)条件下终态波函数虚部随着时间的演化

    Figure 2.  Evolution of the population probability of the final-state and the real-imaginary part of the wave-function with time and chirp factor under a weak field excitation: (a) The population probability of the final-state versus time and detuning; (b), (c) the population probability at two different chirp factors (red and blue circles) in panel (a); (d) the real part of the wave-function of the final-state versus time and the chirp factor; (e), (f) the real part of the wave-function at two different chirp factors (red and blue circles) in panel (d); (g) the imaginary part of the wave-function of the final-state versus time and the chirp factor; (h), (i) the imaginary part of the wave-function at two different chirp factors (red and blue circles) in panel (g).

    图 3  弱场作用下终态布居概率及波函数实部和虚部随着时间和失谐量的变化 (a) 终态布居概率随着时间和失谐量的变化; (b) 图(a)中3个不同失谐量值(–1500 THz, –600 THz, 200 THz)条件下终态布居概率随着时间的演化; (c) 终态波函数实部随着时间和失谐量的变化; (d) 图(c)中3个不同失谐量值(–1500 THz, –600 THz, 200 THz)条件下终态波函数实部随着时间的变化; (e) 终态波函数虚部随着时间和失谐量的变化; (f) 图(e)中3个不同失谐量值(–1500 THz, –600 THz, 200 THz)条件下终态波函数虚部随着时间的变化

    Figure 3.  Evolution of the population probability and the real-imaginary part of the final-state with time and detuning under a weak field excitation: (a) The population probability of the final-state versus time and detuning; (b) the population probability of the final-state versus time at three different detunings (–1500 THz, –600 THz, 200 THz) in panel (a); (c) the real part of the wave-function of the final-state versus time and the detuning; (d) the real part of the wave-function of the final-state versus time at three different detunings (–1500 THz, –600 THz, 200 THz) in panel (c); (e) the imaginary part of the wave-function of the final-state versus time and the detuning; (f) the imaginary part of the wave-function of the final-state versus time at three different detunings (–1500 THz, –600 THz, 200 THz) in panel (e).

    图 4  基于(16)式, 斯塔克效应下双光子跃迁终态布居概率随着时间的演化

    Figure 4.  Temporal evolution of final-state population in two-photon transition under Stark effect based on Eq. (16).

    图 5  强场作用下基态与终态布居概率随着时间的变化(a)—(f)分别对应不同啁啾因子情况; (g)—(l)分别对应不同光强情况

    Figure 5.  Evolution of the population probability of the ground-state and final-state with time under a strong field excitation: (a)–(f)Under different chirp factor; (g)–(l) under different intensity of laser field.

    图 6  强场作用下终态布居概率随着时间和失谐量的变化 (a)—(c) 正啁啾因子情况; (d)—(f) 负啁啾因子情况

    Figure 6.  Evolution of the population probability of the final-state with time and detuning under a strong field excitation: (a)–(c) With positive chirp factors; (d)–(f) with negative chirp factors.

    Baidu
  • [1]

    Boutabba N, Eleuch H 2020 Results Phys. 19 103421Google Scholar

    [2]

    Shapiro M, Brumer P 2003 Principles of the Quantum Control of Molecular Processes (New York: Wiley Press

    [3]

    Warren W S, Rabitz H, Mahleh D 1993 Science 259 1581Google Scholar

    [4]

    李永放, 任立庆, 马瑞琼, 仇旭, 刘娟, 樊荣, 付振兴 2009 中国科学 G 39 600

    Li Y G, Ren L Q, Ma R Q, Qiu X, Liu J, Fan R, Fu Z X 2009 Sci. China G 39 600

    [5]

    李永放, 任立庆, 马瑞琼, 樊荣, 刘娟 2010 59 1671

    Li Y F, Ren L Q, Ma R Q, Fan R, Liu J 2010 Acta phys. Sin. 59 1671

    [6]

    任立庆, 李永放, 张敏华, 许康, 阿布力米提·吾买 中国科学 2011 41 756

    Ren L Q, Li Y F, Zhang M H, Xu K, Wumai A 2011 Sci. China 41 756

    [7]

    Goswami D 2003 Phys. Rep. 374 385Google Scholar

    [8]

    Rabitz H, Vivie-Riedle R D, Motzkus M, Kompa K 2000 Science 288 824Google Scholar

    [9]

    Assion A, Baumert T, Bergt M, Brixner T, Kiefer B, Seyfried V, Strehle M, Gerber G 1998 Science 282 919Google Scholar

    [10]

    Clow S D, Trallero-Herrero C, Bergeman T, Weinacht T 2008 Phys. Rev. Lett. 100 233603Google Scholar

    [11]

    Silberberg Y 2009 Annu. Rev. Phys. Chem. 60 277Google Scholar

    [12]

    Lim J, Lee H, Kim J, Lee S, Ahn J 2011 Phys. Rev. A 83 053429Google Scholar

    [13]

    Allgaier M, Ansari V, Donohue J M, Eigner C, Quiring V, Ricken R, Brecht B, Silberhorn C 2020 Phys. Rev. A 101 043819Google Scholar

    [14]

    Ding X, Heberle D, Harrington K, Flemens N, Chang W, Birks T A, Moses J 2020 Phys. Rev. Lett. 124 153902Google Scholar

    [15]

    Li Y, Seddighi F, Porat G 2024 Phys. Rev. Appl. 22 014026Google Scholar

    [16]

    Dutt A, Mohanty A, Gaeta A L Lipson M 2024 Nat. Rev. Mater. 9 321Google Scholar

    [17]

    Meshulach D, Silberberg Y 1998 Nature 396 239Google Scholar

    [18]

    Dudovich N 2005 Phys. Rev. Lett. 94 083002Google Scholar

    [19]

    Lee S, Lim J, Park C Y, Ahn J 2009 Opt. Express 17 7648Google Scholar

    [20]

    Chatel B, Degert J, Girard B 2004 Phys. Rev. A 70 053414Google Scholar

    [21]

    Tagliamonti V, Kaufman B, Zhao A, Rozgonyi T, Marquetand P, Weinacht T 2017 Phys. Rev. A 96 021401Google Scholar

    [22]

    Trallero-Herrero C, Cardza D, Cohen J, Weinacht T 2005 Phys. Rev. A 71 013423Google Scholar

    [23]

    Trallero-Herrero C, Spanner M, Weinacht T 2008 Phys. Rev. A 74 051403

    [24]

    Trallero-Herrero C, Cohen J, Weinacht T C 2006 Phys. Rev. Lett. 96 063603Google Scholar

    [25]

    Gandman A, Chuntonov L, Rybak L, Amitay Z 2007 Phys. Rev. A 75 031401Google Scholar

  • [1] Li Han-Nan, Peng Yan. Theoretical study of influence of laser pulse chirp on terahertz emission characteristics of gas induced by two-color laser field. Acta Physica Sinica, doi: 10.7498/aps.73.20231806
    [2] Zhu Cun-Yuan, Li Chao-Gang, Fang Quan, Wang Mao-Sheng, Peng Xue-Cheng, Huang Wan-Xia. The spring oscillator model degenerated into the coupled-mode theory by using secular perturbation theory. Acta Physica Sinica, doi: 10.7498/aps.69.20191505
    [3] Yu Yi-Xiang, Song Ning-Fang, Liu Wu-Ming. Energy level splitting and parity oscillation in Lipkin-Meshkov-Glick model. Acta Physica Sinica, doi: 10.7498/aps.67.20181069
    [4] Wang Jin-Xia, Shi Ying-Long, Zhang Deng-Hong, Xie Lu-You, Dong Chen-Zhong. Theoretical study on angular distribution and polarization characteristics of X-ray emission following dielectronic recombination of lithium-like ions. Acta Physica Sinica, doi: 10.7498/aps.62.233401
    [5] Wang Kai, Long Hua, Fu Ming, Zhang Li-Chao, Yang Guang, Lu Pei-Xiang. The two-photon absorption saturation process in an Au nanoparticle array. Acta Physica Sinica, doi: 10.7498/aps.60.034209
    [6] Li Zhi-Feng, Ma Fa-Jun, Chen Xiao-Shuang, Lu Wei, Cui Hao-Yang. Two-photon absorption coefficient spectra of indirect transitions in silicon. Acta Physica Sinica, doi: 10.7498/aps.59.7055
    [7] Yang Xiong, Tong Zhao-Yang, Kuang Le-Man. Transfer of quantum information via the two-photon process. Acta Physica Sinica, doi: 10.7498/aps.57.1689
    [8] Pan Liu-Xian, Yu Hui-You, Yan Jia-Ren. Time-dependent perturbation theory of KdV soliton. Acta Physica Sinica, doi: 10.7498/aps.57.1316
    [9] Pan Liu-Xian, Zuo Wei-Ming, Yan Jia-Ren. The theory of the perturbation for Landau-Ginzburg-Higgs equation. Acta Physica Sinica, doi: 10.7498/aps.54.1
    [10] Liu Tian-Gui, Yan Jia-Ren, Pan Liu-Xian. . Acta Physica Sinica, doi: 10.7498/aps.51.6
    [11] ZHAO YONG-MING, YAN JIA-REN. THE THEORY OF THE PERTURBATION EQUATION OF MKdV. Acta Physica Sinica, doi: 10.7498/aps.48.1976
    [12] TANG ZHI-LIE, LIN LI-ZHONG. THEORY OF TWO-PHOTEN PHOTOACOUSTIC EFFECT. Acta Physica Sinica, doi: 10.7498/aps.43.211
    [13] WANG ZHI-CHENG. QUANTUM THEORY OF TWO-PHOTON LASER. Acta Physica Sinica, doi: 10.7498/aps.40.1259-2
    [14] WEN GEN-WANG. THE STEEPEST DESCENT PERTURBATION THEORY FOR THE EXCITED STATE OF A QUANTUM SYSTEM. Acta Physica Sinica, doi: 10.7498/aps.40.1388
    [15] THEORETICAL CALCULATION OF POLARIZATION SIGNALS FOR THREE一PHOTON TRANSITIONS. Acta Physica Sinica, doi: 10.7498/aps.38.1225
    [16] WEN GEN-WANG. DEGENERATE GROUND STATE STEEPEST DESCENT PERTURBATION THEORY. Acta Physica Sinica, doi: 10.7498/aps.37.1981
    [17] LI FU-LI. TWO-PHOTON OPTICAL MULTISTABILITY THEORY. Acta Physica Sinica, doi: 10.7498/aps.32.71
    [18] ZHENG ZHAO-BO. AN ALTERNATE PROOF OF THE INFINITE ORDER PERTURBATION THEORY BY MATRIX PARTITION. Acta Physica Sinica, doi: 10.7498/aps.30.866
    [19] CHENG LU. THE PERTURBATION THEORY FOR THE FIRST-ORDER APPROXIMATION OF THE DIFFRACTION PROBLEMS. Acta Physica Sinica, doi: 10.7498/aps.22.223
    [20] CHEN SHI-KANG. PERTURBATION THEORY OF TRANSVERSE TRANSPORT PROCESS IN STRONG MAGNETIC FIELD. Acta Physica Sinica, doi: 10.7498/aps.20.579
Metrics
  • Abstract views:  249
  • PDF Downloads:  4
  • Cited By: 0
Publishing process
  • Received Date:  05 July 2025
  • Accepted Date:  20 July 2025
  • Available Online:  24 July 2025
  • /

    返回文章
    返回
    Baidu
    map