Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Hydrogen passivation mechanism and reaction pathways of neutral oxygen vacancies in amorphous silica

WANG Yuqi ZHAO Yaolin YU Chenxi ZHANG Jun

Citation:

Hydrogen passivation mechanism and reaction pathways of neutral oxygen vacancies in amorphous silica

WANG Yuqi, ZHAO Yaolin, YU Chenxi, ZHANG Jun
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Amorphous silica (a-SiO2) with excellent insulating properties, uniform disordered structure, and good thermal stability, is the preferred material for field oxide layers, gate insulation layers and passivation layers in many semiconductor devices. However, in space environments, the oxygen vacancies generated by high-energy particle radiation and their interaction with hydrogen atoms in a-SiO2 can lead to enhanced low-dose-rate sensitivity, potentially causing threshold voltage to shift and leakage current to increase in semiconductor devices. These seriously threaten the operation safety of spacecraft, and the exploration of related reaction mechanisms is crucial. The neutral oxygen vacancies in amorphous silica and their reaction mechanism with hydrogen atoms are investigated using first-principles calculations. Five types of neutral oxygen vacancies are identified, namely $ {\mathrm{V}}_{\mathrm{D}} $, $ {\mathrm{V}}_{\mathrm{B}} $, $ {\mathrm{V}}_{\mathrm{F}} $, $ {\mathrm{V}}_{\mathrm{B}\mathrm{P}4} $ and $ {\mathrm{V}}_{\mathrm{D}\mathrm{S}\mathrm{i}} $ configurations. A significant positive correlation is observed between the defect formation energy and the distance between two defective silicon atoms. Due to the lowest defect formation energy, the $ {\mathrm{V}}_{\mathrm{D}} $ configuration may become the main type of defect in irradiation or fabrication.$ {\mathrm{V}}_{\mathrm{F}} $ and $ {\mathrm{V}}_{\mathrm{B}} $ configurations show that Fermi contacts are comparable to those of $ {\mathrm{E}}_{\mathrm{\gamma }}' $ centers. The presence of electron pairs leads to zero fermi contacts in $ {\mathrm{V}}_{\mathrm{D}} $, $ {\mathrm{V}}_{\mathrm{B}\mathrm{P}4} $ and $ {\mathrm{V}}_{\mathrm{D}\mathrm{S}\mathrm{i}} $ configurations. Previous studies have often focused more on the reaction between oxygen vacancies and hydrogen atoms at the middle-sites of oxygen vacancies. And, a key characteristic of the disordered a-SiO2 structure is that this method ignores the structure: the reaction may extend to the neighboring networks and occur at the side-sites of oxygen defects. For a full understanding of actual reactions, both the middle-sites and side-sites are considered for hydrogen atoms in present investigations. The research shows that hydrogen atoms passivate neutral oxygen vacancies through two different mechanisms: the formation of Si-H bonds and the generation of silanol groups. These processes generate two types of neutral hydrogenated oxygen vacancies, $ {\mathrm{V}}^{\mathrm{H}} $ and $ {\mathrm{V}}^{\mathrm{O}\mathrm{H}} $ configurations, which can be further divided into seven different configurations based on the orientation of dangling bonds and Si-H bonds. By combining the analyses of ELF maps and EPR simulations, it is demonstrated that $ {\mathrm{V}}_{\mathrm{B}\mathrm{B}}^{\mathrm{H}} $ and $ {\mathrm{V}}_{\mathrm{B}\mathrm{M}}^{\mathrm{H}} $ configurations have EPR parameters comparable to those of $ {\mathrm{E}}_{\mathrm{\gamma }}' $ center, indicating that hydrogen passivation processes may interfere with the identification of $ {\mathrm{E}}' $ center. The formation of silanol group in $ {\mathrm{V}}_{\mathrm{B}\mathrm{B}}^{\mathrm{O}\mathrm{H}} $ configuration provides theoretical bases for explaining water molecules formation within oxide layers and at interfaces. This study elucidates the pathways of hydrogen-induced cross-network migration and silanol group formation, jointly revealing the dual role of hydrogen in passivating defects and inducing secondary defects. A microscopic explanation for the increased sensitivity to low dose rates in bipolar devices is derived from these findings.
  • 图 1  (a) 无缺陷a-SiO2模型[27](红色为氧原子、黄色硅原子); (b) Si—O键长示意图; (c) a-SiO2键角分布

    Figure 1.  (a) Model of defect-free a-SiO2 [27](red spheres, oxygen atoms; yellow spheres, silicon atoms); (b) schematic diagram of the Si—O bond length; (c) bond angle distribution in a-SiO2.

    图 2  a-SiO2中5种中性氧空位缺陷的典型结构(红色为氧原子、黄色硅原子)和ELF图

    Figure 2.  Typical configurations and ELF maps of five types of neutral oxygen vacancies in a-SiO2 (red spheres, oxygen atoms; yellow spheres, silicon atoms).

    图 3  中性氧空位缺陷的缺陷形成能

    Figure 3.  Defect formation energy of neutral oxygen vacancies.

    图 4  a-SiO2中7种中性氢化氧空位缺陷的典型结构(红色为氧原子、黄色硅原子、白色为氢原子)

    Figure 4.  Seven typical configurations of neutral hydrogen-passivated oxygen vacancies in a-SiO2 (red spheres, oxygen atoms; yellow spheres, silicon atoms; white spheres, hydrogen atoms).

    图 5  a-SiO2中7种中性氢化氧空位缺陷的ELF图

    Figure 5.  ELF maps of seven neutral hydrogen-passivated oxygen vacancies in a-SiO2.

    图 6  (a) $ {\mathrm{V}}_{\mathrm{D}} $和(b) $ {\mathrm{V}}_{\mathrm{B}} $构型与氢原子的反应路径和能量曲线

    Figure 6.  Reaction pathways and energy curves of (a) $ {\mathrm{V}}_{\mathrm{D}} $ and (b) $ {\mathrm{V}}_{\mathrm{B}} $ configurations with hydrogen atoms.

    图 7  (a) $ {\mathrm{V}}_{\mathrm{F}} $和(b) $ {\mathrm{V}}_{\mathrm{B}\mathrm{P}4} $构型与氢原子的反应路径和能量曲线

    Figure 7.  Reaction pathways and energy curves of (a) $ {\mathrm{V}}_{\mathrm{F}} $ and (b) $ {\mathrm{V}}_{\mathrm{B}\mathrm{P}4} $ configurations with hydrogen atoms.

    图 8  $ {\mathrm{V}}_{\mathrm{D}\mathrm{S}\mathrm{i}} $构型与氢原子的反应路径和能量曲线

    Figure 8.  Reaction pathway and energy curve of $ {\mathrm{V}}_{\mathrm{D}\mathrm{S}\mathrm{i}} $ configuration with a hydrogen atom.

    表 1  五种中性氧空位缺陷的结构参数

    Table 1.  Structural parameters of five types of neutral oxygen vacancies.

    种类 数量 平均$ {D}_{\mathrm{S}\mathrm{i}1-\mathrm{S}\mathrm{i}2} $
    平均Si—O
    键长/Å
    平均O—Si—O
    键角/(°)
    Si1 Si2 Si1 Si2
    $ {\mathrm{V}}_{\mathrm{D}} $ 24 2.42 1.66 1.66 106.95 107.34
    $ {\mathrm{V}}_{\mathrm{F}} $ 7 4.19 1.66 1.66 108.52 108.91
    $ {\mathrm{V}}_{\mathrm{B}} $ 14 4.81 1.66 1.66 109.31 108.19
    $ {\mathrm{V}}_{\mathrm{B}\mathrm{P}4} $ 2 5.32 1.80 1.60 96.27 114.07
    $ {\mathrm{V}}_{\mathrm{D}\mathrm{S}\mathrm{i}} $ 1 3.53 1.71 1.66 99.67 111.63
    DownLoad: CSV

    表 2  中性氧空位缺陷和中性氢化氧空位缺陷的平均费米接触和g因子

    Table 2.  Average Fermi contacts and g values of neutral oxygen vacancies and neutral hydrogen-passivated oxygen vacancies.

    缺陷构型 费米接触/mT g1 g2 g3
    Si1 Si2
    $ {\mathrm{V}}_{\mathrm{B}} $ –38.10 –40.69 2.0006 1.9988 1.9981
    $ {\mathrm{V}}_{\mathrm{F}} $ –41.79 –42.95 2.0005 1.9986 1.9979
    $ {\mathrm{V}}_{\mathrm{B}\mathrm{B}}^{\mathrm{H}} $ –39.29 –0.00 2.0017 2.0006 2.0002
    $ {\mathrm{V}}_{\mathrm{B}\mathrm{F}}^{\mathrm{H}} $ –0.03 –45.07 2.0017 2.0002 1.9998
    $ {\mathrm{V}}_{\mathrm{F}\mathrm{B}}^{\mathrm{H}} $ –44.27 –0.12 2.0017 2.0003 2.0000
    $ {\mathrm{V}}_{\mathrm{F}\mathrm{F}}^{\mathrm{H}} $ –16.55 –41.14 2.0014 2.0002 1.9997
    $ {\mathrm{V}}_{\mathrm{B}\mathrm{M}}^{\mathrm{H}} $ –0.01 –0.27 (–41.72 a) 2.0016 2.0004 2.0001
    $ {\mathrm{V}}_{\mathrm{D}\mathrm{S}\mathrm{i}}^{\mathrm{H}} $ –22.89 –0.02 2.0021 2.0020 2.0005
    $ {\mathrm{V}}_{\mathrm{B}\mathrm{B}}^{\mathrm{O}\mathrm{H}} $ –43.75 –0.60 2.0016 2.0005 1.9998
    注: a 表示Si4费米接触.
    DownLoad: CSV
    Baidu
  • [1]

    Kajihara K, Miura T, Kamioka H, Aiba A, Uramoto M, Morimoto Y, Hirano M, Skuja L, Hosono H 2008 J. Non-Cryst. Solids 354 224Google Scholar

    [2]

    Füssel W, Schmidt M, Flietner H 1992 Nucl. Instrum. Meth. B 65 238Google Scholar

    [3]

    Bunson P E, Di Ventra M, Pantelides S T, Fleetwood D M, Schrimpf R D 2000 IEEE Trans. Nucl. Sci. 47 2289Google Scholar

    [4]

    Yue Y L, Wang J W, Zhang Y Q, Song Y, Zuo X 2018 Physica B 533 5Google Scholar

    [5]

    Shen X, Puzyrev Y S, Fleetwood D M, Schrimpf R D, Pantelides S T 2015 IEEE Trans. Nucl. Sci. 62 2169Google Scholar

    [6]

    Enlow E W, Pease R L, Combs W, Schrimpf R D, Nowlin R N 1991 IEEE Trans. Nucl. Sci. 38 1342Google Scholar

    [7]

    Pershenkov V S, Petrov A S, Bakerenkov A S, Ulimov V N, Felytsyn V A, Rodin A S, Belyakov V V, Telets V A, Shurenkov V V 2017 Microelectron. Reliab. 76–77 703

    [8]

    Zhou H, Song Y, Liu Y, Zhang Y 2020 Eur. Phys. J. Plus 135 909Google Scholar

    [9]

    Hjalmarson H P, Pease R L, Devine R A B 2008 IEEE Trans. Nucl. Sci. 55 3009Google Scholar

    [10]

    Hjalmarson H P, Pease R L, Witczak S C, Shaneyfelt M R, Schwank J R, Edwards A H, Hembree C E, Mattsson T R 2003 IEEE Trans. Nucl. Sci. 50 1901Google Scholar

    [11]

    Rashkeev S N, Cirba C R, Fleetwood D M, Schrimpf R D, Witczak S C, Michez A, Pantelides S T 2002 IEEE Trans. Nucl. Sci. 49 2650Google Scholar

    [12]

    Witczak S C, Lacoe R C, Mayer D C, Fleetwood D M, Schrimpf R D, Galloway K F 1998 IEEE Trans. Nucl. Sci. 45 2339Google Scholar

    [13]

    Fleetwood D M, Kosier S L, Nowlin R N, Schrimpf R D, Reber R A, DeLaus M, Winokur P S, Wei A, Combs W E, Pease R L 1994 IEEE Trans. Nucl. Sci. 41 1871Google Scholar

    [14]

    Messina F, Cannas M 2007 J. Phys. Chem. C 111 6663Google Scholar

    [15]

    Pease R L, Adell P C, Rax B G, Chen X J, Barnaby H J, Holbert K E, Hjalmarson H P 2008 IEEE Trans. Nucl. Sci. 55 3169Google Scholar

    [16]

    Chen X J, Barnaby H J, Vermeire B, Holbert K, Wright D, Pease R L, Dunham G, Platteter D G, Seiler J, McClure S, Adell P 2007 IEEE Trans. Nucl. Sci. 54 1913Google Scholar

    [17]

    Morana A, Cannas M, Girard S, Boukenter A, Vaccaro L, Périsse J, Macé J R, Ouerdane Y, Boscaino R 2013 Opt. Mater. Express 3 1769Google Scholar

    [18]

    Tomashuk A L, Zabezhailov M O 2011 J. Appl. Phys. 109 083103Google Scholar

    [19]

    Saito K, Ito M, Ikushima A J, Funahashi S, Imamura K 2004 J. Non-Cryst. Solids 347 289Google Scholar

    [20]

    Weeks R A 1956 J. Appl. Phys. 27 1376Google Scholar

    [21]

    Nelson C M, Weeks R A 1960 J. Am. Ceram. Soc. 43 396Google Scholar

    [22]

    Weeks R A, Nelson C M 1960 J. Am. Ceram. Soc. 43 399Google Scholar

    [23]

    Griscom D L 1984 Nucl. Instrum. Meth. B 1 481Google Scholar

    [24]

    Griscom D L 1985 OPL 61 213

    [25]

    Boero M, Oshiyama A, Silvestrelli P L 2004 Mod. Phys. Lett. B 18 707Google Scholar

    [26]

    Boero M, Oshiyama A, Silvestrelli P L 2003 Phys. Rev. Lett. 91 206401Google Scholar

    [27]

    Wang Y, Zhao Y, Chen Z, Jia Z, Tong D, Nie S, Han Z 2024 J. Chem. Phys. 161 034705Google Scholar

    [28]

    Yue Y, Song Y, Zuo X 2017 AIP Adv. 7 015309Google Scholar

    [29]

    Chavez J R, Karna S P, Vanheusden K, Brothers C P, Pugh R D, Singaraju B K, Warren W L, Devine R A B 1997 IEEE Trans. Nucl. Sci. 44 1799Google Scholar

    [30]

    Mukhopadhyay S, Sushko P V, Mashkov V A, Shluger A L 2005 J. Phys.: Condens. Matter 17 1311Google Scholar

    [31]

    Imai H, Arai K, Imagawa H, Hosono H, Abe Y 1988 Phys. Rev. B 38 12772Google Scholar

    [32]

    Blöchl P E 2000 Phys. Rev. B 62 6158Google Scholar

    [33]

    Skuja L 1998 J. Non-Cryst. Solids 239 16Google Scholar

    [34]

    Pantelides S T, Rashkeev S N, Fleetwood D M, Schrimpf R D 2000 IEEE Trans. Nucl. Sci. 47 2262Google Scholar

    [35]

    Bunson P E, Di Ventra M, Pantelides S T, Fleetwood D M, Schrimpf R D 2000 IEEE Trans. Nucl. Sci. 47 2289Google Scholar

    [36]

    McLean F B 1980 IEEE Trans. Nucl. Sci. 27 1651Google Scholar

    [37]

    Saks N S, Klein R B, Griscom D L 1988 IEEE Trans. Nucl. Sci. 35 1234Google Scholar

    [38]

    El-Sayed A M, Wimmer Y, Goes W, Grasser T, Afanas’ev V V, Shluger A L 2015 Phys. Rev. B 92 014107Google Scholar

    [39]

    El-Sayed A M, Watkins M B, Grasser T, Afanas’ev V V, Shluger A L 2015 Microelectron. Eng. 147 141Google Scholar

    [40]

    Rivera A, van Veen A, Schut H, de Nijs J M M, Balk P 2002 Solid-State Electron. 46 1775Google Scholar

    [41]

    Kato K 2012 Phys. Rev. B 85 085307Google Scholar

    [42]

    Yao P, Song Y, Zuo X 2021 Superlatt. Microstruct. 156 106962Google Scholar

    [43]

    Hong Z C, Yao P, Liu Y, Zuo X 2022 Chin. Phys. B 31 057101Google Scholar

    [44]

    VandeVondele J, Krack M, Mohamed F, Parrinello M, Chassaing T, Hutter J 2005 Comput. Phys. Commun. 167 103Google Scholar

    [45]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [46]

    VandeVondele J, Hutter J 2007 J. Chem. Phys. 127 114105Google Scholar

    [47]

    Goedecker S, Teter M, Hutter J 1996 Phys. Rev. B 54 1703Google Scholar

    [48]

    BROYDEN C G 1970 IMA J. Appl. Math. 6 222Google Scholar

    [49]

    Fletcher R 1970 Comput. J. 13 317Google Scholar

    [50]

    Goldfarb D 1970 Math. Comp. 24 23Google Scholar

    [51]

    Shanno D F 1970 Math. Comp. 24 647Google Scholar

    [52]

    Henkelman G, Uberuaga B P, Jónsson H 2000 J. Chem. Phys. 113 9901Google Scholar

    [53]

    Becke A D, Edgecombe K E 1990 J. Chem. Phys. 92 5397Google Scholar

    [54]

    卢天, 陈飞武 2011 物理化学学报 27 2786Google Scholar

    Lu T, Chen F W 2011 Acta Phys. Chem. Sin. 27 2786Google Scholar

    [55]

    Freysoldt C, Grabowski B, Hickel T, Neugebauer J, Kresse G, Janotti A, Van de Walle C G 2014 Rev. Mod. Phys. 86 253Google Scholar

    [56]

    Pickard C J, Mauri F 2002 Phys. Rev. Lett. 88 086403Google Scholar

    [57]

    Yazyev O V, Tavernelli I, Helm L, Röthlisberger U 2005 Phys. Rev. B 71 115110Google Scholar

    [58]

    Bahramy M S, Sluiter M H F, Kawazoe Y 2007 Phys. Rev. B 76 035124Google Scholar

    [59]

    Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I, Corso A D, Gironcoli S de, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen A P, Smogunov A, Umari P, Wentzcovitch R M 2009 J. Phys.: Condens. Matter 21 395502Google Scholar

    [60]

    Charpentier T 2011 Solid State Nucl. Mag. 40 1Google Scholar

    [61]

    Pickard C J, Mauri F 2001 Phys. Rev. B 63 245101Google Scholar

    [62]

    Le Roux S, Petkov V 2010 J. Appl. Cryst. 43 181Google Scholar

    [63]

    Goetzke K, Klein H J 1991 J. Non-Cryst. Solids 127 215Google Scholar

    [64]

    Yuan X, Cormack A N 2002 Comput. Mater. Sci. 24 343Google Scholar

    [65]

    Van Ginhoven R M, Jónsson H, Corrales L R 2005 Phys. Rev. B 71 024208Google Scholar

    [66]

    Mukhopadhyay S, Sushko P V, Stoneham A M, Shluger A L 2004 Phys. Rev. B 70 195203Google Scholar

    [67]

    Giacomazzi L, Martin-Samos L, Boukenter A, Ouerdane Y, Girard S, Richard N 2014 Phys. Rev. B 90 014108Google Scholar

    [68]

    Pantelides S T, Tsetseris L, Rashkeev S N, Zhou X J, Fleetwood D M, Schrimpf R D 2007 Microelectron. Reliab. 47 903Google Scholar

  • [1] CHEN Suqi, HE Feng. Fano resonance in high-order harmonics of hydrogen atoms driven by intense laser pulse. Acta Physica Sinica, doi: 10.7498/aps.74.20250617
    [2] Hou Lu, Tong Xin, Ouyang Gang. First-principles study of atomic bond nature of one-dimensional carbyne chain under different strains. Acta Physica Sinica, doi: 10.7498/aps.69.20201231
    [3] Wang Xiao-Ka, Tang Fu-Ling, Xue Hong-Tao, Si Feng-Juan, Qi Rong-Fei, Liu Jing-Bo. First-principles study of H, Cl and F passivation for Cu2ZnSnS4(112) surface states. Acta Physica Sinica, doi: 10.7498/aps.67.20180626
    [4] Hou Qing-Yu, Li Yong, Zhao Chun-Wang. First-principles study of Al-doped and vacancy on the magnetism of ZnO. Acta Physica Sinica, doi: 10.7498/aps.66.067202
    [5] Yang Liang, Wang Cai-Zhuang, Lin Shi-Wei, Cao Yang. First-principles investigation of oxygen diffusion mechanism in -titanium crystals. Acta Physica Sinica, doi: 10.7498/aps.66.116601
    [6] Liu Kun, Wang Fu-He, Shang Jia-Xiang. First-principles study on the adsorption of oxygen at NiTi (110) surface. Acta Physica Sinica, doi: 10.7498/aps.66.216801
    [7] Yang Biao, Wang Li-Ge, Yi Yong, Wang En-Ze, Peng Li-Xia. First-principles calculations of the diffusion behaviors of C, N and O atoms in V metal. Acta Physica Sinica, doi: 10.7498/aps.64.026602
    [8] Huang Yan-Ping, Yuan Jian-Mei, Guo Gang, Mao Yu-Liang. First-principles study on saturated adsorption of alkali metal atoms on silicene. Acta Physica Sinica, doi: 10.7498/aps.64.013101
    [9] Tan Xing-Yi, Wang Jia-Heng, Zhu Yi-Yi, Zuo An-You, Jin Ke-Xin. First-principles calculations of phosphorene doped with carbon, oxygen and sulfur. Acta Physica Sinica, doi: 10.7498/aps.63.207301
    [10] Zhang Yang, Huang Yan, Chen Xiao-Shuang, Lu Wei. The study of oxygen and sulfur adsorption on the InSb (110) surface, using first-principle energy calculations. Acta Physica Sinica, doi: 10.7498/aps.62.206102
    [11] Li Guo-Qi, Zhang Xiao-Chao, Ding Guang-Yue, Fan Cai-Mei, Liang Zhen-Hai, Han Pei-De. Study on the atomic and electronic structures of BiOCl{001} surface using first principles. Acta Physica Sinica, doi: 10.7498/aps.62.127301
    [12] Li Yu-Bo, Wang Xiao, Dai Ting-Ge, Yuan Guang-Zhong, Yang Hang-Sheng. First-principle study of vacancy-induced cubic boron nitride electronic structure and optical propertiy changes. Acta Physica Sinica, doi: 10.7498/aps.62.074201
    [13] Lu Jin-Lian, Cao Jue-Xian. A first-principles study of capacity and mechanism of a single titanium atom storing hydrogen. Acta Physica Sinica, doi: 10.7498/aps.61.148801
    [14] Fang Cai-Hong, Shang Jia-Xiang, Liu Zeng-Hui. Oxygen adsorption on Nb(110) surface by first-principles calculation. Acta Physica Sinica, doi: 10.7498/aps.61.047101
    [15] Li Qi, Fan Guang-Han, Xiong Wei-Ping, Zhang Yong. First-principles calculations of ZnO polar surfaces and N adsorption mechanism. Acta Physica Sinica, doi: 10.7498/aps.59.4170
    [16] Zhou Jing-Jing, Chen Yun-Gui, Wu Chao-Ling, Zheng Xin, Fang Yu-Chao, Gao Tao. First-pricinples design on atomic scale for new lightweight hydrogen storage materials. Acta Physica Sinica, doi: 10.7498/aps.58.4853
    [17] Yang Chong, Yang Chun. First-principles study of atomic and electronic structures of the silicon oxide clusters on Si(001) surfaces. Acta Physica Sinica, doi: 10.7498/aps.58.5362
    [18] Yao Hong-Ying, Gu Xiao, Ji Min, Zhang Di-Er, Gong Xin-Gao. First-principles study of metal atoms adsorbed on SiO2 surface. Acta Physica Sinica, doi: 10.7498/aps.55.6042
    [19] Kang Shuai, Liu Qiang, Zhong Zhen-Xiang, Zhang Xian-Zhou, Shi Ting-Yun. Calculation of diamagnetic spectrum of Rydberg hydrogen atom using B-spline basis sets. Acta Physica Sinica, doi: 10.7498/aps.55.3380
    [20] Li Xing-Hua, Yang Ya-Tian. Boson expression of hydrogen atom eigenfunction. Acta Physica Sinica, doi: 10.7498/aps.54.12
Metrics
  • Abstract views:  277
  • PDF Downloads:  8
  • Cited By: 0
Publishing process
  • Received Date:  24 June 2025
  • Accepted Date:  17 July 2025
  • Available Online:  08 August 2025
  • /

    返回文章
    返回
    Baidu
    map