Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of trace Mg and heat treatment on microstructure and properties of Al-7Si alloy

WANG Bo JIANG Hongxiang ZHANG Lili HE Jie

Citation:

Effect of trace Mg and heat treatment on microstructure and properties of Al-7Si alloy

WANG Bo, JIANG Hongxiang, ZHANG Lili, HE Jie
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Al-Si alloys have been widely used in automotive, aerospace, electronics and communication industries due to their excellent castability, low thermal expansion, and good wear and corrosion resistance. However, the presence of coarse eutectic Si often results in relatively low thermal conductivity. With the rapid development of the electronics and communication industries, the requirements for thermal conductivity and mechanical properties of materials are increasing. In this study, the effects of heat treatment and minor Mg addition on the microstructure, mechanical properties, and thermal conductivity of Al-7Si alloys are systematically investigated.The results indicate that heat treatment at 300 ℃ after solution treatment promotes the spheroidization of eutectic Si and reduces the solid solubility of solute atoms in the aluminum matrix, thereby enhancing the thermal conductivity and reducing the hardness of the Al-7Si alloy. The three-step heat treatment process (solution treatment+300 ℃ treatment+180 ℃ treatment) not only facilitates the spheroidization of eutectic Si, but also induces the precipitation of nanoscale (Mg, Si) strengthening phases, further reducing the solid solubility of solute elements in the Al-7Si alloy with 0.4%Mg addition. After the three-step heat treatment, the Al-7Si-0.4Mg alloy reaches to 189 W/(m·K) in thermal conductivity and 73.5 HV in microhardness, respectively, which are increased by 11.2% and 62.6% respectively, compared with the as-cast Al-7Si alloy.According to the Wiedemann-Franz law and the Matthiessen-Fleming rule, the primary factors influencing the thermal conductivity of alloys are solute atoms in solid solution and secondary phases. In this study, a three-step heat treatment process is used to transform the plate-like eutectic silicon in the Al-7Si-0.4Mg alloy into fine spherical particles. Additionally, micrometer-sized silicon particles and nanoscale (Mg, Si) precipitates are induced within the alloy matrix. This microstructural modification simultaneously enhances the thermal conductivity and mechanical properties of the alloy. Our work is expected to inspire the design of Al-Si alloy with high strength and high conductivity.
  • 图 1  铸态Al-7Si合金的二次电子图像和能谱元素分布 (a) 二次电子图像; (b) 铝; (c) 硅; (d) 铁; (e) 镧; (f) 锶

    Figure 1.  Secondary electron imaging and energy dispersive spectroscopy elemental distribution of as-cast Al-7Si alloy: (a) SEI; (b) Al; (c) Si; (d) Fe; (e) La; (f) Sr.

    图 2  Al-7Si合金的SEM图像 (a) 铸态; (b) 530 ℃固溶1 h; (c) 530 ℃固溶2 h; (d) 铸态, 300 ℃保温80 min; (e) 530 ℃固溶1 h后, 300 ℃保温80 min; (f) 530 ℃固溶2 h后, 300 ℃保温80 min

    Figure 2.  SEM images of the Al-7Si alloy: (a) As-cast; (b) after solution treatment at 530 ℃ for 1 hour; (c) after solution treatment at 530 ℃ for 2 hours; (d) as-cast, then held at 300 ℃ for 80 minutes; (e) after solution treatment at 530 ℃ for 1 hour followed by holding at 300 ℃ for 80 minutes; (f) after solution treatment at 530 ℃ for 2 hours followed by holding at 300 ℃ for 80 minutes.

    图 3  Al-7Si合金在300 ℃下保温80 min的二次电子图像和能谱元素分布 (a) 二次电子图像; (b) 铝; (c) 硅; (d) 二次电子图像; (e) 铝; (f) 硅

    Figure 3.  Secondary Electron Imaging and Energy Dispersive Spectroscopy elemental distribution of Al-7Si alloy at 300 ℃ for 80 minutes: (a) SEI (b) Al; (c) Si; (d) SEI (e) Al; (f) Si.

    图 4  Al-7Si合金热处理过程中热导率及硬度随时间的变化曲线 (a) 固溶过程中的热导率变化; (b) 300 ℃保温热处理过程中的热导率变化; (c) 固溶过程中的硬度变化; (d) 300 ℃保温热处理过程中的硬度变化

    Figure 4.  Variations in thermal conductivity and hardness of Al-7Si alloy during heat treatment as a function of time: (a) Thermal conductivity variation during solution treatment; (b) thermal conductivity variation during 300 ℃ isothermal heat treatment; (c) hardness variation during solution treatment; (d) hardness variation during 300 ℃ isothermal heat treatment.

    图 5  铸态Al-7Si-0.4Mg合金的二次电子图像和能谱元素分布 (a) 二次电子图像; (b) 铝; (c) 硅; (d) 铁; (e) 镧; (f) 锶; (g) 镁

    Figure 5.  Secondary electron imaging and energy dispersive spectroscopy elemental distribution of as-cast Al-7Si-0.4Mg alloy: (a) SEI; (b) Al; (c) Si; (d) Fe; (e) La; (f) Sr; (g) Mg.

    图 6  Al-7Si-0.4Mg合金的SEM图像 (a) 铸态; (b) 530 ℃固溶1 h; (c) 530 ℃固溶2 h; (d) 铸态, 300 ℃保温80 min; (e) 530 ℃固溶1 h后, 300℃保温80 min; (f) 530 ℃固溶2 h后, 300 ℃保温80 min

    Figure 6.  SEM images of the Al-7Si-0.4Mg alloy: (a) As-cast; (b) after solution treatment at 530 ℃ for 1 hour; (c) after solution treatment at 530 ℃ for 2 hours; (d) as-cast, then held at 300 ℃ for 80 minutes; (e) after solution treatment at 530 ℃ for 1 hour followed by holding at 300 ℃ for 80 minutes; (f) after solution treatment at 530 ℃ for 2 hours followed by holding at 300 ℃ for 80 minutes.

    图 7  Al-7Si-0.4Mg合金热处理过程中热导率及硬度随时间的变化 (a) 固溶过程中的热导率变化; (b) 高温保温热处理过程中的热导率变化; (c) 固溶过程中的硬度变化; (d) 高温保温热处理过程中的硬度变化

    Figure 7.  Variations in thermal conductivity and hardness of Al-7Si-0.4Mg alloy during heat treatment as a function of time: (a) Thermal conductivity variation during solution treatment; (b) thermal conductivity variation during high-temperature isothermal heat treatment; (c) hardness variation during solution treatment; (d) hardness variation during high-temperature isothermal heat treatment.

    图 8  不同热处理工艺后的Al-7Si-0.4Mg合金的室温拉伸性能

    Figure 8.  Mechanical properties at room temperature of Al-7Si-0.4Mg alloy after different heat treatment processes.

    图 9  经历不同热处理后Al-7Si-0.4Mg合金的TEM分析结果 (a) 双级热处理(530 ℃固溶1.5 h+300 ℃保温60 min)样品的明场像及Mg, Si元素分布; (b) 三级热处理(530 ℃固溶1.5 h+300 ℃保温60 min+180 ℃×6 h)样品的明场像及Mg, Si元素分布; (c) β''β'相的高分辨图像及傅里叶变换花样

    Figure 9.  Representative TEM images of Al-7Si-0.4Mg alloy after different heat treatments: (a) Bright-field images, Mg element distribution and Si element distribution of the double-step heat treatment samples (solution at 530 ℃ for 1.5 h+holding at 300 ℃ for 60 min); (b) bright-field image, Mg element distribution, Si element distribution of the triple-step heat treatment samples (530 ℃×1.5 h solution +300 ℃×60 min+180 ℃×6 h); (c) high resolution TEM images and corresponding FFT images of β'' and β' phase.

    表 1  实验合金的化学成分(质量分数)(单位: %)

    Table 1.  Chemical compositions (weight percent) of the experimental alloys (Unit: %).

    AlloyMgBLaSrFeSiAl
    Al-7Si00.0240.040.020.257Bal.
    Al-7Si-0.4Mg0.40.0240.040.020.257Bal.
    DownLoad: CSV

    表 2  Al-7 Si和Al-7 Si-0.4 Mg合金的热处理工艺参数

    Table 2.  Heat treatment process parameters for the Al-7 Si and Al-7 Si-0.4 Mg alloys

    AlloyProcessTemperature/℃Time
    Al-7SiSS5300 h, 0.5 h, 1 h, 1.5 h, 2 h
    HT3000 min, 20 min, 40 min,
    60 min, 80 min, 100 min
    Al-7Si-
    0.4Mg
    SS5300 h, 0.5 h, 1 h, 1.5 h, 2 h
    HT3000 min, 20 min, 40 min,
    60 min, 80 min, 100 min
    LT1800 h, 6 h, 12 h
    DownLoad: CSV

    表 3  Al-7Si-0.4Mg试样的热处理工艺及性能

    Table 3.  Heat treatment process and properties of the Al-7Si-0.4Mg samples.

    Heat treatment processThermal conductivity
    /(W·m–1·K–1)
    Hardness
    /HV
    Ultra tensile stress/MPaElongation/%
    As-cast16260.91696.25
    SS1.5 h+HT60 min18562.91768
    SS1.5 h+HT60 min+LT6 h18379.52066
    SS1.5 h+HT60 min+LT12 h18973.51865.75
    DownLoad: CSV
    Baidu
  • [1]

    刘静安, 谢水生 2004 铝合金材料的应用与技术开发 (北京: 冶金工业出版社) 第139页

    Liu J A, Xie S S 2004 Application and technical development of aluminum alloy materials (Beijing: Metallurgical Industry Press) p139

    [2]

    Zhang J X, Zhang M J, Li H F, Gu H Z, Chen D, Zhang C H, Tian Y F, Wang E J, Mu Q N 2024 J. Mater. Sci. Technol. 176 48Google Scholar

    [3]

    高学鹏, 李新涛, 郄喜望, 吴亚萍, 李喜孟, 李廷举 2007 56 1188Google Scholar

    Gao X P, Li X T, Qie X W, Wu Y P, Li X M, Li T J 2007 Acta Phys. Sin. 56 1188Google Scholar

    [4]

    Zhao Z Y, Li D X, Yan X R, Chen Y, Jia Z, Zhang D Q, Han M X, Wang X, Liu G L, Liu X F, Liu S D 2024 J. Mater. Sci. Technol. 189 44Google Scholar

    [5]

    张瑞英, 李继承, 沙君浩, 李家康 2024 材料热处理学报 45 53

    Zhang R Y, Li J C, Sha J H, Li J K 2024 Trans. Mater. Heat Treat. 45 53

    [6]

    Gan J Q, Huang Y J, Du J, Wen C, Liu J 2020 Mater. Res. Express 7 086501Google Scholar

    [7]

    张丽丽, 吉宗威, 赵九洲, 何杰, 江鸿翔 2023 金属学报 59 1541

    Zhang L L, Ji Z W, Zhao J Z, He J, Jiang H X 2023 Acta Metall. Sin. 59 1541

    [8]

    郑秋菊, 叶中飞, 江鸿翔, 卢明, 张丽丽, 赵九洲 2021 金属学报 57 103

    Zheng Q J, Ye Z F, Jiang H X, Lu M, Zhang L L, Zhao J Z 2021 Acta Metall. Sin. 57 103

    [9]

    Zheng Q J, Zhang L L, Jiang H X, Zhao J Z, He J 2020 J. Mater. Sci. Technol. 47 142Google Scholar

    [10]

    戚忠乙, 王博, 江鸿翔, 张丽丽, 何杰 2024 73 076401Google Scholar

    Qi Z Y, Wang B, Jiang H X, Zhang L L, He J 2024 Acta Phys. Sin. 73 076401Google Scholar

    [11]

    Dong X X, He L J, Li P J 2014 J. Alloys Compd. 612 20Google Scholar

    [12]

    Chen Z W, Lei Y M, Zhang H F. 2011 J. Alloys Compd. 509 27Google Scholar

    [13]

    Zhan M Y, Chen Z H, Yan H G 2008 J. Mater. Process. Technol. 202 269Google Scholar

    [14]

    Taghavi F, Saghafian H, Kharrazi Y H K 2009 Mater. Des. 30 115Google Scholar

    [15]

    毛卫民, 赵爱民, 崔成林, 钟雪友 1999 金属学报 35 971Google Scholar

    Mao W M, Zhao W M, Cui C L, Zhong X Y 1999 Acta Metall. Sin. 35 971Google Scholar

    [16]

    Jin C K, Bolouri A, Kang C G 2013 Metall. Mater. Trans. B 45 1068

    [17]

    Wang J Y, Wang B J, Huang L F 2017 J. Mater. Sci. Technol. 33 1235Google Scholar

    [18]

    Cheng W, Liu C Y, Huang H F, Zhang L, Zhang B, Shi L 2021 Mater. Charact. 178 111278Google Scholar

    [19]

    Torres L V, Zoqui E J 2024 Int. J. Metalcast. 18 769Google Scholar

    [20]

    Son H W, Lee J Y, Cho Y H, Jang J I, Kim S B, Lee J M 2023 J. Alloys Compd. 960 170982Google Scholar

    [21]

    Bakhtiyarov S I, Overfelt R A, Teodorescu S G 2001 J. Mater. Sci. 36 4643Google Scholar

    [22]

    刘启阳, 李庆春, 朱培钺 1987 金属科学与工艺 6 65

    Liu Q Y, Li Q C, Zhu P Y 1987 Met. Sci. Technol. 6 65

    [23]

    王奥, 盛宇飞, 鲍华 2024 73 037201Google Scholar

    Wang A, Sheng Y F, Bao H 2024 Acta Phys. Sin. 73 037201Google Scholar

    [24]

    Hou J P, Wang Q, Zhang Z J, Tian Y Z, Wu X M, Yang H J, Li X W, Zhang Z F 2017 Mater. Des. 132 148Google Scholar

    [25]

    Wang W Y, Pan Q L, Jiang F Q, Yu Y, Lin G, Wang X D, Ye J, Pan D C, Huang Z Q, Xiang S Q, Li J, Liu B 2022 J. Alloys Compd. 895 162654Google Scholar

    [26]

    Zhang J Y, Peng J. 2023 J. Mater. Res. 38 1488Google Scholar

    [27]

    Raeisinia B, Poole W J, Lloyd D J 2006 Mater. Sci. Eng. , A 420 245Google Scholar

    [28]

    Chen J K, Hung H Y, Wang C F, Tang N K 2015 J. Mater. Sci. 50 5630Google Scholar

    [29]

    Weng W P, Nagaumi H, Sheng X D, Fan W Z, Chen X C, Wang X N 2019 Light Metals Symposium at the 148th TMS Annual Meeting San Antonio, TX March 10-12, 2019 p193

    [30]

    李双寿, 唐靖林, 曾大本 2008 特种铸造及有色合金 0117 04

    Li S S, Tang J L, Zeng D B 2008 Spec. Cast. Nonferrous Alloys 0117 04

    [31]

    Sauvage X, Bobruk E V, Murashkin M Y, Nasedkina Y, Enikeev N A, Valiev R Z 2015 Acta Mater. 98 355Google Scholar

    [32]

    李小松, 蔡安辉, 陈华, 曾纪杰 2009 热加工工艺 38 117Google Scholar

    Li X S, Cai A H, Chen H, Zeng J J 2009 Hot Work. Technol. 38 117Google Scholar

  • [1] BO Le, GAO Xiaoyu, NING Zhiliang, WANG Li, SUN Jianfei, ZHANG Zhenjiang, HUANG Yongjiang. Optimizing microstructure and mechanical properties of CoCrFeNi high-entropy alloy microfibers by electric current treatment. Acta Physica Sinica, doi: 10.7498/aps.74.20250518
    [2] Qi Zhong-Yi, Wang Bo, Jiang Hong-Xiang, Zhang Li-Li, He Jie. Effect of trace rare earth La on microstructure and properties of Al-7%Si-0.6%Fe alloy. Acta Physica Sinica, doi: 10.7498/aps.73.20231939
    [3] Chen Zhi-Peng, Ma Ya-Nan, Lin Xue-Ling, Pan Feng-Chun, Xi Li-Ying, Ma Zhi, Zheng Fu, Wang Yan-Qing, Chen Huan-Ming. Electronic structure and mechanical properties of Nb-doped -TiAl intermetallic compound. Acta Physica Sinica, doi: 10.7498/aps.66.196101
    [4] Bian Xi-Lei, Wang Gang. Ion irradiation of metallic glasses. Acta Physica Sinica, doi: 10.7498/aps.66.178101
    [5] Li Li-Li, Zhang Xiao-Hong, Wang Yu-Long, Guo Jia-Hui, Zhang Shuang. Simulation of mechanical properties based on microstructure in polyethylene/montmorillonite nanocomposites. Acta Physica Sinica, doi: 10.7498/aps.65.196202
    [6] Ma Bing-Yang, Zhang An-Ming, Shang Hai-Long, Sun Shi-Yang, Li Ge-Yang. Amorphizing and mechanical properties of co-sputtered Al-Zr alloy films. Acta Physica Sinica, doi: 10.7498/aps.63.136801
    [7] Zhang Cheng-Bin, Cheng Qi-Kun, Chen Yong-Ping. Molecular dynamics simulation on thermal conductivity of nanocomposites embedded with fractal structure. Acta Physica Sinica, doi: 10.7498/aps.63.236601
    [8] Yu Li-Hua, Ma Bing-Yang, Cao Jun, Xu Jun-Hua. Structures, mechanical and tribological properties of (Zr,V)N composite films. Acta Physica Sinica, doi: 10.7498/aps.62.076202
    [9] Yang Duo, Zhong Ning, Shang Hai-Long, Sun Shi-Yang, Li Ge-Yang. Microstructures and mechanical properties of (Ti, N)/Al nanocomposite films by magnetron sputtering. Acta Physica Sinica, doi: 10.7498/aps.62.036801
    [10] Tang Jie, Yang Li-Rong, Wang Xiao-Jun, Zhang Lin, Wei Cheng-Fu, Chen Bo-Wei, Mei Yang. Effects of high pressure on microstructure and properties of bulk (PrNd)xAl0.6Nb0.5Cu0.15B1.05Fe97.7-x alloys. Acta Physica Sinica, doi: 10.7498/aps.61.240701
    [11] Wang Ying, Lu Tie-Cheng, Wang Yue-Zhong, Yue Shun-Li, Qi Jian-Qi, Pan Lei. Investigation of the electronic and mechanical properties of Al2O3-AlN solid solution by virtual crystal approximation. Acta Physica Sinica, doi: 10.7498/aps.61.167101
    [12] Luo Qing-Hong, Lu Yong-Hao, Lou Yan-Zhi. Microstructure and mechanical properties of Ti-B-C-N nanocomposite coatings. Acta Physica Sinica, doi: 10.7498/aps.60.086802
    [13] Luo Qing-Hong, Lou Yan-Zhi, Zhao Zhen-Ye, Yang Hui-Sheng. Effect of annealing on microstructure and mechanical propertiesof AlTiN multilayer coatings. Acta Physica Sinica, doi: 10.7498/aps.60.066201
    [14] Yu Wei-Yang, Tang Bi-Yu, Peng Li-Ming, Ding Wen-Jiang. Electronic structure and mechanical properties of α-Mg3Sb2. Acta Physica Sinica, doi: 10.7498/aps.58.216
    [15] Li Xiu-Mei, Liu Tao, Guo Zhao-Hui, Zhu Ming-Gang, Li Wei. Effects of rare earth content on microstructure and magnetic properties of (Nd,Dy)-(Fe,Al)-B alloys. Acta Physica Sinica, doi: 10.7498/aps.57.3823
    [16] Zhai Qiu-Ya, Yang Yang, Xu Jin-Feng, Guo Xue-Feng. Electrical resistivity and mechanical properties of rapidly solidified Cu-Sn hypoperitectic alloys. Acta Physica Sinica, doi: 10.7498/aps.56.6118
    [17] Zhu Cai-Zhen, Zhang Pei-Xin, Xu Qi-Ming, Liu Jian-Hong, Ren Xiang-Zhong, Zhang Qian-Ling, Hong Wei-Liang, Li Lin-Lin. Molecular dynamics study the effect of the ratio Ca/Al on CaO-Al2O3-SiO2 structure. Acta Physica Sinica, doi: 10.7498/aps.55.4795
    [18] Wei Lun, Mei Fang-Hua, Shao Nan, Dong Yun-Shan, Li Ge-Yang. The coherent growth and mechanical properties of non-isostructural TiN/TiB2 nanomultilayers. Acta Physica Sinica, doi: 10.7498/aps.54.4846
    [19] Zheng Li-Jing, Li Shu-Suo, Li Huan-Xi, Chen Chang-Qi, Han Ya-Fang, Dong Bao-Zhong. Small angle x-ray scattering study on microstructure and mechanical property evo lutions of equal-channel angular pressed 7050 Al alloy. Acta Physica Sinica, doi: 10.7498/aps.54.1665
    [20] Li Teng, Li Wei, Pan Wei, Li Xiu-Mei. Effect of microstructure on the mechanical properties of Fe45—50 Cr30—35Co20—25Mo0—4Zr0—2 alloy. Acta Physica Sinica, doi: 10.7498/aps.54.4395
Metrics
  • Abstract views:  310
  • PDF Downloads:  3
  • Cited By: 0
Publishing process
  • Received Date:  16 June 2025
  • Accepted Date:  25 July 2025
  • Available Online:  08 August 2025
  • /

    返回文章
    返回
    Baidu
    map