Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Near-zero-field nuclear magnetic resonance and hyperpolarization technology

LI Zeming LV Yunxi QI Haogang QU Qianyue TAN Zheng WANG Li JIANG Weiping HU Yinan ZHOU Xin

Citation:

Near-zero-field nuclear magnetic resonance and hyperpolarization technology

LI Zeming, LV Yunxi, QI Haogang, QU Qianyue, TAN Zheng, WANG Li, JIANG Weiping, HU Yinan, ZHOU Xin
cstr: 32037.14.aps.74.20250771
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Near-zero-field nuclear magnetic resonance (NMR) has become a rapidly developing spectroscopic and imaging method, providing promising opportunities for portable diagnostics and fast chemical analysis. A key technology is the atomic magnetometer, and its ongoing improvements have sparked growing interest in potential clinical applications.The near-zero-field NMR has long been limited by weak signal strength, but recent developments in the hyperpolarization method have provided an effective solution to this problem. Dissolution dynamic nuclear polarization (dDNP), parahydrogen-based polarization schemes (PHIP/SABRE), chemically induced dynamic nuclear polarization (CIDNP), and spin-exchange optical pumping (SEOP) have all demonstrated preliminary feasibility in this context.By combining such hyperpolarization strategies with near-zero-field detection, strong signals can be obtained without the need of traditional high-field magnets. This capability opens new pathways for applying near-zero-field NMR to both chemical sensing and biomedical imaging, enabling compact tools for rapid analysis and diagnostic applications. Here, we review the recent progress of the intersection of near-zero-field NMR and hyperpolarization techniques.
      Corresponding author: ZHOU Xin, xinzhou@wipm.ac.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant Nos. 2023YFF0714000, 2022YFA1604501, 2023YFF0714001) and the National Natural Science Foundation of China (Grant Nos. 82127802, 82441015).
    [1]

    Taraporewala I B 1990 J. Pharm. Sci. 79 553Google Scholar

    [2]

    Shimizu Y, Blanchard J W, Pustelny S, Saielli G, Bagno A, Ledbetter M P, Budker D, Pines A 2015 J. Magn. Reson. 250 1Google Scholar

    [3]

    Nishiyama Y, Yamazaki T 2007 J. Chem. Phys. 126 134501Google Scholar

    [4]

    Ledbetter M P, Budker D 2013 Phys. Today 66 44Google Scholar

    [5]

    Picazo-Frutos R, Sheberstov K F, Blanchard J W, Van Dyke E, Reh M, Sjoelander T, Pines A, Budker D, Barskiy D A 2024 Nat. Commun. 15 4487Google Scholar

    [6]

    Budker D 2019 J. Magn. Reson. 306 66Google Scholar

    [7]

    Put P, Pustelny S, Budker D, Druga E, Sjolander T F, Pines A, Barskiy D A 2021 Anal. Chem. 93 3226Google Scholar

    [8]

    Sjolander T F, Blanchard J W, Budker D, Pines A 2020 J. Magn. Reson. 318 106781Google Scholar

    [9]

    Barskiy D A, Tayler M C D, Marco-Rius I, Kurhanewicz J, Vigneron D B, Cikrikci S, Aydogdu A, Reh M, Pravdivtsev A N, Hovener J B, Blanchard J W, Wu T, Budker D, Pines A 2019 Nat. Commun. 10 3002Google Scholar

    [10]

    Josemans S H, van der Post A S, Strijkers G J, Dawood Y, van den Hoff M J B, Jens S R J, Obdeijn M C, Oostra R J, Maas M 2023 Eur. Radiol. Exp. 7 28Google Scholar

    [11]

    Ganesan S, Moffat B A, Van Dam N T, Lorenzetti V, Zalesky A 2023 Brain. Res. Bull. 203 110766Google Scholar

    [12]

    Dalitz F, Cudaj M, Maiwald M, Guthausen G 2012 Prog. Nucl. Magn. Reson. Spectrosc. 60 52Google Scholar

    [13]

    Cormie M A, Kaya B, Hadjis G E, Mouseli P, Moayedi M 2023 Cereb. Cortex 33 9787Google Scholar

    [14]

    Hennig J 2022 Radiologe 62 385Google Scholar

    [15]

    Blundell C D, Reed M A, Overduin M, Almond A 2006 Carbohydr. Res. 341 1985Google Scholar

    [16]

    Manu V S, Olivieri C, Pavuluri K, Veglia G 2022 Phys. Chem. Chem. Phys. 24 18477Google Scholar

    [17]

    Tayler M C D, Theis T, Sjolander T F, Blanchard J W, Kentner A, Pustelny S, Pines A, Budker D 2017 Rev. Sci. Instrum. 88 091101Google Scholar

    [18]

    Kato K, Sasakawa H, Kamiya Y, Utsumi M, Nakano M, Takahashi N, Yamaguchi Y 2008 Biochim. Biophys. Acta 1780 619Google Scholar

    [19]

    Tayler M C D, Sjolander T F, Pines A, Budker D 2016 J. Magn. Reson. 270 35Google Scholar

    [20]

    Jiang M, Wu T, Blanchard J W, Feng G, Peng X H, Budker D 2018 Sci. Adv. 4 eaar6327Google Scholar

    [21]

    Andrews B, Lai M, Wang Z, Kato N, Tayler M C, Druga E, Ajoy A 2025 Proc. Natl. Acad. Sci. Nexus 4 187Google Scholar

    [22]

    Kononenko E S, Skovpin I V, Kovtunova L M, Koptyug I V 2025 J. Phys. Chem. Lett. 16 650Google Scholar

    [23]

    Hu Y, Iwata G Z, Mohammadi M, Wickenbrock A, Jerschow A, Budker D 2020 Proc. Natl. Acad. Sci. U.S.A. 117 10667Google Scholar

    [24]

    Hong T, Wang Y, Shao Z, Xu X, Zhang X, Li T, Ma W, Xu S 2024 Magn. Reson. Lett. 5 200170Google Scholar

    [25]

    Guo J C, Zhou H Y, Zeng J, Wang K J, Lai J, Liu Y X 2020 Pet. Sci. 17 1281Google Scholar

    [26]

    Li B K, Wang H, Trakic A, Engstrom C, Weber E, Crozier S 2012 NMR Biomed. 25 835Google Scholar

    [27]

    Komu M, Kormano M 1992 Magn. Reson. Med. 27 165Google Scholar

    [28]

    Schneider U, Giessler F, Nowak H, Logemann T, Grimm B, Haueisen J, Schleussner E 2004 Neurol. Clin. Neurophysiol. 2004 65

    [29]

    Tayler M C D, Ward-Williams J, Gladden L F 2018 J. Magn. Reson. 297 1Google Scholar

    [30]

    Wyllie R, Kauer M, Smetana G S, Wakai R T, Walker T G 2012 Phys. Med. Biol. 57 2619Google Scholar

    [31]

    Fang J C, Wang T, Zhang H, Li Y, Zou S 2014 Rev. Sci. Instrum. 85 123104Google Scholar

    [32]

    Xing B Z, Sun C, Liu Z, Zhao J P, Lu J X, Han B C, Ding M 2021 Opt. Express 29 5055Google Scholar

    [33]

    Flower C, Freeman M S, Plue M, Driehuys B 2017 J. Appl. Phys. 122 024902Google Scholar

    [34]

    Brickwedde M, Anders P, Kuhn A A, Lofredi R, Holtkamp M, Kaindl A M, Grent-'t-Jong T, Kruger P, Sander T, Uhlhaas P J 2024 Transl. Psychiatry 14 341Google Scholar

    [35]

    Duckett S B, Mewis R E 2012 Acc. Chem. Res. 45 1247Google Scholar

    [36]

    Pravica M G, Weitekamp D P 1988 Chem. Phys. Lett. 145 255Google Scholar

    [37]

    Ledbetter M P, Theis T, Blanchard J W, Ring H, Ganssle P, Appelt S, Blumich B, Pines A, Budker D 2011 Phys. Rev. Lett. 107 107601Google Scholar

    [38]

    Van Dyke E T, Eills J, Picazo-Frutos R, Sheberstov K F, Hu Y, Budker D, Barskiy D A 2022 Sci. Adv. 8 eabp9242Google Scholar

    [39]

    Boeg P A, Duus J Ø, Ardenkjær-Larsen J H, Karlsson M, Mossin S 2019 J. Phys. Chem. C 123 9949Google Scholar

    [40]

    Green R A, Adams R W, Duckett S B, Mewis R E, Williamson D C, Green G G 2012 Prog. Nucl. Magn. Reson. Spectrosc. 67 1Google Scholar

    [41]

    Picazo-Frutos R, Stern Q, Blanchard J W, Cala O, Ceillier M, Cousin S F, Eills J, Elliott S J, Jannin S, Budker D 2023 Anal. Chem. 95 720Google Scholar

    [42]

    Leutzsch M, Sederman A J, Gladden L F, Mantle M D 2019 Magn. Reson. Imaging 56 138Google Scholar

    [43]

    Bowers C R, Weitekamp D P 1987 J. Am. Chem. Soc. 109 5541Google Scholar

    [44]

    王忻昌, 江文龙, 黄程达, 孙惠军, 曹晓宇, 田中群, 陈忠 2020 光谱学与光谱分析 40 665Google Scholar

    Wang X C, Jiang W L, Huang C D, Sun H J, Cao X Y, Tian Z Q, Chen Z 2020 Spectrosc. Spectral Anal. 40 665Google Scholar

    [45]

    Atkinson K D, Cowley M J, Duckett S B, Elliott P I, Green G G, López-Serrano J, Khazal I G, Whitwood A C 2009 Inorg. Chem. 48 663Google Scholar

    [46]

    Chekmenev E Y, Hövener J, Norton V A, Harris K, Batchelder L S, Bhattacharya P, Ross B D, Weitekamp D P 2008 J. Am. Chem. Soc. 130 4212Google Scholar

    [47]

    So H, Jeong K 2019 J. Korean Magn. Reson. Soc. 23 6Google Scholar

    [48]

    Lloyd L S, Adams R W, Bernstein M, Coombes S, Duckett S B, Green G G, Lewis R J, Mewis R E, Sleigh C J 2012 J. Am. Chem. Soc. 134 12904Google Scholar

    [49]

    Roy S S, Appleby K M, Fear E J, Duckett S B 2018 J. Phys. Chem Lett. 9 1112Google Scholar

    [50]

    Truong M L, Theis T, Coffey A M, Shchepin R V, Waddell K W, Shi F, Goodson B M, Warren W S, Chekmenev E Y 2015 J. Phys. Chem. C 119 8786Google Scholar

    [51]

    Ripka B H 2018 Ph. D. Dissertation (Johannes Gutenberg-Universität Mainz

    [52]

    Mok K H, Hore P J 2004 Methods 34 75Google Scholar

    [53]

    Lee J H, Sekhar A, Cavagnero S 2011 J. Am. Chem. Soc. 133 8062Google Scholar

    [54]

    Chuchkova L, Bodenstedt S, Picazo-Frutos R, Tayler M C D, Theis T, Blanchard J W, Budker D 2023 J. Phys. Chem. Lett. 14 6814Google Scholar

    [55]

    Sheberstov K, Van Dyke E, Xu J, Kircher R, Chuchkova L, Hu Y, Alvi S, Budker D, Barskiy D 2024 ChemRxiv: 10.26434 [magn-res]

    [56]

    Sheberstov K F, Chuchkova L, Hu Y, Zhukov I V, Kiryutin A S, Eshtukov A V, Cheshkov D A, Barskiy D A, Blanchard J W, Budker D, Ivanov K L, Yurkovskaya A V 2021 J. Phys. Chem. Lett. 12 4686Google Scholar

    [57]

    Molway M J, Bales-Shaffer L, Ranta K, Ball J, Sparling E, Prince M, Cocking D, Basler D, Murphy M, Kidd B E, Gafar A T, Porter J, Albin K, Rosen M S, Chekmenev E Y, Michael Snow W, Barlow M J, Goodson B M 2023 J. Magn. Reson. 354 107521Google Scholar

    [58]

    Ball J E, Wild J M, Norquay G 2022 Molecules 28 11Google Scholar

    [59]

    Birchall J R, Irwin R K, Chowdhury M R H, Nikolaou P, Goodson B M, Barlow M J, Shcherbakov A, Chekmenev E Y 2021 Anal. Chem. 93 3883Google Scholar

    [60]

    Antonacci M A, Burant A, Wagner W, Branca R T 2017 J Magn. Reson. 279 60Google Scholar

    [61]

    Nikolaou P, Coffey A M, Ranta K, Walkup L L, Gust B M, Barlow M J, Rosen M S, Goodson B M, Chekmenev E Y 2014 J. Phys. Chem. B 118 4809Google Scholar

    [62]

    Whiting N, Nikolaou P, Eschmann N A, Goodson B M, Barlow M J 2011 J. Magn. Reson. 208 298Google Scholar

    [63]

    Jimenez-Martinez R, Kennedy D J, Rosenbluh M, Donley E A, Knappe S, Seltzer S J, Ring H L, Bajaj V S, Kitching J 2014 Nat. Commun. 5 3908Google Scholar

    [64]

    Li H D, Zhao X C, Wang Y J, Lou X, Chen S Z, Deng H, Shi L, Xie J S, Tang D Z, Zhao J P, Bouchard L S, Xia L M, Zhou X 2021 Sci. Adv. 7 eabc8180Google Scholar

    [65]

    Yashchuk V V, Granwehr J, Kimball D F, Rochester S M, Trabesinger A H, Urban J T, Budker D, Pines A 2004 Phys. Rev. Lett. 93 160801Google Scholar

    [66]

    Kilian W, Haller A, Seifert F, Grosenick D, Rinneberg H 2007 Eur. Phys. J. D 42 197Google Scholar

    [67]

    Burghoff M, Hartwig S, Kilian W, Vorwerk A, Trahms L 2007 IEEE Trans. Appl. Supercond. 17 846Google Scholar

    [68]

    Kennedy D J, Seltzer S J, Jimenez-Martinez R, Ring H L, Malecek N S, Knappe S, Donley E A, Kitching J, Bajaj V S, Pines A 2017 Sci. Rep. 7 43994Google Scholar

    [69]

    Wong-Foy A, Saxena S, Moule A J, Bitter H M, Seeley J A, McDermott R, Clarke J, Pines A 2002 J. Magn. Reson. 157 235Google Scholar

    [70]

    Blanchard J W, Budker D 2007 eMagRes 5 1395Google Scholar

    [71]

    Jiang M, Bian J, Li Q, Wu Z, Su H W, Xu M X, Wang Y H, Wang X, Peng X H 2021 Fundam. Res. 1 68Google Scholar

    [72]

    Picazo-Frutos R, Kircher R, Eills J, Centers G P, Hu Y, Qin J, Barker S J, Utz M, Sheberstov K F, Kasajima T, Okawa S, Kami M, Budker D 2025 ChemRxiv DOI: 10.26434/chemrxiv-2025-ddq2c

    [73]

    Blanchard J W, Budker D, Trabesinger A 2021 J. Magn. Reson. 323 106886Google Scholar

    [74]

    Xu S, Yashchuk V V, Donaldson M H, Rochester S M, Budker D, Pines A 2006 Proc. Natl. Acad. Sci. 103 12668Google Scholar

    [75]

    Savukov I, Zotev V, Volegov P, Espy M, Matlashov A, Gomez J, Kraus Jr R 2009 J. Magn. Reson. 199 188Google Scholar

    [76]

    Savukov I, Karaulanov T 2013 J. Magn. Reson. 231 39Google Scholar

    [77]

    Clatworthy M R, Kettunen M I, Hu D E, Mathews R J, Witney T H, Kennedy B W, Bohndiek S E, Gallagher F A, Jarvis L B, Smith K G 2012 Proc. Natl. Acad. Sci. 109 13374Google Scholar

    [78]

    Eills J, Picazo-Frutos R, Bondar O, Cavallari E, Carrera C, Barker S J, Utz M, Aime S, Reineri F, Budker D 2022 arXiv: 2205.12380 [chem-ph]

    [79]

    Zhukov I V, Kiryutin A S, Yurkovskaya A V, Blanchard J W, Budker D, Ivanov K L 2021 J. Chem. Phys. 154 14Google Scholar

    [80]

    Wilzewski A, Afach S, Blanchard J W, Budker D 2017 J. Magn. Reson. 284 66Google Scholar

    [81]

    Put P, Alcicek S, Bondar O, Bodek Ł, Duckett S, Pustelny S 2023 Commun. Chem. 6 131Google Scholar

    [82]

    Burueva D B, Eills J, Blanchard J W, Garcon A, Picazo-Frutos R, Kovtunov K V, Koptyug I V, Budker D 2020 Angew. Chem. Int. Ed. 59 17026Google Scholar

    [83]

    Korchak S, Jagtap A P, Glöggler S 2021 Chem. Sci. 12 314Google Scholar

    [84]

    Eills J, Picazo-Frutos R, Bondar O, Cavallari E, Carrera C, Barker S J, Utz M, Herrero-Gómez A, Marco-Rius I, Tayler M C 2023 Anal. Chem. 95 17997Google Scholar

    [85]

    Elenewski J E, Camara C M, Kalev A 2024 arXiv: 2406.09340 [quant-ph]

    [86]

    Jiang M, Frutos R P, Wu T, Blanchard J W, Peng X H, Budker D 2019 Phys. Rev. Appl. 11 024005Google Scholar

    [87]

    Blanchard J W, Sjolander T F, King J P, Ledbetter M P, Levine E H, Bajaj V S, Budker D, Pines A 2015 Phys. Rev. B 92 220202Google Scholar

    [88]

    Barskiy D A, Blanchard J W, Budker D, Eills J, Pustelny S, Sheberstov K F, Trabesinger A H 2025 Prog. Nucl. Magn. Reson. Spectrosc. 148–149 101558Google Scholar

    [89]

    Wu T, Blanchard J W, Centers G P, Figueroa N L, Garcon A, Graham P W, Kimball D F J, Rajendran S, Stadnik Y V, Sushkov A O 2019 Phys. Rev. Lett. 122 191302Google Scholar

    [90]

    Jiang M, Su H W, Garcon A, Peng X H, Budker D 2021 Nat. Phys. 17 1402Google Scholar

    [91]

    Jackson Kimball D F, Dudley J, Li Y, Patel D, Valdez J 2017 Phys. Rev. D 96 075004Google Scholar

    [92]

    Ledbetter M P, Pustelny S, Budker D, Romalis M V, Blanchard J W, Pines A 2012 Phys. Rev. Lett. 108 243001Google Scholar

    [93]

    Wu T, Blanchard J W, Jackson Kimball D F, Jiang M, Budker D 2018 Phys. Rev. Lett. 121 023202Google Scholar

    [94]

    Jiang M, Su H W, Wu Z, Peng X H, Budker D 2021 Sci. Adv. 7 eabe0719Google Scholar

    [95]

    Bian J, Jiang M, Cui J Y, Liu X M, Chen B T, Ji Y L, Zhang B, Blanchard J, Peng X H, Du J F 2017 Phys. Rev. A 95 052342Google Scholar

  • 图 1  不同场强下的磁共振现象

    Figure 1.  Magnetic resonance phenomena under different magnetic field.

    图 2  零场到超低场(ZULF)核磁共振中的化学交换场景[9] (a) 影响整个J耦合网络的化学交换, 分子中的所有原子的相互作用都可以破坏化学键, 例如对称分子(如H2O和$ {\text{NH}}_{4}^{+} $); (b) 影响J耦合网络子系统的化学交换, 其中自旋系统的一部分交换, 而分子的其余部分保持完整, 如具有多个耦合核的分子中的质子交换, 一旦解离, 氢(浅蓝色表示)可以附着在不同的分子上, 使交换发生分子间

    Figure 2.  Chemical exchange scenarios in zero- to ultralow-field (ZULF) NMR[9]: (a) Exchange affecting the entire J-coupled network, where all atoms in a molecule can break chemical bonds. Examples include symmetric molecules like H2O and $ {\text{NH}}_{4}^{+} $; (b) exchange affecting a subsystem of the J-coupled network, where part of the spin system exchanges while the rest of the molecule remains intact. An example is proton exchange in molecules with multiple coupled nuclei. Once dissociated, hydrogen (light blue) can attach to a different molecule, making the exchange intermolecular.

    图 3  近零场磁共振示意图[17,19] (a) 基于开放光路式原子磁力计的近零场磁共振; (b) 基于小型化原子磁力计的近零场磁共振

    Figure 3.  Schematic diagram of Near-Zero-Field NMR[17,19]: (a) Near-zero-field magnetic resonance based on an open-light path atomic magnetometer; (b) near-zero-field NMR based on a miniaturized atomic magnetometer.

    图 4  原子磁力计示意图 (a) NMOR原子磁力计; (b) 小型化原子磁力计

    Figure 4.  Schematic diagram of atomic magnetometers: (a) NMOR-based atomic magnetometer; (b) miniaturized atomic magnetometer.

    图 5  磁屏蔽装置

    Figure 5.  Magnetic shields.

    图 6  用于近零场磁共振的线圈 (a) 柔性线圈设计图; (b) 柔性线圈照片; (c) 马鞍形线圈; (d) 亥姆霍兹线圈

    Figure 6.  Coils used for near-zero-field NMR: (a) Flexible coil for shielding; (b) photo of flexible coil; (c) saddle-shaped coil; (d) Helmholtz coil.

    图 7  不同极化方式

    Figure 7.  Polarization methods.

    图 8  dDNP与近零场磁共振实验装置示意图[41], 其中样品dDNP超极化后转移至近零场磁共振进行检测

    Figure 8.  Schematic of the experimental apparatus[41]. The sample is hyperpolarized by dDNP and is transferred to the near-zero-field NMR spectrometer for detection.

    图 9  仲氢与正氢的区别[44] (a) 氢原子的两种自旋态; (b) 氢气分子的4种自旋态与转动能级对应

    Figure 9.  Principle of parahydrogen-induced hyperpolarization[44]: (a) Two spin states of hydrogen atoms; (b) four spin states of hydrogen molecules and their corresponding rotational states.

    图 10  PASADENA与ALTADENA超极化方式的对比[44] (a) 加氢反应过程; (b) 自旋态在不同能级上的布居数; (c) 1H磁共振信号

    Figure 10.  Principle of parahydrogen-induced hyperpolarization[44]: (a) Hydrogenation reaction; (b) selective population of the spin states; (c) 1H NMR signal.

    图 11  可逆交换信号放大(SABRE)过程示意图

    Figure 11.  Schematic diagram of the signal amplification by reversible exchange (SABRE) process.

    图 12  连续仲氢诱导超极化与近零场磁共振的结合[44] (a) 以吡啶为底物的SABRE反应; (b) 计算机控制仲氢通过SABRE样品的实验装置

    Figure 12.  Combination of continuous parahydrogen-induced hyperpolarization and near-zero-field NMR[44]: (a) SABRE reaction scheme with pyridine as substrate; (b) experimental setup of computer controlled p-H2 bubbling through a SABRE sample.

    图 13  CIDNP与近零场磁共振测量结合[56]

    Figure 13.  Photo-CIDNP hyperpolarization generated under near-zero-field conditions[56].

    图 14  129Xe的弱自旋交换光泵浦示意图[63] (a) 含有400 Torr N2和200 Torr Xe(129Xe为26.4%)的气体混合物通过泵室和探针室, 最终从出口室流出; 进入泵室的非极化129Xe通过与光泵浦87Rb的自旋交换变得极化, 并随后进入探针室; (b) 硅芯片尺寸为3 cm×1 cm, 厚度1 mm; (c) 129Xe的泵浦和探测序列

    Figure 14.  Schematic diagram of weak spin-exchange optical pumping of 129Xe[63]: (a) A gas mixture containing 400 Torr N2 and 200 Torr Xe (with 129Xe at 26.4%) flows through the pumping chamber and probe chamber, and eventually exits the output chamber. The depolarized 129Xe entering the pumping chamber becomes polarized through spin exchange with optical pumping of 87Rb, and then moves into the probe chamber. (b) The silicon chip has dimensions of 3 cm×1 cm and a thickness of 1 mm. (c) Pumping and detection sequence for 129Xe.

    图 15  近零场磁共振与超极化技术的结合及应用

    Figure 15.  Combination and application of near-zero-field NMR and hyperpolarization technology.

    图 16  近零场下的磁共振成像 (a) 近零场下对样品管的成像; (b) 人脑的近零场磁共振成像; (c) 近零场磁共振对流动液体的成像

    Figure 16.  Combination of continuous parahydrogen-induced hyperpolarization and near-zero-field NMR: (a) Imaging of sample tubes at ZULF; (b) ZULF MRI of human brain; (c) imaging of flowing liquids using ZULF NMR.

    图 17  近零场磁共振的代谢监测[78] (a) 对富马酸-苹果酸反应过程的监测; (b) 对丙酮酸-乳酸反应过程的监测

    Figure 17.  Metabolic monitoring with near-zero-field NMR[78]: (a) Monitoring of the fumaric acid-malic acid reaction process; (b) monitoring of the pyruvate-lactic acid reaction process.

    图 18  近零场磁共振中特征谱峰可以达到亚赫兹的线宽水平

    Figure 18.  Characteristic spectral peak in ZULF NMR can reach a line width of sub-Hertz.

    图 19  近零场磁共振与超极化技术应用于化学分析[38]

    Figure 19.  Application of near-zero-field NMR and hyperpolarization technology in chemistry analysis[38].

    图 20  近零场磁共振与超极化技术应用于自旋重力耦合研究[91]

    Figure 20.  Near-zero-field NMR and hyperpolarization techniques for spin-gravity couplings[91].

    Baidu
  • [1]

    Taraporewala I B 1990 J. Pharm. Sci. 79 553Google Scholar

    [2]

    Shimizu Y, Blanchard J W, Pustelny S, Saielli G, Bagno A, Ledbetter M P, Budker D, Pines A 2015 J. Magn. Reson. 250 1Google Scholar

    [3]

    Nishiyama Y, Yamazaki T 2007 J. Chem. Phys. 126 134501Google Scholar

    [4]

    Ledbetter M P, Budker D 2013 Phys. Today 66 44Google Scholar

    [5]

    Picazo-Frutos R, Sheberstov K F, Blanchard J W, Van Dyke E, Reh M, Sjoelander T, Pines A, Budker D, Barskiy D A 2024 Nat. Commun. 15 4487Google Scholar

    [6]

    Budker D 2019 J. Magn. Reson. 306 66Google Scholar

    [7]

    Put P, Pustelny S, Budker D, Druga E, Sjolander T F, Pines A, Barskiy D A 2021 Anal. Chem. 93 3226Google Scholar

    [8]

    Sjolander T F, Blanchard J W, Budker D, Pines A 2020 J. Magn. Reson. 318 106781Google Scholar

    [9]

    Barskiy D A, Tayler M C D, Marco-Rius I, Kurhanewicz J, Vigneron D B, Cikrikci S, Aydogdu A, Reh M, Pravdivtsev A N, Hovener J B, Blanchard J W, Wu T, Budker D, Pines A 2019 Nat. Commun. 10 3002Google Scholar

    [10]

    Josemans S H, van der Post A S, Strijkers G J, Dawood Y, van den Hoff M J B, Jens S R J, Obdeijn M C, Oostra R J, Maas M 2023 Eur. Radiol. Exp. 7 28Google Scholar

    [11]

    Ganesan S, Moffat B A, Van Dam N T, Lorenzetti V, Zalesky A 2023 Brain. Res. Bull. 203 110766Google Scholar

    [12]

    Dalitz F, Cudaj M, Maiwald M, Guthausen G 2012 Prog. Nucl. Magn. Reson. Spectrosc. 60 52Google Scholar

    [13]

    Cormie M A, Kaya B, Hadjis G E, Mouseli P, Moayedi M 2023 Cereb. Cortex 33 9787Google Scholar

    [14]

    Hennig J 2022 Radiologe 62 385Google Scholar

    [15]

    Blundell C D, Reed M A, Overduin M, Almond A 2006 Carbohydr. Res. 341 1985Google Scholar

    [16]

    Manu V S, Olivieri C, Pavuluri K, Veglia G 2022 Phys. Chem. Chem. Phys. 24 18477Google Scholar

    [17]

    Tayler M C D, Theis T, Sjolander T F, Blanchard J W, Kentner A, Pustelny S, Pines A, Budker D 2017 Rev. Sci. Instrum. 88 091101Google Scholar

    [18]

    Kato K, Sasakawa H, Kamiya Y, Utsumi M, Nakano M, Takahashi N, Yamaguchi Y 2008 Biochim. Biophys. Acta 1780 619Google Scholar

    [19]

    Tayler M C D, Sjolander T F, Pines A, Budker D 2016 J. Magn. Reson. 270 35Google Scholar

    [20]

    Jiang M, Wu T, Blanchard J W, Feng G, Peng X H, Budker D 2018 Sci. Adv. 4 eaar6327Google Scholar

    [21]

    Andrews B, Lai M, Wang Z, Kato N, Tayler M C, Druga E, Ajoy A 2025 Proc. Natl. Acad. Sci. Nexus 4 187Google Scholar

    [22]

    Kononenko E S, Skovpin I V, Kovtunova L M, Koptyug I V 2025 J. Phys. Chem. Lett. 16 650Google Scholar

    [23]

    Hu Y, Iwata G Z, Mohammadi M, Wickenbrock A, Jerschow A, Budker D 2020 Proc. Natl. Acad. Sci. U.S.A. 117 10667Google Scholar

    [24]

    Hong T, Wang Y, Shao Z, Xu X, Zhang X, Li T, Ma W, Xu S 2024 Magn. Reson. Lett. 5 200170Google Scholar

    [25]

    Guo J C, Zhou H Y, Zeng J, Wang K J, Lai J, Liu Y X 2020 Pet. Sci. 17 1281Google Scholar

    [26]

    Li B K, Wang H, Trakic A, Engstrom C, Weber E, Crozier S 2012 NMR Biomed. 25 835Google Scholar

    [27]

    Komu M, Kormano M 1992 Magn. Reson. Med. 27 165Google Scholar

    [28]

    Schneider U, Giessler F, Nowak H, Logemann T, Grimm B, Haueisen J, Schleussner E 2004 Neurol. Clin. Neurophysiol. 2004 65

    [29]

    Tayler M C D, Ward-Williams J, Gladden L F 2018 J. Magn. Reson. 297 1Google Scholar

    [30]

    Wyllie R, Kauer M, Smetana G S, Wakai R T, Walker T G 2012 Phys. Med. Biol. 57 2619Google Scholar

    [31]

    Fang J C, Wang T, Zhang H, Li Y, Zou S 2014 Rev. Sci. Instrum. 85 123104Google Scholar

    [32]

    Xing B Z, Sun C, Liu Z, Zhao J P, Lu J X, Han B C, Ding M 2021 Opt. Express 29 5055Google Scholar

    [33]

    Flower C, Freeman M S, Plue M, Driehuys B 2017 J. Appl. Phys. 122 024902Google Scholar

    [34]

    Brickwedde M, Anders P, Kuhn A A, Lofredi R, Holtkamp M, Kaindl A M, Grent-'t-Jong T, Kruger P, Sander T, Uhlhaas P J 2024 Transl. Psychiatry 14 341Google Scholar

    [35]

    Duckett S B, Mewis R E 2012 Acc. Chem. Res. 45 1247Google Scholar

    [36]

    Pravica M G, Weitekamp D P 1988 Chem. Phys. Lett. 145 255Google Scholar

    [37]

    Ledbetter M P, Theis T, Blanchard J W, Ring H, Ganssle P, Appelt S, Blumich B, Pines A, Budker D 2011 Phys. Rev. Lett. 107 107601Google Scholar

    [38]

    Van Dyke E T, Eills J, Picazo-Frutos R, Sheberstov K F, Hu Y, Budker D, Barskiy D A 2022 Sci. Adv. 8 eabp9242Google Scholar

    [39]

    Boeg P A, Duus J Ø, Ardenkjær-Larsen J H, Karlsson M, Mossin S 2019 J. Phys. Chem. C 123 9949Google Scholar

    [40]

    Green R A, Adams R W, Duckett S B, Mewis R E, Williamson D C, Green G G 2012 Prog. Nucl. Magn. Reson. Spectrosc. 67 1Google Scholar

    [41]

    Picazo-Frutos R, Stern Q, Blanchard J W, Cala O, Ceillier M, Cousin S F, Eills J, Elliott S J, Jannin S, Budker D 2023 Anal. Chem. 95 720Google Scholar

    [42]

    Leutzsch M, Sederman A J, Gladden L F, Mantle M D 2019 Magn. Reson. Imaging 56 138Google Scholar

    [43]

    Bowers C R, Weitekamp D P 1987 J. Am. Chem. Soc. 109 5541Google Scholar

    [44]

    王忻昌, 江文龙, 黄程达, 孙惠军, 曹晓宇, 田中群, 陈忠 2020 光谱学与光谱分析 40 665Google Scholar

    Wang X C, Jiang W L, Huang C D, Sun H J, Cao X Y, Tian Z Q, Chen Z 2020 Spectrosc. Spectral Anal. 40 665Google Scholar

    [45]

    Atkinson K D, Cowley M J, Duckett S B, Elliott P I, Green G G, López-Serrano J, Khazal I G, Whitwood A C 2009 Inorg. Chem. 48 663Google Scholar

    [46]

    Chekmenev E Y, Hövener J, Norton V A, Harris K, Batchelder L S, Bhattacharya P, Ross B D, Weitekamp D P 2008 J. Am. Chem. Soc. 130 4212Google Scholar

    [47]

    So H, Jeong K 2019 J. Korean Magn. Reson. Soc. 23 6Google Scholar

    [48]

    Lloyd L S, Adams R W, Bernstein M, Coombes S, Duckett S B, Green G G, Lewis R J, Mewis R E, Sleigh C J 2012 J. Am. Chem. Soc. 134 12904Google Scholar

    [49]

    Roy S S, Appleby K M, Fear E J, Duckett S B 2018 J. Phys. Chem Lett. 9 1112Google Scholar

    [50]

    Truong M L, Theis T, Coffey A M, Shchepin R V, Waddell K W, Shi F, Goodson B M, Warren W S, Chekmenev E Y 2015 J. Phys. Chem. C 119 8786Google Scholar

    [51]

    Ripka B H 2018 Ph. D. Dissertation (Johannes Gutenberg-Universität Mainz

    [52]

    Mok K H, Hore P J 2004 Methods 34 75Google Scholar

    [53]

    Lee J H, Sekhar A, Cavagnero S 2011 J. Am. Chem. Soc. 133 8062Google Scholar

    [54]

    Chuchkova L, Bodenstedt S, Picazo-Frutos R, Tayler M C D, Theis T, Blanchard J W, Budker D 2023 J. Phys. Chem. Lett. 14 6814Google Scholar

    [55]

    Sheberstov K, Van Dyke E, Xu J, Kircher R, Chuchkova L, Hu Y, Alvi S, Budker D, Barskiy D 2024 ChemRxiv: 10.26434 [magn-res]

    [56]

    Sheberstov K F, Chuchkova L, Hu Y, Zhukov I V, Kiryutin A S, Eshtukov A V, Cheshkov D A, Barskiy D A, Blanchard J W, Budker D, Ivanov K L, Yurkovskaya A V 2021 J. Phys. Chem. Lett. 12 4686Google Scholar

    [57]

    Molway M J, Bales-Shaffer L, Ranta K, Ball J, Sparling E, Prince M, Cocking D, Basler D, Murphy M, Kidd B E, Gafar A T, Porter J, Albin K, Rosen M S, Chekmenev E Y, Michael Snow W, Barlow M J, Goodson B M 2023 J. Magn. Reson. 354 107521Google Scholar

    [58]

    Ball J E, Wild J M, Norquay G 2022 Molecules 28 11Google Scholar

    [59]

    Birchall J R, Irwin R K, Chowdhury M R H, Nikolaou P, Goodson B M, Barlow M J, Shcherbakov A, Chekmenev E Y 2021 Anal. Chem. 93 3883Google Scholar

    [60]

    Antonacci M A, Burant A, Wagner W, Branca R T 2017 J Magn. Reson. 279 60Google Scholar

    [61]

    Nikolaou P, Coffey A M, Ranta K, Walkup L L, Gust B M, Barlow M J, Rosen M S, Goodson B M, Chekmenev E Y 2014 J. Phys. Chem. B 118 4809Google Scholar

    [62]

    Whiting N, Nikolaou P, Eschmann N A, Goodson B M, Barlow M J 2011 J. Magn. Reson. 208 298Google Scholar

    [63]

    Jimenez-Martinez R, Kennedy D J, Rosenbluh M, Donley E A, Knappe S, Seltzer S J, Ring H L, Bajaj V S, Kitching J 2014 Nat. Commun. 5 3908Google Scholar

    [64]

    Li H D, Zhao X C, Wang Y J, Lou X, Chen S Z, Deng H, Shi L, Xie J S, Tang D Z, Zhao J P, Bouchard L S, Xia L M, Zhou X 2021 Sci. Adv. 7 eabc8180Google Scholar

    [65]

    Yashchuk V V, Granwehr J, Kimball D F, Rochester S M, Trabesinger A H, Urban J T, Budker D, Pines A 2004 Phys. Rev. Lett. 93 160801Google Scholar

    [66]

    Kilian W, Haller A, Seifert F, Grosenick D, Rinneberg H 2007 Eur. Phys. J. D 42 197Google Scholar

    [67]

    Burghoff M, Hartwig S, Kilian W, Vorwerk A, Trahms L 2007 IEEE Trans. Appl. Supercond. 17 846Google Scholar

    [68]

    Kennedy D J, Seltzer S J, Jimenez-Martinez R, Ring H L, Malecek N S, Knappe S, Donley E A, Kitching J, Bajaj V S, Pines A 2017 Sci. Rep. 7 43994Google Scholar

    [69]

    Wong-Foy A, Saxena S, Moule A J, Bitter H M, Seeley J A, McDermott R, Clarke J, Pines A 2002 J. Magn. Reson. 157 235Google Scholar

    [70]

    Blanchard J W, Budker D 2007 eMagRes 5 1395Google Scholar

    [71]

    Jiang M, Bian J, Li Q, Wu Z, Su H W, Xu M X, Wang Y H, Wang X, Peng X H 2021 Fundam. Res. 1 68Google Scholar

    [72]

    Picazo-Frutos R, Kircher R, Eills J, Centers G P, Hu Y, Qin J, Barker S J, Utz M, Sheberstov K F, Kasajima T, Okawa S, Kami M, Budker D 2025 ChemRxiv DOI: 10.26434/chemrxiv-2025-ddq2c

    [73]

    Blanchard J W, Budker D, Trabesinger A 2021 J. Magn. Reson. 323 106886Google Scholar

    [74]

    Xu S, Yashchuk V V, Donaldson M H, Rochester S M, Budker D, Pines A 2006 Proc. Natl. Acad. Sci. 103 12668Google Scholar

    [75]

    Savukov I, Zotev V, Volegov P, Espy M, Matlashov A, Gomez J, Kraus Jr R 2009 J. Magn. Reson. 199 188Google Scholar

    [76]

    Savukov I, Karaulanov T 2013 J. Magn. Reson. 231 39Google Scholar

    [77]

    Clatworthy M R, Kettunen M I, Hu D E, Mathews R J, Witney T H, Kennedy B W, Bohndiek S E, Gallagher F A, Jarvis L B, Smith K G 2012 Proc. Natl. Acad. Sci. 109 13374Google Scholar

    [78]

    Eills J, Picazo-Frutos R, Bondar O, Cavallari E, Carrera C, Barker S J, Utz M, Aime S, Reineri F, Budker D 2022 arXiv: 2205.12380 [chem-ph]

    [79]

    Zhukov I V, Kiryutin A S, Yurkovskaya A V, Blanchard J W, Budker D, Ivanov K L 2021 J. Chem. Phys. 154 14Google Scholar

    [80]

    Wilzewski A, Afach S, Blanchard J W, Budker D 2017 J. Magn. Reson. 284 66Google Scholar

    [81]

    Put P, Alcicek S, Bondar O, Bodek Ł, Duckett S, Pustelny S 2023 Commun. Chem. 6 131Google Scholar

    [82]

    Burueva D B, Eills J, Blanchard J W, Garcon A, Picazo-Frutos R, Kovtunov K V, Koptyug I V, Budker D 2020 Angew. Chem. Int. Ed. 59 17026Google Scholar

    [83]

    Korchak S, Jagtap A P, Glöggler S 2021 Chem. Sci. 12 314Google Scholar

    [84]

    Eills J, Picazo-Frutos R, Bondar O, Cavallari E, Carrera C, Barker S J, Utz M, Herrero-Gómez A, Marco-Rius I, Tayler M C 2023 Anal. Chem. 95 17997Google Scholar

    [85]

    Elenewski J E, Camara C M, Kalev A 2024 arXiv: 2406.09340 [quant-ph]

    [86]

    Jiang M, Frutos R P, Wu T, Blanchard J W, Peng X H, Budker D 2019 Phys. Rev. Appl. 11 024005Google Scholar

    [87]

    Blanchard J W, Sjolander T F, King J P, Ledbetter M P, Levine E H, Bajaj V S, Budker D, Pines A 2015 Phys. Rev. B 92 220202Google Scholar

    [88]

    Barskiy D A, Blanchard J W, Budker D, Eills J, Pustelny S, Sheberstov K F, Trabesinger A H 2025 Prog. Nucl. Magn. Reson. Spectrosc. 148–149 101558Google Scholar

    [89]

    Wu T, Blanchard J W, Centers G P, Figueroa N L, Garcon A, Graham P W, Kimball D F J, Rajendran S, Stadnik Y V, Sushkov A O 2019 Phys. Rev. Lett. 122 191302Google Scholar

    [90]

    Jiang M, Su H W, Garcon A, Peng X H, Budker D 2021 Nat. Phys. 17 1402Google Scholar

    [91]

    Jackson Kimball D F, Dudley J, Li Y, Patel D, Valdez J 2017 Phys. Rev. D 96 075004Google Scholar

    [92]

    Ledbetter M P, Pustelny S, Budker D, Romalis M V, Blanchard J W, Pines A 2012 Phys. Rev. Lett. 108 243001Google Scholar

    [93]

    Wu T, Blanchard J W, Jackson Kimball D F, Jiang M, Budker D 2018 Phys. Rev. Lett. 121 023202Google Scholar

    [94]

    Jiang M, Su H W, Wu Z, Peng X H, Budker D 2021 Sci. Adv. 7 eabe0719Google Scholar

    [95]

    Bian J, Jiang M, Cui J Y, Liu X M, Chen B T, Ji Y L, Zhang B, Blanchard J, Peng X H, Du J F 2017 Phys. Rev. A 95 052342Google Scholar

  • [1] LIU Fan, JIANG Yuancheng, GUO Hua. Review of high-resolution 2-dimensional diffusion magnetic resonance imaging techniques. Acta Physica Sinica, 2025, 74(11): 118703. doi: 10.7498/aps.74.20250235
    [2] QIN Bolin, GAO Jiahong. Current status and perspectives of ultrahigh-field magnetic resonance imaging. Acta Physica Sinica, 2025, 74(7): 078701. doi: 10.7498/aps.74.20241759
    [3] LI Zhaoqing, HAN Yihua, WANG Zejun, BAI Ruiliang. Research progress of magnetic resonance measurements of transcytolemmal water exchange. Acta Physica Sinica, 2025, 74(11): 118702. doi: 10.7498/aps.74.20250325
    [4] Zhao Di, Zhao Li-Zhi, Gan Yong-Jin, Qin Bin-Yi. Undersampled magnetic resonance image reconstruction based on support prior and deep image prior without pre-training. Acta Physica Sinica, 2022, 71(5): 058701. doi: 10.7498/aps.71.20211761
    [5] Xiang Peng-Cheng, Cai Cong-Bo, Wang Jie-Chao, Cai Shu-Hui, Chen Zhong. Super-resolved reconstruction method for spatiotemporally encoded magnetic resonance imaging based on deep neural network. Acta Physica Sinica, 2022, 71(5): 058702. doi: 10.7498/aps.71.20211754
    [6] Gao Song, Cao Wen-Tian, Huang Xin-Rui, Bao Shang-Lian. Research progress of 10B concentration and distribution measurement in boron neutron capture therapy. Acta Physica Sinica, 2021, 70(14): 148701. doi: 10.7498/aps.70.20201794
    [7] Jiang Xiao-Hua, Xue Peng, Huang Wei-Can, Li Ye. Technology challenges of 14 T whole-body superconducting MRI magnets —A target of high-field superconducting magnet technology for large scale applications in next decade. Acta Physica Sinica, 2021, 70(1): 018401. doi: 10.7498/aps.70.20202042
    [8] Du Xiao-Ji, Wang Wei-Min, Lan Xian-Hui, Li Chao. Design, fabrication and test of superconducting magnet for 1.5 T dedicated extremity magnetic resonance imaging system. Acta Physica Sinica, 2017, 66(24): 248401. doi: 10.7498/aps.66.248401
    [9] Hu Yang, Wang Qiu-Liang, Li Yi, Zhu Xu-Chen, Niu Chao-Qun. Optimization of magnetic resonance imaging high-order axial shim coils using boundary element method. Acta Physica Sinica, 2016, 65(21): 218301. doi: 10.7498/aps.65.218301
    [10] Bao Shang-Lian, Du Jiang, Gao Song. Review of the ultrashort echo time magnetic resonance imaging of cortical bone. Acta Physica Sinica, 2013, 62(8): 088701. doi: 10.7498/aps.62.088701
    [11] Liu Tie-Bing, Yao Wen-Po, Ning Xin-Bao, Ni Huang-Jing, Wang Jun. The base scale entropy analysis of fMRI. Acta Physica Sinica, 2013, 62(21): 218704. doi: 10.7498/aps.62.218704
    [12] Fang Sheng, Wu Wen-Chuan, Ying Kui, Guo Hua. A new fast magnetic resonance imaging method based on variabledensity spiral data acquisition and Bregman iterative reconstruction. Acta Physica Sinica, 2013, 62(4): 048702. doi: 10.7498/aps.62.048702
    [13] Ni Zhi-Peng, Wang Qiu-Liang, Yan Lu-Guang. A hybrid optimization approach to design of compact self-shielded super conducting magnetic resonance imaging magnet system. Acta Physica Sinica, 2013, 62(2): 020701. doi: 10.7498/aps.62.020701
    [14] Wang Ning, Jin Yi-Rong, Deng Hui, Wu Yu-Lin, Zheng Guo-Lin, Li Shao, Tian Ye, Ren Yu-Feng, Chen Ying-Fei, Zheng Dong-Ning. Ultra-low field magnetic resonance imaging based on high Tc dc-SQUID. Acta Physica Sinica, 2012, 61(21): 213302. doi: 10.7498/aps.61.213302
    [15] Zhang Guo-Qing, Du Xiao-Ji, Zhao Ling, Ning Fei-Peng, Yao Wei-Chao, Zhu Zi-An. 0—1 integer linear programming for actively shielded magnetic resonance image (MRI) superconducting magnet design. Acta Physica Sinica, 2012, 61(22): 228701. doi: 10.7498/aps.61.228701
    [16] Xu Ling-Feng, Yu Jie, Huang Qing-Ming, Huang Yong, Wang Xiao-Yan, Lu Lun, Wang Hong-Zhi, Zhang Xue-Long, Cheng Hong-Yan, Li Geng-Ying, Wang He. Phantom study of the classification of liver fibrosis based on nuclear magnetic resonance elasto-graphy. Acta Physica Sinica, 2010, 59(10): 7463-7471. doi: 10.7498/aps.59.7463
    [17] Li Hai-Peng, Han Kui, Lu Zhen-Ping, Shen Xiao-Peng, Huang Zhi-Min, Zhang Wen-Tao, Bai Lei. Theoretical investigation on dispersion effect and two-photon resonance enhancement of molecular first hyperpolarizability. Acta Physica Sinica, 2006, 55(4): 1827-1831. doi: 10.7498/aps.55.1827
    [18] Chen Jie-Fu, Liu Wan-Qiu, Zhong Wan-Xie. Precise time integral of the Bloch equations and its application to the design of radio frequency pulses. Acta Physica Sinica, 2006, 55(2): 884-890. doi: 10.7498/aps.55.884
    [19] Zhang Bi-Da, Wang Wei-Dong, Song Xiao-Yu, Zu Dong-Lin, Lü Hong-Yu, Bao Shang-Lian. The application of modern radio-frequency excitation theory in nonhomogeneous fi eld magnetic resonance imaging. Acta Physica Sinica, 2003, 52(5): 1143-1150. doi: 10.7498/aps.52.1143
    [20] HAN SHI-YING. DETERMINATION OF PRINCIPAL AXES OF ZERO-FIELD SPLITTING TENSOR BY SINGLE CRYSTAL EPR STUDY. Acta Physica Sinica, 1989, 38(2): 317-322. doi: 10.7498/aps.38.317
Metrics
  • Abstract views:  405
  • PDF Downloads:  13
  • Cited By: 0
Publishing process
  • Received Date:  15 June 2025
  • Accepted Date:  31 July 2025
  • Available Online:  26 September 2025
  • Published Online:  05 November 2025
  • /

    返回文章
    返回
    Baidu
    map