Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First-principles study on structures and physical properties of multicomponent V1–x FexC carbides in steel

ZHANG Dong SUN Yihua YIN Chaochao

Citation:

First-principles study on structures and physical properties of multicomponent V1–x FexC carbides in steel

ZHANG Dong, SUN Yihua, YIN Chaochao
cstr: 32037.14.aps.74.20250713
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Vanadium carbides commonly serve as strengthening phases in metallic materials, where their elastic and ductile-brittle characteristics are critical for mechanical performance. This work systematically investigates the structural stability, electronic properties, mechanical behaviors, and thermal characteristics of multi-component V1–x FexC carbides by using first-principles calculations, aiming to elucidate the influence of Fe content on their physical properties and provide a theoretical basis for the design and application of carbides in high-performance steels. The calculations are performed using the Vienna ab initio simulation package (VASP) based on density functional theory (DFT). Special quasirandom structures (SQS) are employed to construct five carbide models with varying Fe/V ratios (from V0.125Fe0.875C to V0.875Fe0.125C). Key parameters including formation enthalpy, electronic density of states, elastic constants, Debye temperature, and thermal conductivity are computed. The results indicate that as the Fe content decreases, the formation enthalpy shifts from positive to negative, reflecting a significant improvement in thermodynamic stability. Electronic structure analyses reveal metallic behavior of all compositions, with stronger covalent bonding in V–C than that in Fe–C. The V0.875Fe0.125C carbide exhibits the highest elastic modulus (C11 = 615.80 GPa) and Vickers hardness (21.06 GPa), which is attributed to its strong covalent interactions, though it also shows increased brittleness. The Debye temperature rises with the decrease of Fe content, further confirming superior mechanical strength at elevated temperatures. Calculations of the thermal conductivity for V0.875Fe0.125C yield values of 9.427 W·m1·K1 at 300 K and 2.357 W·m1·K1 at 1300 K. Its minimum lattice thermal conductivity (2.001 W·m1·K1) is comparable to that of typical thermal barrier coating materials, demonstrating high potential for high-temperature thermal insulation. This study reveals the structure-property relationships in V1–x FexC carbides on an atomic scale, indicating that low-Fe compositions are advantageous for high-temperature and high-strength applications. These findings provide important theoretical support for the development of novel heat-resistant coatings and high-strength steels.
      Corresponding author: SUN Yihua, sunny.hust@ctgu.edu.cn ; YIN Chaochao, ycc0125@126.com
    • Funds: Project supported by the National Key Research and Development Program, China (Grant No. 2023YFB3812200), the Natural Science Foundation Innovation Development Joint Fund of Hubei Province, China (Grant No. 2025AFD412), the Open Fund of the Hubei Key Laboratory of Hydroelectric Mechanical Equipment Design and Maintenance (China Three Gorges University), China (Grant No. 2025KJX07), the Open Fund of the Hubei Key Laboratory of System Science for Metallurgical Industry Processes (Wuhan University of Science and Technology), China (Grant No. Y202301), and the Scientific Research Start Fund of Three Gorges University, China (Grant No. 2023RCKJ0031).
    [1]

    Williams W S 1971 Prog. Solid State Chem. 6 57Google Scholar

    [2]

    Chen Y, Ye C, Chen X, Hu H 2024 Metals 14 175Google Scholar

    [3]

    康俊雨, 孙新军, 李昭东, 雍岐龙 2015 钢铁 50 64Google Scholar

    Kang J L, Sun X J, Li Z D, Yong Q L 2015 Iron and Steel 50 64Google Scholar

    [4]

    Giang N A, Kuna M, Hütter G 2017 Theor. Appl. Fract. Mech. 92 89Google Scholar

    [5]

    Weinberger C R, Thompson G B 2018 J. Am. Ceram. Soc. 101 4401Google Scholar

    [6]

    Jang J H, Lee C H, Heo Y U, Suh D W 2012 Acta Mater. 60 208Google Scholar

    [7]

    Li X T, Zhang X Y, Qin J Q, Zhang S H, Ning J L, Jing R, Ma M Z, Liu R P 2014 J. Phys. Chem. Solids 75 1234Google Scholar

    [8]

    Zhang D, Tang X H, Humphries E, Li D Y 2023 Wear 523 204808Google Scholar

    [9]

    Sun C C, Zheng Y, Chen L L, Fang F, Zhou X F, Jiang J Q 2022 J. Alloys Compd. 895 162649Google Scholar

    [10]

    Zhang D, Hou T P, Quan X L, Zhou J, Yin C C, Lin H F, Lu Z H, Wu K M 2023 J. Mater. Res. Technol. 25 210Google Scholar

    [11]

    Kohn W, Becke A D, Parr R G 1996 J. Phys. Chem. 100 12974Google Scholar

    [12]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [13]

    van de Walle A, Tiwary P, de Jong M, Asta M, Dick A, Shin D, Wang Y, Chen L Q, Liu Z K 2013 Calphad 42 13Google Scholar

    [14]

    Yu R, Zhu J, Ye H Q 2010 Comput. Phys. Commun. 181 671Google Scholar

    [15]

    张梅玲, 陈玉红, 张材荣, 李公平 2019 68 087101Google Scholar

    Zhang M L, Chen Y H, Zhang C R, Li G P 2019 Acta Phys. Sin. 68 087101Google Scholar

    [16]

    Zhang D, Xiang R, Sun Y 2025 Mol. Phys. 123 e2379994Google Scholar

    [17]

    Kobayashi S, Ikuhara Y, Mizoguchi T 2018 Phy. Rev. B 98 134114Google Scholar

    [18]

    Mishra S, Ganguli B 2013 J. Solid State Chem. 200 279Google Scholar

    [19]

    Yamada K, Yosida K, Hanzawa K 1992 Prog. Theor. Phys. Suppl. 108 141Google Scholar

    [20]

    Bader R F W 1985 Acc. Chem. Res. 18 9Google Scholar

    [21]

    Guo L Q, Tang Y Q, Cui J, Li J Q, Yang J R, Li D Y 2021 Scr. Mater. 190 168Google Scholar

    [22]

    Wu Y, Ma L S, Zhou X L, Duan Y H, Shen L, Peng M J 2022 Int. J. Refract. Met. Hard Mater 109 105985Google Scholar

    [23]

    Zhang D, Hou T P, Liang X, Zheng P, Zheng Y H, Lin H F, Wu K M 2022 Vacuum 203 111175Google Scholar

    [24]

    Soni P, Pagare G, Sanyal S P 2011 J. Phys. Chem. Solids 72 810Google Scholar

    [25]

    Zuo L, Humbert M, Esling C 1992 J. Appl. Crystallogr. 25 751Google Scholar

    [26]

    Pugh S F 1954 Lond. Edinb. Phil. Mag. 45 823Google Scholar

    [27]

    Pettifor D G 1992 Mater. Sci. Technol. 8 345Google Scholar

    [28]

    Niu H, Niu S, Oganov A R 2019 J. Appl. Phys. 125 065105Google Scholar

    [29]

    Munro R G, Freiman S W, Baker T L 1998 Natl. Inst. Stand. Technol. 158 6153Google Scholar

    [30]

    王坤, 徐鹤嫣, 郑雄, 张海丰 2025 74 137101Google Scholar

    Wang K, Xu H Y, Zheng X, Zhang H F 2025 Acta Phys. Sin. 74 137101Google Scholar

    [31]

    Yang J, Shahid M, Wan C, Jing F, Pan W 2017 J. Eur. Ceram. Soc. 37 689Google Scholar

    [32]

    Shindé S L, Goela J 2006 High Thermal Conductivity Materials (New York: Springer) pp111–123

    [33]

    Arab F, Sahraoui F A, Haddadi K, Bouhemadou A, Louail L 2016 Phase Transit. 89 480Google Scholar

    [34]

    Ahmed T, Roknuzzaman M, Sultana A, Biswas A, Safin A M, Saiduzzaman M, Hossain K M 2021 Mater. Today Commun. 29 102973Google Scholar

    [35]

    Vagge S T, Ghogare S 2022 Mater. Today 56 1201Google Scholar

    [36]

    Feng J, Xiao B, Wan C L, Qu Z X, Huang Z C, Chen J C, Zhou R, Pan W 2011 Acta Mater. 59 1742Google Scholar

    [37]

    Feng J, Xiao B, Zhou R, Pan W, Clarke D R 2012 Acta Mater. 60 3380Google Scholar

  • 图 1  试样钢微观组织以及定性表征元素分布 (a)微观组织形貌; (b)高角环形暗场像; (c) HRTEM-EDS能谱面扫和(d)线扫图

    Figure 1.  Microstructure of sample steel and distribution of qualitatively characterised elements: (a) Microstructural morphology; (b) high-angle annular dark-field image; (c) HRTEM-EDS energy spectrum area scan and (d) line scan image.

    图 2  V1–x FexC碳化物晶体结构 (a) VC; (b) V0.125Fe0.875C; (c) V0.25Fe0.75C; (d) V0.5Fe0.5C; (e) V0.75Fe0.25C; (f) V0.875Fe0.125C

    Figure 2.  Crystal structure of V1–x FexC carbides: (a) VC; (b) V0.125Fe0.875C; (c) V0.25Fe0.75C; (d) V0.5Fe0.5C; (e) V0.75Fe0.25C; (f) V0.875Fe0.125C

    图 3  V1–x FexC碳化物的TDOS和PDOS (a) V0.125Fe0.875C; (b) V0.25Fe0.75C; (c) V0.5Fe0.5C; (d) V0.75Fe0.25C; (e) V0.875Fe0.125C

    Figure 3.  TDOS and PDOS of V1–x FexC carbides: (a) V0.125Fe0.875C; (b) V0.25Fe0.75C; (c) V0.5Fe0.5C; (d) V0.75Fe0.25C; (e) V0.875Fe0.125C

    图 4  V1–x FexC碳化物的声速(纵波vl、剪切波vs和平均声速vm)以及德拜温度($ \theta_{\text{D}} $)

    Figure 4.  Calculated sound velocities (long wave vl, shear wave vs, and average sound velocity vm), and Debye temperature ($ \theta_{\text{D}} $) of V1–x FexC carbides.

    表 1  X射线能谱分析下的碳化物元素含量

    Table 1.  Elemental content of carbides after energy-dispersive X-ray spectroscopy.

    元素原子百分比/%质量分数/%
    C4.471.04
    Fe60.9666.11
    V27.3527.06
    Cr1.161.17
    Mn2.292.44
    Other elements3.772.18
    DownLoad: CSV

    表 2  V1–x FexC碳化物结构晶胞参数、形成焓(ΔHf)、金属性(fm)和Bader电荷

    Table 2.  Calculated structural cell parameters, formation energy (ΔHf), metallicness (fm) and Bader charge of V1–x FexC carbides

    a b c $\alpha $/(°) $\beta $/(°) γ/(°) ΔHf/( meV·atom–1) fm Bader
    V0.125Fe0.875C 8.061 8.065 8.063 90.08 89.99 89.95 0.443 0.548 0.840
    V0.25Fe0.75C 8.106 8.107 8.107 90.00 90.00 90.01 0.321 0.622 0.914
    V0.5Fe0.5C 8.203 8.188 8.195 90.00 90.00 90.00 0.042 0.844 1.052
    V0.75Fe0.25C 8.262 8.261 8.258 89.92 90.08 89.99 –0.230 0.971 1.146
    V0.875Fe0.125C 8.287 8.287 8.288 89.93 90.00 89.97 –0.439 1.19 1.213
    DownLoad: CSV

    表 3  V1–x FexC碳化物的弹性常数Cij、体积模量BH、剪切模量GH、杨氏模量E、泊松比$\nu $、普格模量比BH/GH、硬度HV、断裂韧性KIC以及脆性指数$ {{M}}_{{x}} $

    Table 3.  Calculated elastic constants Cij, bulk modulus BH, shear modulus GH, Young’s modulus E, Poisson’s ratio $\nu $, Pugh modulus ratio BH/GH, hardness HV, fracture toughness KIC, and brittleness index $ {{M}}_{{x}} $ of V1–x FexC carbides.

    碳化物 C11/GPa C12/GPa C44/GPa BH/GPa GH/GPa BH/GH E $\nu $ HV/GPa KIC/(MPa·m1/2) Mx/μm–1/2
    VC 668.78 138.75 200.00 315.43 223.89 1.41 543.15 0.345 28.73 3.83
    648.24[24] 156.88[24] 209.99[24] 318[9] 213[9] 1.49[9] 521[9] 0.356[9] 25.8[9]
    V0.125Fe0.875C 552.84 165.68 75.32 294.40 110.79 2.657 442.11 0.333 8.49 2.564 3.310
    V0.25Fe0.75C 553.84 155.42 86.486 288.10 121.67 2.368 319.96 0.315 10.34 2.665 3.878
    V0.5Fe0.5C 563.87 152.52 113.41 289.61 144.23 2.008 371.09 0.286 14.06 2.925 4.808
    V0.75Fe0.25C 584.01 148.76 149.97 293.96 174.39 1.686 436.80 0.252 19.63 3.254 6.034
    V0.875Fe0.125C 615.80 154.92 162.02 308.46 186.60 1.650 465.87 0.248 21.06 3.450 6.104
    DownLoad: CSV

    表 4  V1–x FexC碳化物沿[100], [110]和[111]方向的声速(m/s)

    Table 4.  Calculated sound velocities (m/s) along [100], [110], and [111] directions of V1–x FexC carbides.

    V0.125Fe0.875C V0.25Fe0.75C V0.5Fe0.5C V0.75Fe0.25C V0.875Fe0.125C
    [100][100]vl9003.429126.029446.389820.1610182.71
    [010]vs13323.253606.304236.444976.315223.03
    [001]vs23323.253606.304236.444976.315223.03
    [110][110]vl7982.578144.528639.039233.819600.33
    $[1{\bar 1}0] $vs15327.685473.245705.145994.676229.07
    [001]vs23323.253606.304236.444976.315223.03
    [111][111]vl7611.927789.928352.5929029.919398.19
    $ [11{\bar 2}] $vs14754.384930.125261.335675.555912.77
    $[11{\bar 2}] $vs24754.384930.125261.335675.555912.77
    DownLoad: CSV

    表 5  V1–x FexC碳化物的格林艾森参数γ, Aγ, $\delta $, Mav, 晶格热导率kph以及最小晶格热导率kmin

    Table 5.  Calculated Grüneisen parameter γ, Aγ, $ \delta$, Mav, lattice thermal conductivity kph, and minimum lattice thermal conductivity kmin of V1–x FexC carbides.

    碳化物 γ Aγ /(10–8) V $\delta $/Å Mav/(kg·mol–1) n kph(300)/(W·m–1·K–1) kph(1300)/(W·m¹·K–1) kmin/(W·m–1·K–1)
    V0.125Fe0.875C 1.996 3.039 524.18 2.016 22.413 64 2.139 0.535 1.536
    V0.25Fe0.75C 1.869 3.075 532.81 2.027 22.208 64 2.873 0.718 1.609
    V0.5Fe0.5C 1.692 3.132 550.38 2.049 21.800 64 4.729 1.182 1.752
    V0.75Fe0.25C 1.511 3.199 563.61 2.065 21.392 64 8.183 2.046 1.929
    V0.875Fe0.125C 1.492 3.206 569.15 2.072 21.188 64 9.427 2.357 2.001
    DownLoad: CSV
    Baidu
  • [1]

    Williams W S 1971 Prog. Solid State Chem. 6 57Google Scholar

    [2]

    Chen Y, Ye C, Chen X, Hu H 2024 Metals 14 175Google Scholar

    [3]

    康俊雨, 孙新军, 李昭东, 雍岐龙 2015 钢铁 50 64Google Scholar

    Kang J L, Sun X J, Li Z D, Yong Q L 2015 Iron and Steel 50 64Google Scholar

    [4]

    Giang N A, Kuna M, Hütter G 2017 Theor. Appl. Fract. Mech. 92 89Google Scholar

    [5]

    Weinberger C R, Thompson G B 2018 J. Am. Ceram. Soc. 101 4401Google Scholar

    [6]

    Jang J H, Lee C H, Heo Y U, Suh D W 2012 Acta Mater. 60 208Google Scholar

    [7]

    Li X T, Zhang X Y, Qin J Q, Zhang S H, Ning J L, Jing R, Ma M Z, Liu R P 2014 J. Phys. Chem. Solids 75 1234Google Scholar

    [8]

    Zhang D, Tang X H, Humphries E, Li D Y 2023 Wear 523 204808Google Scholar

    [9]

    Sun C C, Zheng Y, Chen L L, Fang F, Zhou X F, Jiang J Q 2022 J. Alloys Compd. 895 162649Google Scholar

    [10]

    Zhang D, Hou T P, Quan X L, Zhou J, Yin C C, Lin H F, Lu Z H, Wu K M 2023 J. Mater. Res. Technol. 25 210Google Scholar

    [11]

    Kohn W, Becke A D, Parr R G 1996 J. Phys. Chem. 100 12974Google Scholar

    [12]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [13]

    van de Walle A, Tiwary P, de Jong M, Asta M, Dick A, Shin D, Wang Y, Chen L Q, Liu Z K 2013 Calphad 42 13Google Scholar

    [14]

    Yu R, Zhu J, Ye H Q 2010 Comput. Phys. Commun. 181 671Google Scholar

    [15]

    张梅玲, 陈玉红, 张材荣, 李公平 2019 68 087101Google Scholar

    Zhang M L, Chen Y H, Zhang C R, Li G P 2019 Acta Phys. Sin. 68 087101Google Scholar

    [16]

    Zhang D, Xiang R, Sun Y 2025 Mol. Phys. 123 e2379994Google Scholar

    [17]

    Kobayashi S, Ikuhara Y, Mizoguchi T 2018 Phy. Rev. B 98 134114Google Scholar

    [18]

    Mishra S, Ganguli B 2013 J. Solid State Chem. 200 279Google Scholar

    [19]

    Yamada K, Yosida K, Hanzawa K 1992 Prog. Theor. Phys. Suppl. 108 141Google Scholar

    [20]

    Bader R F W 1985 Acc. Chem. Res. 18 9Google Scholar

    [21]

    Guo L Q, Tang Y Q, Cui J, Li J Q, Yang J R, Li D Y 2021 Scr. Mater. 190 168Google Scholar

    [22]

    Wu Y, Ma L S, Zhou X L, Duan Y H, Shen L, Peng M J 2022 Int. J. Refract. Met. Hard Mater 109 105985Google Scholar

    [23]

    Zhang D, Hou T P, Liang X, Zheng P, Zheng Y H, Lin H F, Wu K M 2022 Vacuum 203 111175Google Scholar

    [24]

    Soni P, Pagare G, Sanyal S P 2011 J. Phys. Chem. Solids 72 810Google Scholar

    [25]

    Zuo L, Humbert M, Esling C 1992 J. Appl. Crystallogr. 25 751Google Scholar

    [26]

    Pugh S F 1954 Lond. Edinb. Phil. Mag. 45 823Google Scholar

    [27]

    Pettifor D G 1992 Mater. Sci. Technol. 8 345Google Scholar

    [28]

    Niu H, Niu S, Oganov A R 2019 J. Appl. Phys. 125 065105Google Scholar

    [29]

    Munro R G, Freiman S W, Baker T L 1998 Natl. Inst. Stand. Technol. 158 6153Google Scholar

    [30]

    王坤, 徐鹤嫣, 郑雄, 张海丰 2025 74 137101Google Scholar

    Wang K, Xu H Y, Zheng X, Zhang H F 2025 Acta Phys. Sin. 74 137101Google Scholar

    [31]

    Yang J, Shahid M, Wan C, Jing F, Pan W 2017 J. Eur. Ceram. Soc. 37 689Google Scholar

    [32]

    Shindé S L, Goela J 2006 High Thermal Conductivity Materials (New York: Springer) pp111–123

    [33]

    Arab F, Sahraoui F A, Haddadi K, Bouhemadou A, Louail L 2016 Phase Transit. 89 480Google Scholar

    [34]

    Ahmed T, Roknuzzaman M, Sultana A, Biswas A, Safin A M, Saiduzzaman M, Hossain K M 2021 Mater. Today Commun. 29 102973Google Scholar

    [35]

    Vagge S T, Ghogare S 2022 Mater. Today 56 1201Google Scholar

    [36]

    Feng J, Xiao B, Wan C L, Qu Z X, Huang Z C, Chen J C, Zhou R, Pan W 2011 Acta Mater. 59 1742Google Scholar

    [37]

    Feng J, Xiao B, Zhou R, Pan W, Clarke D R 2012 Acta Mater. 60 3380Google Scholar

  • [1] Yan Zhi, Fang Cheng, Wang Fang, Xu Xiao-Hong. First-principles calculations of structural and magnetic properties of SmCo3 alloys doped with transition metal elements. Acta Physica Sinica, 2024, 73(3): 037502. doi: 10.7498/aps.73.20231436
    [2] Wang Yu-Hang, Yuan Meng, Ming Ping-Jian. Effect and relational analysis of physical parameters on coalescence-induced self-propelled jumping of droplets. Acta Physica Sinica, 2021, 70(12): 124702. doi: 10.7498/aps.70.20201714
    [3] Wang Yan, Chen Nan-Di, Yang Chen, Zeng Zhao-Yi, Hu Cui-E, Chen Xiang-Rong. Thermoelectric transport properties of two-dimensional materials XTe2 (X = Pd, Pt) via first-principles calculations. Acta Physica Sinica, 2021, 70(11): 116301. doi: 10.7498/aps.70.20201939
    [4] Liu Qi, Guan Peng-Fei. First principle study on atomic structure of La65X35(X=Ni, Al) metallic glasses. Acta Physica Sinica, 2018, 67(17): 178101. doi: 10.7498/aps.67.20180992
    [5] Chen Jia-Hua, Liu En-Ke, Li Yong, Qi Xin, Liu Guo-Dong, Luo Hong-Zhi, Wang Wen-Hong, Wu Guang-Heng. First-principles investigations on tetragonal distortion, electronic structure, magnetism, and phonon dispersion of Ga2XCr (X = Mn, Fe, Co, Ni, Cu) Heusler alloys. Acta Physica Sinica, 2015, 64(7): 077104. doi: 10.7498/aps.64.077104
    [6] Wang Xiao-Tian, Dai Xue-Fang, Jia Hong-Ying, Wang Li-Ying, Liu Ran, Li Yong, Liu Xiao-Chuang, Zhang Xiao-Ming, Wang Wen-Hong, Wu Guang-Heng, Liu Guo-Dong. The band inversion and topological insulating state of Heusler alloys:X2RuPb (X=Lu, Y). Acta Physica Sinica, 2014, 63(2): 023101. doi: 10.7498/aps.63.023101
    [7] Jiao Zhao-Yong, Guo Yong-Liang, Niu Yi-Jun, Zhang Xian-Zhou. The first principle study of electronic and optical properties of defect chalcopyrite XGa2S4 (X=Zn, Cd, Hg). Acta Physica Sinica, 2013, 62(7): 073101. doi: 10.7498/aps.62.073101
    [8] Deng Jiao-Jiao, Liu Bo, Gu Mu, Liu Xiao-Lin, Huang Shi-Ming, Ni Chen. First principles calculation of electronic structures and optical properties for -CuX(X = Cl, Br, I). Acta Physica Sinica, 2012, 61(3): 036105. doi: 10.7498/aps.61.036105
    [9] Wang Zhi-Gang, Zhang Yang, Wen Yu-Hua, Zhu Zi-Zhong. First-principles calculation of structural stability and electronic properties of ZnO atomic chains. Acta Physica Sinica, 2010, 59(3): 2051-2056. doi: 10.7498/aps.59.2051
    [10] Tan Xing-Yi, Jin Ke-Xin, Chen Chang-Le, Zhou Chao-Chao. Electronic structure of YFe2B2by first-principles calculation. Acta Physica Sinica, 2010, 59(5): 3414-3417. doi: 10.7498/aps.59.3414
    [11] Yang Tian-Xing, Cheng Qiang, Xu Hong-Bin, Wang Yuan-Xu. First-principles study of elastic and electronic properties of several ternary transition-metal carbides. Acta Physica Sinica, 2010, 59(7): 4919-4924. doi: 10.7498/aps.59.4919
    [12] Wu Hong-Li, Zhao Xin-Qing, Gong Sheng-Kai. Effect of Nb on electronic structure of NiTi intermetallic compound: A first-principles study. Acta Physica Sinica, 2010, 59(1): 515-520. doi: 10.7498/aps.59.515
    [13] Hu Fang, Ming Xing, Fan Hou-Gang, Chen Gang, Wang Chun-Zhong, Wei Ying-Jin, Huang Zu-Fei. First-principles study on the electronic structures of the ladder compound NaV2O4F. Acta Physica Sinica, 2009, 58(2): 1173-1178. doi: 10.7498/aps.58.1173
    [14] Wu Hong-Li, Zhao Xin-Qing, Gong Sheng-Kai. Effect of Nb doping on electronic structure of TiO2/NiTi interface: A first-principle study. Acta Physica Sinica, 2008, 57(12): 7794-7799. doi: 10.7498/aps.57.7794
    [15] Liu Li-Hua, Zhang Ying, Lü Guang-Hong, Deng Sheng-Hua, Wang Tian-Min. First-principles study of the effects of Sr segregated on Al grain boundary. Acta Physica Sinica, 2008, 57(7): 4428-4433. doi: 10.7498/aps.57.4428
    [16] Huang Dan, Shao Yuan-Zhi, Chen Di-Hu, Guo Jin, Li Guang-Xu. First-principles calculation on the electronic structure and absorption spectrum of the wurtzite Zn1-xMgxO alloys. Acta Physica Sinica, 2008, 57(2): 1078-1083. doi: 10.7498/aps.57.1078
    [17] Song Qing-Gong, Wang Yan-Feng, Song Qing-Long, Kang Jian-Hai, Chu Yong. First-principle study on the electronic structures of intercalation compound Ag1/4TiSe2. Acta Physica Sinica, 2008, 57(12): 7827-7832. doi: 10.7498/aps.57.7827
    [18] Ming Xing, Fan Hou-Gang, Hu Fang, Wang Chun-Zhong, Meng Xing, Huang Zu-Fei, Chen Gang. First-principles study on the electronic structures of spin-Peierls compound GeCuO3. Acta Physica Sinica, 2008, 57(4): 2368-2373. doi: 10.7498/aps.57.2368
    [19] Song Qing-Gong, Jiang En-Yong, Pei Hai-Lin, Kang Jian-Hai, Guo Ying. First principles computational study on the stability of Li ion-vacancy two-dimensional ordered structures in intercalation compounds LixTiS2. Acta Physica Sinica, 2007, 56(8): 4817-4822. doi: 10.7498/aps.56.4817
    [20] Sun Bo, Liu Shao-Jun, Duan Su-Qing, Zhu Wen-Jun. First-principles calculations of structures, properties and high pressures effects of Fe. Acta Physica Sinica, 2007, 56(3): 1598-1602. doi: 10.7498/aps.56.1598
Metrics
  • Abstract views:  346
  • PDF Downloads:  14
  • Cited By: 0
Publishing process
  • Received Date:  03 June 2025
  • Accepted Date:  27 August 2025
  • Available Online:  24 September 2025
  • Published Online:  05 November 2025
  • /

    返回文章
    返回
    Baidu
    map