Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

IMVoteRank: Identifying multiple influential nodes in complex networks based on an improved voting model

LI Shangjie LEI Hongtao ZHANG MengMeng ZHU Cheng RUAN Yirun

Citation:

IMVoteRank: Identifying multiple influential nodes in complex networks based on an improved voting model

LI Shangjie, LEI Hongtao, ZHANG MengMeng, ZHU Cheng, RUAN Yirun
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Efficiently identifying multiple influential nodes is crucial for maximizing information diffusion and minimizing rumor spread in complex networks. Selecting multiple influential seed nodes requires to take into consider both their individual influence potential and their spatial dispersion within the network topology to avoid overlapping propagation ranges (“rich-club effect”). Traditional VoteRank method has two key limitations: 1)the voting contributions from a node is assumed to be consistent to all its neighbors, and the influence of topological similarity (structural homophily) on the voting preferences observed in real-world scenarios is neglected, and 2) a homogeneous voting attenuation strategy is used, which is insufficient to suppress propagation range overlap between selected seed nodes. To address these shortcomings, IMVoteRank, an improved VoteRank algorithm featuring dual innovations, is proposed in this work. First, a structural similarity-driven voting contribution mechanism is introduced. By recognizing that voters (nodes) are more likely to support candidates (neighbors) with stronger topological relationships with them, the voting contribution of neighbors is decomposed into two parts: direct connection contribution and a structural similarity contribution (quantified using common neighbors). A dynamic weight parameter θ, adjusted based on the candidate node's degree, balances these components, significantly refining vote allocation accuracy. Second, we devise a dynamic group isolation trategy. In each iteration, after selecting the highest-scoring seed node vmax, a tightly-knit group (OG) centered around it is identified and isolated. This involves: 1) forming an initial group based on neighbor density shared with vmax, 2) expanding it by merging nodes with more connections inside the group than outside, and 3) isolating this group by setting the voting capacity (Va) of all its members to zero and virtually removing their connections from the adjacency matrix. Neighbors of vmax not in OG have their Va values reduced by half. This strategy actively forces spatial dispersion among seeds. Extensive simulations using the susceptible-infected-recovered (SIR) propagation model on nine different real-world networks (ECON-WM3, Facebook-SZ, USAir, Celegans, ASOIAF, Dnc-corecipient, ERIS1176, DNC-emails, Facebook-combined) demonstrate the superior performance of IMVoteRank. Compared with seven benchmark methods (Degree, k-shell, VoteRank, NCVoteRank, VoteRank++, AIGCrank, EWV), IMVoteRank consistently achieves significantly larger final propagation coverage (infected scale) for a given number of seed nodes and transmission probability (β = 0.1). Furthermore, seeds selected by IMVoteRank exhibit a consistently larger average shortest path length (Ls) in most networks, which proves their effective topological dispersion. This combination of high personal influence potential (optimized voting) and low redundancy (group isolation) directly translates to more effective global information dissemination, as evidenced by the SIR results. Tests on LFR benchmark networks further validate these advantages, particularly at transmission rates above the epidemic threshold. IMVoteRank effectively overcomes the limitations of traditional voting models by integrating structural similarity into the voting process and employing dynamic group isolation to ensure seed dispersion. It provides a highly effective and physically reliable method for identifying multiple influential nodes in complex networks and optimizing the trade-off between influence strength and spatial coverage. Future work will focus on improving the computational efficiency of large-scale networks and exploring the influence of meso-scale community structures.
  • 图 1  Football网络中的多影响力节点识别结果 (a) 网络划分情况, 不同社区用不用颜色表示; (b) 绿色节点为IMVoteRank方法选取的12个初始传播源

    Figure 1.  Identification results of multiple influential nodes in the Football network: (a) Network partitioning, with different communities represented by different colors; (b) the green nodes are the 12 initial propagation sources selected by the IMVoteRank method.

    图 2  SIR疾病传播率β = 0.1时, 不同算法感染网络节点比例与传播源数量之间的关系 (a) ECON-WM1; (b) Facebook-SZ; (c) USAir; (d) Celegans; (e) ASOIAF[44]; (f) Dnc-corecipient; (g) ERIS1176; (h) DNC-emails; (i) Facebook-combined

    Figure 2.  Relationship between the proportion of network nodes infected by different algorithms and the number of transmission sources when the SIR disease transmission rate β = 0.1: (a) ECON-WM1; (b) Facebook-SZ; (c) USAir; (d) Celegans; (e) ASOIAF[44]; (f) Dnc-corecipient; (g) ERIS1176; (h) DNC-emails; (i) Facebook-combined.

    图 3  传播源数量固定时, 不同算法感染网络节点比例与SIR疾病传播率之间的关系(Facebook_combined网络中初始传播源数量为50, 其他8个网络的传播源节点数量为30) (a) ECON-WM1; (b) Facebook-SZ; (c) USAir; (d) Celegans; (e) ASOIAF[44]; (f) Dnc-corecipient; (g) ERIS1176; (h) DNC-emails; (i) Facebook-combined

    Figure 3.  Relationship between the proportion of network nodes infected by different algorithms and the SIR disease transmission rate when the number of transmission sources is fixed: (a) ECON-WM1; (b) Facebook-SZ; (c) USAir; (d) Celegans; (e) ASOIAF[44]; (f) Dnc-corecipient; (g) ERIS1176; (h) DNC-emails; (i) Facebook-combined. The initial number of propagation sources in the Facebook_combined network is 50, while the number of propagation source nodes in the other eight networks is 30.

    图 4  七种方法选取的传播源之间的平均路径长度与传播源数量间的关系 (a) ECON-WM1; (b) Facebook-SZ; (c) USAir; (d) Celegans; (e) ASOIAF[44]; (f) Dnc-corecipient; (g) ERIS1176; (h) DNC-emails; (i) Facebook-combined

    Figure 4.  Relationship between the average path length and the number of propagation sources selected by seven methods: (a) ECON-WM1; (b) Facebook-SZ; (c) USAir; (d) Celegans; (e) ASOIAF[44]; (f) Dnc-corecipient; (g) ERIS1176; (h) DNC-emails; (i) Facebook-combined.

    图 5  LFR 人工数据集中各方法所选初始种子节点在不同信息传播率β下感染节点比例对比 (a) $\left\langle k \right\rangle = 5$; (b) $\left\langle k \right\rangle = 10$; (c)$\left\langle k \right\rangle = 15$

    Figure 5.  Comparison of the proportion of infected nodes selected by each method as initial seed nodes in the LFR artificial dataset under different information transmission rates: (a) $\left\langle k \right\rangle = 5$; (b) $\left\langle k \right\rangle = 10$; (c) $\left\langle k \right\rangle = 15$.

    图 6  LFR人工数据集中8种方法选取的传播源之间的平均路径长度与传播源数量间的关系 (a) $\left\langle k \right\rangle = 5$; (b) $\left\langle k \right\rangle = 10$; (c)$\left\langle k \right\rangle = 15$

    Figure 6.  Relationship between the average path length of the spread sources selected by eight methods in the LFR artificial dataset and the number of spread sources: (a) $\left\langle k \right\rangle = 5$; (b) $\left\langle k \right\rangle = 10$; (c) $\left\langle k \right\rangle = 15$.

    表 1  计算步骤

    Table 1.  Step of the calculation.

    输入: 网络$ G\left( {V, E} \right) $, 需要选择的种子节点数r, 调节参数θ
    输出: 包含r个有影响力节点的集合SN
    //初始化
    1 foreach v in V do
    2  (S(u), Va(u)) = (0, 1)
    3  end foreach
    //迭代选择种子节点
    4 while $ \left| {SN} \right| < r $ do
    5  foreach u in V do
    6   foreach v in N(u) do
    7  $ VP(u, v) = (1 - \theta ){V_{\text{a}}}(u) + \theta {V_{\text{a}}}(u)\dfrac{{|N(u) \cap N(v)|}}{{{k_v}}} $
    8  $ S\left( v \right) = S\left( v \right) + VP\left( {u, v} \right) $ //节点v收到的投票得分增加
    9   end foreach
    10 end foreach
    11  $ {v_{{\text{max}}}} = {\text{ argmax}}(S\left( v \right)) $//选择投票得分最高的节点vmax
    // 动态群组隔离策略
    12  OG = {vmax}
    13   foreach u in N(vmax) do
    14  if $ \left| {N\left( {{v_{{\text{max}}}}} \right) \cap N\left( u \right)} \right|/\left\langle k \right\rangle \geqslant 1 $ then
    15   OG = OG∪{u}
    16  end if
    17   end foreach
    // 扩展群组
    19 foreach i in sort(N(OG), by degree desc) do
    20  if $ k_i^{{\text{in}}}({\text{OG}}) $ ≥ $ k_i^{{\text{out}}}({\text{OG}}) $ then
    21  OG = OG ∪{i}
    22  end if
    23 end foreach
    // 隔离群组
    24 foreach node i in OG do
    25  Va(i) = 0//将群组内所有节点的投票能力设为0
    //将网络邻接矩阵中该节点对应的行和列置为0
    26  foreach j in V do
    27   adj_matrix[i][j] = 0
    28   adj_matrix[j][i] = 0
    29  end foreach
    30 end foreach
    31 foreach neighbor j of vmax not in OG
    32  $ {V_a}(j) = {V_a}\left( j \right)/2 $
    33 end foreach
    34 SN = SN ∪{vmax}
    35 end while
    36 return SN
    DownLoad: CSV

    表 2  真实网络参数描述

    Table 2.  Parameters description of real networks.

    网络NE$\left\langle d \right\rangle $$\left\langle k \right\rangle $Cβthksmaxksmin
    ECON-WM325723792.614718.51360.26530.0207331
    Facebook-SZ32422183.053713.6910.46580.0466181
    USAir33221262.73812.8070.62520.0225261
    Celegans45320252.66388.94040.64650.0249101
    ASOIAF79628233.41627.0930.48590.0336131
    Dnc-corecipient849103842.759524.46170.50720.0107741
    ERIS11761174868712.059114.7990.43270.0190791
    DNC-emails1833392643.36954.79380.21570.0135171
    Facebook-combined4039882343.692543.6910.60550.00941151
    DownLoad: CSV
    Baidu
  • [1]

    Watts D J, Strogatz S H 1998 Nature 393 440Google Scholar

    [2]

    Barabasi A L, Albert R 1999 Science 286 509Google Scholar

    [3]

    Liu Y Y, Slotine J J, Barabasi A L 2011 Nature 473 167Google Scholar

    [4]

    Yang Z, Li Y, Liu J 2021 Proceedings of the 15th EAI International Conference on Communications and Networking (ChinaCom 2020) Shanghai, China, November 20-21, 2020 p766

    [5]

    Li Y G, Xiao Z L, Gao A, Wu W N, Pei E R 2025 Knowl-Based Syst. 317 113434Google Scholar

    [6]

    Lin Y G, Wang X M, Hao F, Jiang Y C, Wu Y L, Min G Y, He D J, Zhu S C, Zhao W 2019 IEEE Trans. Syst. , Man, Cybern. , Syst. 51 3725

    [7]

    Olasupo T O, Otero C E 2017 IEEE Trans. Syst. , Man, Cybern. Syst. 50 256

    [8]

    Laitila P, Virtanen K 2018 IEEE Trans. Syst. , Man, Cybern. , Syst. 50 1943

    [9]

    Yang J, Yao C, Ma W, Chen G 2010 Physica A 389 859Google Scholar

    [10]

    Morone F, Makse H A 2015 Nature 524 65Google Scholar

    [11]

    Guo C, Li W M, Liu F F, Zhong K X, Wu X, Zhao Y G, Jin Q 2024 Neurocomputing 564 126936Google Scholar

    [12]

    Kempe D, Kleinberg J, Tardos É 2003 Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining Washington, DC, USA, August 24–27, 2003 p137

    [13]

    Leskovec J, Krause A, Guestrin C, Faloutsos C, VanBriesen J, Glance N 2007 Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining San Jose, CA, USA, August 12–15, 2007 p420

    [14]

    Ou Z, Wang S 2024 Swarm Evol. Comput. 87 101542Google Scholar

    [15]

    Kumar S, Mallik A, Panda B S 2023 Expert Syst. Appl. 212 118770Google Scholar

    [16]

    Albert R, Jeong H, Barabási A L 1999 Nature 401 130Google Scholar

    [17]

    Kitsak M, Gallos L K, Havlin S, Liljeros F, Muchnik L, Stanley H E, Makse H A 2010 Nat. Phys. 6 888Google Scholar

    [18]

    Lü L Y, Zhou T, Zhang Q M, Stanley H E 2016 Nat. Commun. 7 10168Google Scholar

    [19]

    Hage P, Harary F 1995 Soc. Netw. 17 57Google Scholar

    [20]

    Dolev S, Elovici Y, Puzis R 2010 J. ACM 57 25

    [21]

    Freeman L C 2002 Soc. Netw. : Crit. Concepts Sociol. 1 238

    [22]

    Katz L 1953 Psychometrika 18 39Google Scholar

    [23]

    Wang Y, Zheng Y N, Shi X L, Liu Y G 2022 Physica A 588 126535Google Scholar

    [24]

    Zhao Z L, Liu X P, Sun Y, Zhao N N, Hu A H, Wang S L, Tu Y Y 2025 Chaos, Solitons Fractals 193 116078Google Scholar

    [25]

    Chen W, Wang Y J, Yang S Y 2009 Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining Paris, France, June 28- July 1

    [26]

    Berahmand K, Bouyer A, Samadi N 2019 Computing 101 1711Google Scholar

    [27]

    Salavati C, Abdollahpouri A, Manbari Z 2019 Neurocomputing 336 36Google Scholar

    [28]

    Wen T, Deng Y 2020 Inf. Sci. 512 549Google Scholar

    [29]

    Yang P L, Zhao L J, Dong C, Xu G Q, Zhou L X 2023 Chin. Phys. B 32 058901Google Scholar

    [30]

    Zhang J X, Chen D B, Dong Q, Zhao Z D 2016 Sci. Rep. 6 27823Google Scholar

    [31]

    Li H Y, Wang X, Chen Y, Cheng S Y 2025 Sci. Rep. 15 1693Google Scholar

    [32]

    Sun H L, Chen D B, He J L, Ch’ng E 2019 Physica A 519 303Google Scholar

    [33]

    Kumar S, Panda B S 2020 Physica A 553 124215Google Scholar

    [34]

    Bae J H, Kim S W 2014 Physica A 395 549Google Scholar

    [35]

    Liu P, Li L, Fang S, Yao Y K 2021 Chaos, Solitons Fractals 152 111309Google Scholar

    [36]

    Wang, G. Alias S B, Sun Z J, Wang F F, Fan A W, Hu H F 2023 Heliyon 9 e16112Google Scholar

    [37]

    Li H Y, Wang X, Chen Y, Chen S Y, Lu D J Sci. Rep. 2025 15 1693

    [38]

    Jeh G, Widom J 2002 Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining Edmonton, Canada, July 23–26, 2002 p538

    [39]

    Chi K, Yin G S, Dong Y X, Dong H B 2019 Knowl-Based Syst. 181 104792Google Scholar

    [40]

    Rossi R, Ahmed N 2015 Proceedings of the 29th AAAI Conference on Artificial Intelligence Austin, TX, USA, January 25–30, 2015

    [41]

    Batagelj V, Mrvar A 1998 Connections 21 47

    [42]

    Blagus N, Šubelj L, Bajec M 2012 Physica A 391 2794Google Scholar

    [43]

    Jeong H, Tombor B, Albert R, Oltvai Z N, Barabási A L 2000 Nature 407 651Google Scholar

    [44]

    Kunegis J 2013 Proceedings of the 22nd International Conference on World Wide Web Rio de Janeiro, Brazil, May 13-17, 2013 p1343

    [45]

    McAuley J, Leskovec J 2012 Advances in Neural Information Processing Systems (Lake Tahoe, USA: NIPS) p539

    [46]

    Pastor-Satorras R, Vespignani A 2001 Phys. Rev. Lett. 86 3200Google Scholar

    [47]

    Ruan Y R, Liu S Z, Tang J , Guo Y M, Yu T Y 2025 Expert Syst. Appl. 268 126292

    [48]

    Yu E Y, Wang Y P, Fu Y, Chen D B, Xie M 2020 Knowl-Based Syst. 198 105893 24

    [49]

    Zhang M, Wang X J, Jin L, Song M, Li Z Y 2022 Neurocomputing 497 13Google Scholar

  • [1] Chen Yi-Duo, Yun Yu-Ting, Guan Jian-Yue, Wu Zhi-Xi. Majority-vote model with collective influence of hierarchical structures. Acta Physica Sinica, doi: 10.7498/aps.73.20231164
    [2] Ruan Yi-Run, Lao Song-Yang, Tang Jun, Bai Liang, Guo Yan-Ming. Node importance ranking method in complex network based on gravity method. Acta Physica Sinica, doi: 10.7498/aps.71.20220565
    [3] Kong Jiang-Tao, Huang Jian, Gong Jian-Xing, Li Er-Yu. Evaluation methods of node importance in undirected weighted networks based on complex network dynamics models. Acta Physica Sinica, doi: 10.7498/aps.67.20172295
    [4] Kang Ling, Xiang Bing-Bing, Zhai Su-Lan, Bao Zhong-Kui, Zhang Hai-Feng. Identifying multiple influential nodes based on region density curve in complex networks. Acta Physica Sinica, doi: 10.7498/aps.67.20181000
    [5] Ruan Yi-Run, Lao Song-Yang, Wang Jun-De, Bai Liang, Hou Lü-Lin. An improved evaluating method of node spreading influence in complex network based on information spreading probability. Acta Physica Sinica, doi: 10.7498/aps.66.208901
    [6] Han Zhong-Ming, Chen Yan, Li Meng-Qi, Liu Wen, Yang Wei-Jie. An efficient node influence metric based on triangle in complex networks. Acta Physica Sinica, doi: 10.7498/aps.65.168901
    [7] Han Zhong-Ming, Wu Yang, Tan Xu-Sheng, Duan Da-Gao, Yang Wei-Jie. Ranking key nodes in complex networks by considering structural holes. Acta Physica Sinica, doi: 10.7498/aps.64.058902
    [8] Hu Qing-Cheng, Zhang Yong, Xu Xin-Hui, Xing Chun-Xiao, Chen Chi, Chen Xin-Hua. A new approach for influence maximization in complex networks. Acta Physica Sinica, doi: 10.7498/aps.64.190101
    [9] Wang Ya-Qi, Wang Jing, Yang Hai-Bin. An evolution model of microblog user relationship networks based on complex network theory. Acta Physica Sinica, doi: 10.7498/aps.63.208902
    [10] Liu Wei-Yan, Liu Bin. Congestion control in complex network based on local routing strategy. Acta Physica Sinica, doi: 10.7498/aps.63.248901
    [11] Liu Jin-Liang. Research on synchronization of complex networks with random nodes. Acta Physica Sinica, doi: 10.7498/aps.62.040503
    [12] Zhou Xuan, Zhang Feng-Ming, Zhou Wei-Ping, Zou Wei, Yang Fan. Evaluating complex network functional robustness by node efficiency. Acta Physica Sinica, doi: 10.7498/aps.61.190201
    [13] LÜ Ling, Liu Shuang, Zhang Xin, Zhu Jia-Bo, Shen Na, Shang Jin-Yu. Spatiotemporal chaos anti-synchronization of a complex network with different nodes. Acta Physica Sinica, doi: 10.7498/aps.61.090504
    [14] Zhou Xuan, Zhang Feng-Ming, Li Ke-Wu, Hui Xiao-Bin, Wu Hu-Sheng. Finding vital node by node importance evaluation matrix in complex networks. Acta Physica Sinica, doi: 10.7498/aps.61.050201
    [15] Jiang Zhi-Hong, Wang Hui, Gao Chao. A evolving network model generated by random walk and policy attachment. Acta Physica Sinica, doi: 10.7498/aps.60.058903
    [16] Xiong Fei, Liu Yun, Si Xia-Meng, Ding Fei. Network model with synchronously increasing nodes and edges based on Web 2.0. Acta Physica Sinica, doi: 10.7498/aps.59.6889
    [17] Lü Ling, Zhang Chao. Chaos synchronization of a complex network with different nodes. Acta Physica Sinica, doi: 10.7498/aps.58.1462
    [18] Li Tao, Pei Wen-Jiang, Wang Shao-Ping. Optimal traffic routing strategy on scale-free complex networks. Acta Physica Sinica, doi: 10.7498/aps.58.5903
    [19] Chen Hua-Liang, Liu Zhong-Xin, Chen Zeng-Qiang, Yuan Zhu-Zhi. Research on one weighted routing strategy for complex networks. Acta Physica Sinica, doi: 10.7498/aps.58.6068
    [20] Li Ji, Wang Bing-Hong, Jiang Pin-Qun, Zhou Tao, Wang Wen-Xu. Growing complex network model with acceleratingly increasing number of nodes. Acta Physica Sinica, doi: 10.7498/aps.55.4051
Metrics
  • Abstract views:  416
  • PDF Downloads:  9
  • Cited By: 0
Publishing process
  • Received Date:  12 May 2025
  • Accepted Date:  12 July 2025
  • Available Online:  19 July 2025
  • /

    返回文章
    返回
    Baidu
    map