Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Non-Hermitian topological phase induced by next-nearest-neighbor transitions in periodic drive systems

BAO Xixi GUO Gangfeng TAN Lei LIU Wuming

Citation:

Non-Hermitian topological phase induced by next-nearest-neighbor transitions in periodic drive systems

BAO Xixi, GUO Gangfeng, TAN Lei, LIU Wuming
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • A non-Hermitian system with long-range hopping under periodic driving is constructed in this work. The Hamiltonian has chiral symmetry, implying that a topological invariant can be determined. Using the non-Bloch band theory and the Floquet method, the relevant operators and topological number can be determined, thereby providing quantitative approaches for studying topological properties. For example, by calculating the non-Bloch time-evolution factor, the Floquet operator, etc., it can be found that the topological invariant is determined by changing the phase of $U^{+}_{\epsilon=0,\pi}(\beta)$ as it moves along the generalized Brillouin zone, corresponding to the emergence of quasi-energy zero mode and π mode.The results show that the topological structure of the static system can be significantly affected by periodic driving. The topological phase boundary of the zero mode can be changed. In the absence of periodic driving, energy spectrum does not exhibit π mode. After introducing periodic driving, a gap appears at the quasi-energy $\epsilon=\pi$, thereby inducing a non-trivial π-mode phase and enriching the topological phase diagram. Furthermore, the next nearest neighbor hopping has a unique effect in this system. It can induce large topological numbers. However, unlike the static system, large topological numbers only appear in specific parameter intervals under periodic driving. As the strength of the next nearest neighbor hopping increases, the large topological number phase disappears, reflecting the non-monotonic regulation characteristics of the Floquet system. In addition, introducing the phase of the next nearest neighbor hopping can change the topological phase boundary, providing new ideas for experimentally regulating topological states.This research is of significance in the field of topological phase transitions in non-Hermitian systems. Theoretically, it reveals the synergistic effect of long-range hopping and periodic driving, and improves the theoretical framework for the cross-research of long-range and dynamic regulation in non-Hermitian systems. From an application perspective, it provides theoretical support for experimentally realizing the controllable modulation of topological states, which is helpful in promoting the development of fields such as low energy consumption electronic devices and topological quantum computing.
  • 图 1  (a) 静态体系的开边界能谱. (b) Floquet驱动下开边界能谱, 这时系统激发π模(红点). (c) 静态体系的广义布里渊区(蓝线)和布里渊区(绿线). (d) Floquet驱动系统的广义布里渊区(蓝线)和布里渊区(绿线). (e) β沿广义布里渊区逆时针遍历时, $ U^{+}_{0}(\beta) $在复平面形成的曲线, 其没有环绕原点(绿点)表征体系具有平庸拓扑不变量$ W_{0} = 0 $. (f) β沿广义布里渊区逆时针遍历时, $ U^{+}_{\pi}(\beta) $在复平面形成的曲线, 显然其将原点(绿点)包含在内, 代表这时体系具有非平庸拓扑不变量$ W_{\pi} = 1 $. 参数为$ t_{1} = 1 $, $ t_{2} = 0.6 $, $ t_{3} = 0.1 $, $ \gamma = 0.5 $, $ \lambda = 0.8 $, $ \omega = 3 $. 开边界对应的系统尺寸为$ N = 200 $.

    Figure 1.  (a) Eigenvalues under open boundary of static system. (b) Eigenvalues under open boundary of Floquet system, demonstrating existence of π-modes (red dots). (c) Generalized Brillouin zone in equilibrium (blue curve) and Brillouin zone (green circle). (d) Generalized Brillouin zone (blue curve) under periodic driving and Brillouin zone (green circle). (e) Complex contour formed by $ U^{+}_{0}(\beta) $ during counterclockwise $ \beta $-traversal along Generalized Brillouin zone, whose origin not-encircling (green marker) characterizes the trivial winding number $ W_{0} = 0 $. (f) Trajectory of $ U^{+}_{\pi}(\beta) $ in complex plane, with unambiguous origin inclusion (green marker) confirming topologically protected π-mode via $ W_{\pi} = 1 $. Common parameters are $ t_{1} = 1 $, $ t_{2} = 0.6 $, $ t_{3} = 0.1 $, and $ \gamma = 0.5 $. Floquet parameters are $ \lambda = 0.8 $ and $ \omega = 3 $. System size under open-boundary is $ N = 200 $.

    图 2  (a) 静态体系的非布洛赫拓扑不变量, 非零值对应开边界条件下零模的出现. (b) 当加入周期驱动时体系零模的拓扑相图. (c) 加入周期驱动后, 不但零模对应的拓扑不变量会出现改变, 还会导致π模的出现. (d) 静态体系的开边界能谱. (e) 周期驱动体系的开边界准能谱. (f) 当加入次近邻后, 零模对应的相图. 共同参数为$ \gamma = 0.5 $, $ \lambda = 0.8 $, $ \omega = 3 $. (a)—(e) $ t_{3} = 0 $, (d)—(e) $ t_{2} = $$ 1.2 $, (f) $ t_{3} = 0.4 $. 开边界对应的系统尺寸为$ N = 60 $

    Figure 2.  (a) Non-Bloch topological invariant of static system, where non-zero values correspond to the emergence of zero mode under open boundary conditions. (b) Topological phase diagram of the zero modes when the periodic driving is added. (c) After adding the periodic driving, not only will the topological invariant corresponding to the zero mode change, but it will also lead to the emergence of π modes. (d) Open boundary energy spectrum of the static system. (e) Open boundary quasi-energy spectrum of the periodically driven system. (f) When next-nearest neighbor is added, the phase diagram corresponding to the zero mode. Common parameters are $ \gamma = 0.5 $, $ \lambda = 0.8 $, $ \omega = 3 $, (a)–(e) $ t_{3} = 0 $, (d)–(e) $ t_{2} = 1.2 $, (f) $ t_{3} = 0.4 $. System size under open-boundary condition is $ N = 60 $.

    图 3  (a) 以$ t_{3} $为自变量的零模的拓扑相图. (b)和(c) 以$ t_{3} $和γ为自变量的拓扑相图. (d)和(e) 以$ t_{3} $和$ t_{1} $为自变量的拓扑相图. 共同参数取值为$ t_{2} = 0.4 $, $ \lambda = 1.2 $, $ \omega = 3 $. (f) 静态体系的拓扑相图. (a) $ t_{1} = 1 $, $ \gamma = 0.7 $. (b)—(c) $ t_{1} = 1 $. (d)和(e) $ \gamma = 0.2 $

    Figure 3.  (a) Topological phase diagram of the zero mode. (b) and (c) Topological phase diagram with $ t_{3} $ and γ as the independent variables. (d) and (e) Topological phase diagrams with $ t_{3} $ and γ as the independent variables. (f) Toplogical phase diagram with $ t_{3} $ and γ as the independent variables. Common parameter values are $ t_{2} = 0.4 $, $ \lambda = 1.2 $, $ \omega = 3 $. (a) $ t_{1} = 1 $, $ \gamma = 0.7 $. (b) and (c) $ t_{1} = 1 $. (d), (e) and (f) $ \gamma = 0.2 $.

    图 4  (a)和(b) $ t_{3} $的相位$ \theta = 0 $, 即$ e^{i\theta} = 1 $时的拓扑相图. (c)和(d) $ t_{3} $的相位$ \theta = \dfrac{\pi}{2} $时的拓扑相图. (e)和(f) 以$ {\rm{e}}^{{\rm{i}}\theta} $和$ t_{2} $为自变量的体系的拓扑相图, 其中$ \theta\in[-\pi, \pi] $, 即$ e^{i\theta}\in[-1, 1] $. (g)和(h) 以$ e^{i\theta} $和$ t_{3} $为自变量的体系的拓扑相图. 共同参数取值为$ t_{1} = 1 $, $ \gamma = 0.2 $, $ \lambda = 1.5 $, $ \omega = 3 $. (a)和(b) $ \theta = 0 $. (c)和(d) $ \theta = \dfrac{\pi}{2} $. (e)和(f) $ t_{3} = 0.5 $. (g)和(h) $ t_{2} = 0.3 $

    Figure 4.  (a) and (b) Topological phase diagrams with the phase $ \theta = 0 $, that is $ {\rm{e}}^{{\rm{i}}\theta} = 1 $. (c) and (d) Topological phase diagrams with the phase $ \theta = \dfrac{\pi}{2} $. (e) and (f) Topological phase diagram of the system with $ {\rm{e}}^{{\rm{i}}\theta} $ and $ t_{2} $ as the independent variables, where $ \theta\in[-\pi, \pi] $, that is $ {\rm{e}}^{{\rm{i}}\theta}\in[-1, 1] $. (g) and (h) Topological phase diagram of the system with $ {\rm{e}}^{{\rm{i}}\theta} $ and $ t_{3} $ as the independent variables. Common parameters are $ t_{1} = 1 $, $ \gamma = 0.2 $, $ \lambda = 1.5 $ and $ \omega = 3 $. (a) and (b) $ \theta = 0 $. (c) and (d) $ \theta = \dfrac{\pi}{2} $. (e) and (f) $ t_{3} = $$ 0.5 $. (g) and (h) $ t_{2} = 0.3 $.

    Baidu
  • [1]

    Chiu C K, Teo J C Y, Schnyder A P, Ryu S 2016 Rev. Mod. Phys. 88 035005Google Scholar

    [2]

    Bansil A, Lin H, Das T 2016 Rev. Mod. Phys. 88 021004Google Scholar

    [3]

    Asbóth J, Oroszlány L, Pályi A 2016 A Short Course on Topological Insulators, vol. 919

    [4]

    Shen S Q 2012 Topological Insulators Dirac Equation in Condensed Matters, vol. 174

    [5]

    Wang J H, Tao Y L, Xu Y 2022 Chin. Phys. Lett. 39 010301Google Scholar

    [6]

    Wang X R, Guo C X, Du Q, Kou S P 2020 Chin. Phys. Lett. 37 117303Google Scholar

    [7]

    Yi Y F 2024 Chinese Physics B 33 060302Google Scholar

    [8]

    Liu T, Wang Y G 2024 Chinese Physics B 33 030303Google Scholar

    [9]

    Esaki K, Sato M, Hasebe K, Kohmoto M 2011 Phys. Rev. B 84 205128Google Scholar

    [10]

    Hu Y C, Hughes T L 2011 Phys. Rev. B 84 153101Google Scholar

    [11]

    Zhu B, Lü R, Chen S 2014 Phys. Rev. A 89 062102Google Scholar

    [12]

    Jin L, Song Z 2019 Phys. Rev. B 99 081103Google Scholar

    [13]

    Chen Y, Zhai H 2018 Phys. Rev. B 98 245130Google Scholar

    [14]

    Lang L J, Wang Y, Wang H, Chong Y D 2018 Phys. Rev. B 98 094307Google Scholar

    [15]

    Deng T S, Yi W 2019 Phys. Rev. B 100 035102Google Scholar

    [16]

    Kawabata K, Higashikawa S, Gong Z, Ashida Y, Ueda M 2019 Nature Communications 10

    [17]

    Liu T, Zhang Y R, Ai Q, Gong Z, Kawabata K, Ueda M, Nori F 2019 Phys. Rev. Lett. 122 076801Google Scholar

    [18]

    Lee C H, Li L, Gong J 2019 Phys. Rev. Lett. 123 016805Google Scholar

    [19]

    Kunst F K, Edvardsson E, Budich J C, Bergholtz E J 2018 Phys. Rev. Lett. 121 026808Google Scholar

    [20]

    Guo G F, Bao X X, Tan L 2021 New Journal of Physics 23 123007Google Scholar

    [21]

    Yin C, Jiang H, Li L, Lü R, Chen S 2018 Phys. Rev. A 97 052115Google Scholar

    [22]

    Chen C, Qi L, Xing Y, Cui W X, Zhang S, Wang H F 2021 New Journal of Physics 23 123008Google Scholar

    [23]

    Zhang D W, Tang L Z, Lang L J, Yan H, Zhu S L 2020 Science China Physics, Mechanics & Astronomy 63 267062

    [24]

    Pi J, Wang C, Liu Y C, Yan Y 2025 Phys. Rev. B 111 165407Google Scholar

    [25]

    Wang Z, He L 2025 Phys. Rev. B 111 L100305Google Scholar

    [26]

    Zheng Y Q, Li S Z, Li Z 2025 Phys. Rev. B 111 104204Google Scholar

    [27]

    Xiong Y 2018 Journal of Physics Communications 2 035043Google Scholar

    [28]

    Li L, Lee C H, Mu S, Gong J 2020 Nature Communications 11

    [29]

    Denner M M, Skurativska A, Schindler F, Fischer M H, Thomale R, Bzdušek T, Neupert T 2021 Nature Communications 12

    [30]

    Yao S, Wang Z 2018 Phys. Rev. Lett. 121 086803Google Scholar

    [31]

    Yokomizo K, Murakami S 2019 Phys. Rev. Lett. 123 066404Google Scholar

    [32]

    Zhang K, Yang Z, Fang C 2020 Phys. Rev. Lett. 125 126402Google Scholar

    [33]

    Yang Z, Zhang K, Fang C, Hu J 2020 Phys. Rev. Lett. 125 226402Google Scholar

    [34]

    Okuma N, Kawabata K, Shiozaki K, Sato M 2020 Phys. Rev. Lett. 124 086801Google Scholar

    [35]

    Zhu W, Teo W X, Li L, Gong J 2021 Phys. Rev. B 103 195414Google Scholar

    [36]

    Song F, Yao S, Wang Z 2019 Phys. Rev. Lett. 123 246801Google Scholar

    [37]

    Wu H, Wang B Q, An J H 2021 Phys. Rev. B 103 L041115Google Scholar

    [38]

    He P, Huang Z H 2020 Phys. Rev. A 102 062201Google Scholar

    [39]

    Xiao L, Deng T, Wang K, Zhu G, Wang Z, Yi W, Xue P 2020 Nature Physics 16

    [40]

    Zhang X, Gong J 2020 Phys. Rev. B 101 045415Google Scholar

    [41]

    Zhou L 2021 Phys. Rev. Research 3 033184Google Scholar

    [42]

    Ke H, Zhang J M, Huo L, Zhao W L 2024 Chinese Physics B 33 050507Google Scholar

    [43]

    Cao Y, Li Y, Yang X 2021 Phys. Rev. B 103 075126Google Scholar

    [44]

    Lignier H, Sias C, Ciampini D, Singh Y, Zenesini A, Morsch O, Arimondo E 2007 Phys. Rev. Lett. 99 220403Google Scholar

    [45]

    Eckardt A 2017 Rev. Mod. Phys. 89 011004Google Scholar

    [46]

    Rechtsman M C, Zeuner J M, Plotnik Y, Lumer Y, Podolsky D, Dreisow F, Nolte S, Segev M, Szameit A 2013 Nature 496 196Google Scholar

    [47]

    Rudner M S, Lindner N H, Berg E, Levin M 2013 Phys. Rev. X 3 031005

    [48]

    Cheng Q, Pan Y, Wang H, Zhang C, Yu D, Gover A, Zhang H, Li T, Zhou L, Zhu S 2019 Phys. Rev. Lett. 122 173901Google Scholar

    [49]

    McIver J W, Schulte B, Stein F U, Matsuyama T, Jotzu G, Meier G, Cavalleri A 2020 Nature Physics 16 38Google Scholar

    [50]

    Chávez N C, Mattiotti F, Méndez-Bermúdez J A, Borgonovi F, Celardo G L 2021 Phys. Rev. Lett. 126 153201Google Scholar

    [51]

    Bao X X, Guo G F, Tan L 2021 Journal of Physics: Condensed Matter 33 465403Google Scholar

    [52]

    Zhang X Z, Song Z 2020 Phys. Rev. B 102 174303Google Scholar

    [53]

    Pérez-González B, Bello M, Gómez-León A, Platero G 2019 Phys. Rev. B 99 035146Google Scholar

    [54]

    Lee T E 2016 Phys. Rev. Lett. 116 133903Google Scholar

    [55]

    Entin-Wohlman O, Aharony A 2019 Phys. Rev. Res. 1 033112Google Scholar

    [56]

    Sil A, Kumar Ghosh A 2019 Journal of Physics: Condensed Matter 32 025601

    [57]

    Zuo Z W, Benalcazar W A, Liu Y, Liu C X 2021 Journal of Physics D: Applied Physics 54 414004Google Scholar

    [58]

    Kuno Y, Nakafuji T, Ichinose I 2015 Phys. Rev. A 92 063630Google Scholar

    [59]

    Yao S, Yan Z, Wang Z 2017 Phys. Rev. B 96 195303Google Scholar

    [60]

    Dal Lago V, Atala M, Foa Torres L E F 2015 Phys. Rev. A 92 023624Google Scholar

    [61]

    Fruchart M 2016 Phys. Rev. B 93 115429Google Scholar

  • [1] GU Yan, WANG Zhipeng, LU Zhanpeng. Topological quantum phase transitions in quasicrystalline potential modulated one-dimensional p-wave superconductors. Acta Physica Sinica, doi: 10.7498/aps.74.20250137
    [2] QIN Hairong, HOU Yijie, YANG Kun, JIN Cancan, LYU Yongjun. Topological phase transition in metallic glass formers. Acta Physica Sinica, doi: 10.7498/aps.74.20250513
    [3] GUO Gangfeng, Bao Xixi, TAN Lei, LIU Wuming. Reentrant localized bulk and localized-extended edge in quasiperiodic non-Hermitian systems. Acta Physica Sinica, doi: 10.7498/aps.74.20240933
    [4] Gu Yan, Lu Zhan-Peng. Localization transition in non-Hermitian coupled chain. Acta Physica Sinica, doi: 10.7498/aps.73.20240976
    [5] Liu Jing-Hu, Xu Zhi-Hao. Random two-body dissipation induced non-Hermitian many-body localization. Acta Physica Sinica, doi: 10.7498/aps.73.20231987
    [6] Liu Chang, Wang Ya-Yu. Quantum transport phenomena in magnetic topological insulators. Acta Physica Sinica, doi: 10.7498/aps.72.20230690
    [7] Xu Shi-Lin, Hu Yue-Fang, Yuan Dan-Wen, Chen Wei, Zhang Wei. Topological phase transitions in Tl2Ta2O7 under strain regulation. Acta Physica Sinica, doi: 10.7498/aps.72.20230043
    [8] Pan Lei. Non-Hermitian linear response theory and its applications. Acta Physica Sinica, doi: 10.7498/aps.71.20220862
    [9] Li Jia-Rui, Wang Zi-An, Xu Tong-Tong, Zhang Lian-Lian, Gong Wei-Jiang. Topological properties of the one-dimensional ${\cal {PT}}$-symmetric non-Hermitian spin-orbit-coupled Su-Schrieffer-Heeger model. Acta Physica Sinica, doi: 10.7498/aps.71.20220796
    [10] Zheng Zhou-Fu, Yin Jian-Fei, Wen Ji-Hong, Yu Dian-Long. Topologically protected edge states of elastic waves in phononic crystal plates. Acta Physica Sinica, doi: 10.7498/aps.69.20200542
    [11] Wang Yan-Lan, Li Yan. Pseudospin states and topological phase transitions in two-dimensional photonic crystals made of dielectric materials. Acta Physica Sinica, doi: 10.7498/aps.69.20191962
    [12] Fang Yun-Tuan, Wang Zhang-Xin, Fan Er-Pan, Li Xiao-Xue, Wang Hong-Jin. Topological phase transition based on structure reversal of two-dimensional photonic crystals and construction of topological edge states. Acta Physica Sinica, doi: 10.7498/aps.69.20200415
    [13] Pei Dong-Liang, Yang Tao, Chen Meng, Liu Yu, Xu Wen-Shuai, Zhang Man-Gong, Jiang Heng, Wang Yu-Ren. Broadband periodic and aperiodic acoustic topological insulator based on composite honeycomb structure. Acta Physica Sinica, doi: 10.7498/aps.69.20191454
    [14] Yang Chao, Chen Shu. Topological invariant in quench dynamics. Acta Physica Sinica, doi: 10.7498/aps.68.20191410
    [15] Yu Xiang-Min, Tan Xin-Sheng, Yu Hai-Feng, Yu Yang. Topological quantum material simulated with superconducting quantum circuits. Acta Physica Sinica, doi: 10.7498/aps.67.20181857
    [16] Yang Yuan,  Chen Shuai,  Li Xiao-Bing. Topological phase transitions in square-octagon lattice with Rashba spin-orbit coupling. Acta Physica Sinica, doi: 10.7498/aps.67.20180624
    [17] Shen Qing-Wei, Xu Lin, Jiang Jian-Hua. Topological phase transitions in core-shell gyromagnetic photonic crystal. Acta Physica Sinica, doi: 10.7498/aps.66.224102
    [18] Wang Qing-Hai, Li Feng, Huang Xue-Qin, Lu Jiu-Yang, Liu Zheng-You. The topological phase transition and the tunable interface states in granular crystal. Acta Physica Sinica, doi: 10.7498/aps.66.224502
    [19] Wang Jian, Wu Shi-Qiao, Mei Jun. Topological phase transitions caused by a simple rotational operation in two-dimensional acoustic crystals. Acta Physica Sinica, doi: 10.7498/aps.66.224301
    [20] Yin Wen, Lai Yun-Zhong, Yan Qi-Wei, Liang Jiu-Qing. Electron oscillation between coupled quantum wells with periodic driving. Acta Physica Sinica, doi: 10.7498/aps.52.1862
Metrics
  • Abstract views:  638
  • PDF Downloads:  16
  • Cited By: 0
Publishing process
  • Received Date:  06 May 2025
  • Accepted Date:  21 June 2025
  • Available Online:  08 July 2025
  • /

    返回文章
    返回
    Baidu
    map