Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Thermodynamic properties of hydrogen decrepitation process in Nd2Fe14B permanent magnet materials

HUANG Yajing ZHENG Yongping HUANG Zhigao

Citation:

Thermodynamic properties of hydrogen decrepitation process in Nd2Fe14B permanent magnet materials

HUANG Yajing, ZHENG Yongping, HUANG Zhigao
cstr: 32037.14.aps.74.20250578
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Recycling is a sustainable strategy for the efficient utilization of rare earth resources. Hydrogenation milling has been widely adopted because of its high efficiency and environmental benefits. However, the formation of unstable phases in the hydrogenation process significantly reduces recovery efficiency, which presents new challenges for process optimization. In this study, a combination of first-principles calculations and machine learning methods is employed to systematically investigate the thermodynamic behavior of key rare earth hydrides, such as NdH2, NdH3, and Nd2H5 in the hydrogenation milling process using the Debye model for lattice vibrations. The results show that a temperature centered at about 630 K at a pressure of 600 kPa may offer ideal operational conditions for the hydrogenation milling process. Under these conditions, NdH2 can undergo spontaneous hydrogenation, and the formation of unstable phases can be effectively suppressed, thereby improving rare earth recovery efficiency. This study also reveals the potential adverse effects of excessively high temperatures on the stability and reactivity of NdH2, further emphasizing the importance of operating within a specific temperature range. These findings provide new insights into the thermodynamic mechanisms of the hydrogenation process in Nd2Fe14B permanent magnet material. Furthermore, they offer theoretical guidance for the optimization of industrial hydrogenation milling parameters.
      Corresponding author: ZHENG Yongping, zyp@fjnu.edu.cn ; HUANG Zhigao, zghuang@fjnu.edu.cn
    • Funds: Project supported by the Industrialization Projects, China (University-Enterprise Joint Project) (Grant No. 2023XQ010).
    [1]

    Poenaru I, Patroi E A, Patroi D, Iorga A, Manta E 2023 J. Magn. Magn. Mater. 577 170777

    [2]

    Liu X B, Kesler M S, Besser M F, Kramer M J, McGuire M A, Nlebedim I C 2021 IEEE Trans. Magn. 57 6

    [3]

    Dirba I, Pattur P, Soldatov I, Adabifiroozjaei E, Molina-Luna L, Gutfleisch O 2023 J. Alloys Compd. 930 167411Google Scholar

    [4]

    Lixandru A, Poenaru I, Güth K, Gauß R, Gutfleisch O 2017 J. Alloys Compd. 724 51Google Scholar

    [5]

    Ojih J, Al-Fahdi M, Yao Y G, Hu J J, Hu M 2024 J. Mater. Chem. A 12 8502Google Scholar

    [6]

    Toher C, Plata J J, Levy O, De Jong M, Asta M, Nardelli M B, Curtarolo S 2014 Phys. Rev. B 90 174107Google Scholar

    [7]

    Xu C R, Shao L, Ding N, Jiang H H, Tang B Y 2024 Physica B 674 415589Google Scholar

    [8]

    Nenuwe N O, Yebovi A S 2024 Comput. Condens. Matte. 38 e00882

    [9]

    Ning J L, Zhu Y L, Kidd J, Guan Y D, Wang Y, Mao Z Q, Sun J W 2020 npj Comput. Mater. 6 157Google Scholar

    [10]

    Vesti A, Music D, Olsson P A 2024 Nucl. Mater. Energy 39 101684Google Scholar

    [11]

    Sheridan R S, Harris I R, Walton A 2016 J. Magn. Magn. Mater. 401 455Google Scholar

    [12]

    Matin M A, Kwon H W, Lee J G, Yu J H 2014 J. Magn. 19 106Google Scholar

    [13]

    Michalski B, Szymanski M, Gola K, Zygmuntowicz J, Leonowicz M 2022 J. Magn. Magn. Mater. 548 168979Google Scholar

    [14]

    Kirklin S, Saal J E, Meredig B, Thompson A, Doak J W, Aykol M, Rühl S, Wolverton C 2015 npj Comput. Mater. 1 15Google Scholar

    [15]

    Saal J E, Kirklin S, Aykol M, Meredig B, Wolverton C 2013 Jom 65 1501Google Scholar

    [16]

    Li X T, Yue M, Zhou S X, Kuang C J, Zhang G Q, Dong B S, Zeng H 2019 J. Magn. Magn. Mater. 473 144Google Scholar

    [17]

    Habibzadeh A, Kucuker M A, Gökelma M 2023 ACS Omega 8 17431Google Scholar

    [18]

    Qin T, Zhang Q, Wentzcovitch R M, Umemoto K 2019 Comput. Phys. Commun. 237 199Google Scholar

    [19]

    Baroni S, Giannozzi P, Isaev E 2018 Rev. Mineral. Geochem 71 39

    [20]

    Palumbo M, Dal Corso A 2017 J. Phys.- Condens. Mat. 29 395401Google Scholar

    [21]

    Otero-De-La-Roza A, Abbasi-Pérez D, Luaña V 2011 Comput. Phys. Commun. 182 2232Google Scholar

    [22]

    Togo A, Tanaka I 2015 Scr. Mater. 108 1Google Scholar

    [23]

    Bartel C J, Millican S L, Deml A M, Rumptz J R, Tumas W, Weimer A W, Lany S, Stevanović V, Musgrave C B, Holder A M 2018 Nat. Commun. 9 4168Google Scholar

    [24]

    Chen S Y, Zhang J L, Wang Y Z, Wang T F, Li Y, Liu Z J 2023 Metals 13 225Google Scholar

    [25]

    Deng B W, Zhong P C, Jun K, Riebesell J, Han K, Bartel C J, Ceder G 2023 Nat. Mach. Intell. 5 1031Google Scholar

    [26]

    Pan J 2023 Nat. Comput. Sci. 3 816Google Scholar

    [27]

    Blanco M A, Francisco E, Luaña V 2004 Comput. Phys. Commun. 158 57Google Scholar

    [28]

    Shamsuddin M 2024 Thermodynamic Measurement Techniques, Vol. Part F3193 of The Minerals, Metals Materials Series (Cham: Springer International Publishing) pp1–349

    [29]

    Olivotos S, Economou-Eliopoulos M 2016 Geosciences 6 2Google Scholar

    [30]

    Rostami S, Gonze X 2024 Phys. Rev. B 110 014103Google Scholar

    [31]

    Bartel C J 2022 J. Mater. Sci. 57 10475Google Scholar

    [32]

    Drebushchak V A 2020 J. Therm. Anal. Calorim. 142 1097Google Scholar

    [33]

    Yamanaka S, Yoshioka K, Uno M, Katsura M, Anada H, Matsuda T, Kobayashi S 1999 J. Alloys Compd. 293-295 23

    [34]

    Hu X, Wang H, Linton K, Le Coq A, Terrani K A 2021 Handbook on the material properties of yttrium hydride for high temperature moderator applications. Tech. rep., Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States

    [35]

    Vajda P, Daou J N 1996 Solid State Phenom. 49-50 71Google Scholar

    [36]

    Grinderslev J B, Møller K T, Bremholm M, Jensen T R 2019 Inorg. Chem. 58 5503Google Scholar

    [37]

    Pourarian F 2002 Physica B 321 18Google Scholar

    [38]

    Suwarno S, Lototskyy M V, Yartys V A 2020 J. Alloys Compd. 842 155530Google Scholar

    [39]

    Sheridan R S, Sillitoe R, Zakotnik M, Harris I R, Williams A J 2012 J. Magn. Magn. Mater. 324 63Google Scholar

    [40]

    Fultz B 2010 Prog. Mater. Sci. 55 247Google Scholar

    [41]

    Piotrowicz A, Pietrzyk S, Noga P, Myćka Ł 2020 J. Min. Metall. B 56 415Google Scholar

    [42]

    Xia M, Abrahamsen A B, Bahl C R, Veluri B, Søegaard A I, Bøjsøe P 2017 J. Magn. Magn. Mater. 441 55Google Scholar

  • 图 1  通过氢破工艺回收废弃钕铁硼磁体的机理流程图

    Figure 1.  Schematic diagram of the mechanism for recycling discarded Nd2Fe14B magnets through the hydrogenation-breaking process.

    图 2  非基态下的凸包图

    Figure 2.  Convex hull diagram under non-ground state conditions.

    图 3  比热容随温度的变化情况 (a) 3种钕氢化物的恒容比热容($ C_{\mathrm{v}} $)随温度的变化曲线; (b) 3种钕氢化物的恒压比热容($ C_{\mathrm{p}} $)随温度的变化曲线

    Figure 3.  Variation of heat capacity with temperature. (a) Variation curves of constant volume heat capacity ($ C_{\mathrm{v}} $) with temperature for three types of Nd-hydrides; (b) variation curves of constant pressure heat capacity ($ C_{\mathrm{p}} $) with temperature for three types of Nd-hydrides.

    图 4  热膨胀系数随温度的变化情况

    Figure 4.  Variation of thermal expansion coefficient with temperature.

    图 5  等温弹性模量随温度压强的变化情况 (a) 100, 300, 500, 700 kPa的压强下NdH2, NdH3, Nd2H5的等温弹性模量随温度的变化曲线; (b) 100, 300, 500, 700 kPa压强条件下3种钕氢化物的等温体积模量随温度变化率绝对值$ \left(\left| {\partial B}/{\partial T} \right| \right) $的线状图

    Figure 5.  Variation of isothermal elastic modulus with temperature and pressure: (a) Variation curves of isothermal elastic modulus with temperature for NdH2, NdH3, and Nd2H5 under pressures of 100, 300, 500, and 700 kPa, respectively; (b) line graph of the absolute value $ \left(\left| {\partial B}/{\partial T} \right| \right) $ of the rate of change in isothermal bulk modulus with temperature for the three types of Nd-hydrides under pressures of 100, 300, 500, and 700 kPa.

    图 6  热导率、热扩散系数随温度的变化情况 (a) 3种钕氢化物的热导率随温度的变化曲线; (b) 3种钕氢化物的热扩散系数随温度的变化曲线

    Figure 6.  Variation of thermal conductivity and thermal diffusivity with temperature: (a) Variation curves of thermal conductivity with temperature for three types of Nd-hydrides; (b) variation curves of thermal diffusivity with temperature for three types of Nd-hydrides.

    图 7  不同钕氢化物吉布斯自由能变化量$ {{\Delta }_{{\mathrm{r}}}}G $在100 kPa, 200 kPa, 300 kPa, 400 kPa, 500 kPa, 600 kPa以及700 kPa压强下随温度的变化情况 (a) NdH2; (b) NdH3; (c) Nd2H5

    Figure 7.  Variation of gibbs free energy change $ {{\Delta }_{{\mathrm{r}}}}G $ of different Nd-hydrides with temperature under specific pressures of 100 kPa, 200 kPa, 300 kPa, 400 kPa, 500 kPa, 600 kPa, and 700 kPa: (a) NdH2; (b) NdH3; (c) Nd2H5.

    图 8  凸包能($ E_{\rm{hull}} $)与凸包图 (a) 三种钕氢化物的凸包能随温度的变化曲线; (b) 三种钕氢化物在630 K温度下的稳定关系

    Figure 8.  Convex hull energy ($ E_{\rm{hull}} $) and convex hull diagram: (a) Variation curves of convex hull energy with temperature for three types of Nd-hydrides; (b) stability relationships of three types of Nd-hydrides at 630 K.

    Baidu
  • [1]

    Poenaru I, Patroi E A, Patroi D, Iorga A, Manta E 2023 J. Magn. Magn. Mater. 577 170777

    [2]

    Liu X B, Kesler M S, Besser M F, Kramer M J, McGuire M A, Nlebedim I C 2021 IEEE Trans. Magn. 57 6

    [3]

    Dirba I, Pattur P, Soldatov I, Adabifiroozjaei E, Molina-Luna L, Gutfleisch O 2023 J. Alloys Compd. 930 167411Google Scholar

    [4]

    Lixandru A, Poenaru I, Güth K, Gauß R, Gutfleisch O 2017 J. Alloys Compd. 724 51Google Scholar

    [5]

    Ojih J, Al-Fahdi M, Yao Y G, Hu J J, Hu M 2024 J. Mater. Chem. A 12 8502Google Scholar

    [6]

    Toher C, Plata J J, Levy O, De Jong M, Asta M, Nardelli M B, Curtarolo S 2014 Phys. Rev. B 90 174107Google Scholar

    [7]

    Xu C R, Shao L, Ding N, Jiang H H, Tang B Y 2024 Physica B 674 415589Google Scholar

    [8]

    Nenuwe N O, Yebovi A S 2024 Comput. Condens. Matte. 38 e00882

    [9]

    Ning J L, Zhu Y L, Kidd J, Guan Y D, Wang Y, Mao Z Q, Sun J W 2020 npj Comput. Mater. 6 157Google Scholar

    [10]

    Vesti A, Music D, Olsson P A 2024 Nucl. Mater. Energy 39 101684Google Scholar

    [11]

    Sheridan R S, Harris I R, Walton A 2016 J. Magn. Magn. Mater. 401 455Google Scholar

    [12]

    Matin M A, Kwon H W, Lee J G, Yu J H 2014 J. Magn. 19 106Google Scholar

    [13]

    Michalski B, Szymanski M, Gola K, Zygmuntowicz J, Leonowicz M 2022 J. Magn. Magn. Mater. 548 168979Google Scholar

    [14]

    Kirklin S, Saal J E, Meredig B, Thompson A, Doak J W, Aykol M, Rühl S, Wolverton C 2015 npj Comput. Mater. 1 15Google Scholar

    [15]

    Saal J E, Kirklin S, Aykol M, Meredig B, Wolverton C 2013 Jom 65 1501Google Scholar

    [16]

    Li X T, Yue M, Zhou S X, Kuang C J, Zhang G Q, Dong B S, Zeng H 2019 J. Magn. Magn. Mater. 473 144Google Scholar

    [17]

    Habibzadeh A, Kucuker M A, Gökelma M 2023 ACS Omega 8 17431Google Scholar

    [18]

    Qin T, Zhang Q, Wentzcovitch R M, Umemoto K 2019 Comput. Phys. Commun. 237 199Google Scholar

    [19]

    Baroni S, Giannozzi P, Isaev E 2018 Rev. Mineral. Geochem 71 39

    [20]

    Palumbo M, Dal Corso A 2017 J. Phys.- Condens. Mat. 29 395401Google Scholar

    [21]

    Otero-De-La-Roza A, Abbasi-Pérez D, Luaña V 2011 Comput. Phys. Commun. 182 2232Google Scholar

    [22]

    Togo A, Tanaka I 2015 Scr. Mater. 108 1Google Scholar

    [23]

    Bartel C J, Millican S L, Deml A M, Rumptz J R, Tumas W, Weimer A W, Lany S, Stevanović V, Musgrave C B, Holder A M 2018 Nat. Commun. 9 4168Google Scholar

    [24]

    Chen S Y, Zhang J L, Wang Y Z, Wang T F, Li Y, Liu Z J 2023 Metals 13 225Google Scholar

    [25]

    Deng B W, Zhong P C, Jun K, Riebesell J, Han K, Bartel C J, Ceder G 2023 Nat. Mach. Intell. 5 1031Google Scholar

    [26]

    Pan J 2023 Nat. Comput. Sci. 3 816Google Scholar

    [27]

    Blanco M A, Francisco E, Luaña V 2004 Comput. Phys. Commun. 158 57Google Scholar

    [28]

    Shamsuddin M 2024 Thermodynamic Measurement Techniques, Vol. Part F3193 of The Minerals, Metals Materials Series (Cham: Springer International Publishing) pp1–349

    [29]

    Olivotos S, Economou-Eliopoulos M 2016 Geosciences 6 2Google Scholar

    [30]

    Rostami S, Gonze X 2024 Phys. Rev. B 110 014103Google Scholar

    [31]

    Bartel C J 2022 J. Mater. Sci. 57 10475Google Scholar

    [32]

    Drebushchak V A 2020 J. Therm. Anal. Calorim. 142 1097Google Scholar

    [33]

    Yamanaka S, Yoshioka K, Uno M, Katsura M, Anada H, Matsuda T, Kobayashi S 1999 J. Alloys Compd. 293-295 23

    [34]

    Hu X, Wang H, Linton K, Le Coq A, Terrani K A 2021 Handbook on the material properties of yttrium hydride for high temperature moderator applications. Tech. rep., Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States

    [35]

    Vajda P, Daou J N 1996 Solid State Phenom. 49-50 71Google Scholar

    [36]

    Grinderslev J B, Møller K T, Bremholm M, Jensen T R 2019 Inorg. Chem. 58 5503Google Scholar

    [37]

    Pourarian F 2002 Physica B 321 18Google Scholar

    [38]

    Suwarno S, Lototskyy M V, Yartys V A 2020 J. Alloys Compd. 842 155530Google Scholar

    [39]

    Sheridan R S, Sillitoe R, Zakotnik M, Harris I R, Williams A J 2012 J. Magn. Magn. Mater. 324 63Google Scholar

    [40]

    Fultz B 2010 Prog. Mater. Sci. 55 247Google Scholar

    [41]

    Piotrowicz A, Pietrzyk S, Noga P, Myćka Ł 2020 J. Min. Metall. B 56 415Google Scholar

    [42]

    Xia M, Abrahamsen A B, Bahl C R, Veluri B, Søegaard A I, Bøjsøe P 2017 J. Magn. Magn. Mater. 441 55Google Scholar

  • [1] LIU Xianyang, YAO Jiawei, YANG Junfeng, FAN Qunchao, FAN Zhixiang, TIAN Hongrui. Macroscopic thermodynamic properties of H2 and HD. Acta Physica Sinica, 2025, 74(10): 106702. doi: 10.7498/aps.74.20241793
    [2] Fan Jun-Yu, Gao Nan, Wang Peng-Ju, Su Yan. Intermolecular interactions and thermodynamic properties of LLM-105. Acta Physica Sinica, 2024, 73(4): 046501. doi: 10.7498/aps.73.20231696
    [3] Zhao Yu-Na, Cong Hong-Lu, Cheng Shuang, Yu Na, Gao Tao, Ma Jun-Gang. First-principles study of lattice dynamical and thermodynamic properties of Li2NH. Acta Physica Sinica, 2019, 68(13): 137102. doi: 10.7498/aps.68.20190139
    [4] Huang Ao, Lu Zhi-Peng, Zhou Meng, Zhou Xiao-Yun, Tao Ying-Qi, Sun Peng, Zhang Jun-Tao, Zhang Ting-Bo. Effects of the doping of Al and O interstitial atoms on thermodynamic properties of -Al2O3:first-principles calculations. Acta Physica Sinica, 2017, 66(1): 016103. doi: 10.7498/aps.66.016103
    [5] Deng Shi-Jie, Zhao Yu-Hong, Hou Hua, Wen Zhi-Qin, Han Pei-De. Structural, mechanical and thermodynamic properties of Ti2AlX (X= C, N) at high pressure. Acta Physica Sinica, 2017, 66(14): 146101. doi: 10.7498/aps.66.146101
    [6] Wu Ruo-Xi, Liu Dai-Jun, Yu Yang, Yang Tao. First-principles investigations on structure and thermodynamic properties of CaS under high pressures. Acta Physica Sinica, 2016, 65(2): 027101. doi: 10.7498/aps.65.027101
    [7] Pu Chun-Ying, Wang Li, Lü Lin-Xia, Yu Rong-Mei, He Chao-Zheng, Lu Zhi-Wen, Zhou Da-Wei. Pressure-induced structural transition and thermodynamic properties of NbSi2 from first-principles calculations. Acta Physica Sinica, 2015, 64(8): 087103. doi: 10.7498/aps.64.087103
    [8] Li Ping-Yuan, Chen Yong-Liang, Zhou Da-Jin, Chen Peng, Zhang Yong, Deng Shui-Quan, Cui Ya-Jing, Zhao Yong. Research of thermal expansion coefficient of topological insulator Bi2Te3. Acta Physica Sinica, 2014, 63(11): 117301. doi: 10.7498/aps.63.117301
    [9] Yan Xiao-Zhen, Kuang Xiao-Yu, Mao Ai-Jie, Kuang Fang-Guang, Wang Zhen-Hua, Sheng Xiao-Wei. First-principles study on the elastic, electronic and thermodynamic properties of ErNi2B2C under high pressure. Acta Physica Sinica, 2013, 62(10): 107402. doi: 10.7498/aps.62.107402
    [10] Yang Ze-Jin, Linghu Rong-Feng, Cheng Xin-Lu, Yang Xiang-Dong. First-principles investigations on the electronic, elastic and thermodynamic properties of Cr2MC(M=Al, Ga). Acta Physica Sinica, 2012, 61(4): 046301. doi: 10.7498/aps.61.046301
    [11] Men Fu-Dian, Wang Bing-Fu, He Xiao-Gang, Wei Qun-Mei. Thermodynamic properties of a weakly interacting Fermi gas in a strong magnetic field. Acta Physica Sinica, 2011, 60(8): 080501. doi: 10.7498/aps.60.080501
    [12] Li Xiao-Feng, Liu Zhong-Li, Peng Wei-Min, Zhao A-Ke. Elastic and thermodynamic properties of CaPo under pressure via first-principles calculations. Acta Physica Sinica, 2011, 60(7): 076501. doi: 10.7498/aps.60.076501
    [13] Li Xue-Mei, Han Hui-Lei, He Guang-Pu. Lattice dynamical, dielectric and thermodynamic properties of LiNH2 from first principles. Acta Physica Sinica, 2011, 60(8): 087104. doi: 10.7498/aps.60.087104
    [14] Li Shi-Na, Liu Yong. First-principles calculation of elastic and thermodynamic properties of copper nitride. Acta Physica Sinica, 2010, 59(10): 6882-6888. doi: 10.7498/aps.59.6882
    [15] Qian Ping, Shen Jiang, Wang Yu-Jie, Zhou Jun-Min. Structure and thermodynamic properties of Ni based superconductive material EuNi2Si2. Acta Physica Sinica, 2010, 59(12): 8776-8782. doi: 10.7498/aps.59.8776
    [16] Xu Bu-Yi, Chen Jun-Rong, Cai Jing, Li Quan, Zhao Ke-Qing. Theoretical study on the structure,spectra and thermodynamic property of 2-(toluene-4-sulfonylamino)-benzoic. Acta Physica Sinica, 2009, 58(3): 1531-1536. doi: 10.7498/aps.58.1531
    [17] Chen Yi, Shen Jiang. Structural and thermodynamic properties of Fe based compounds with NaZn13-type. Acta Physica Sinica, 2009, 58(13): 141-S145. doi: 10.7498/aps.58.141
    [18] Liu Na-Na, Song Ren-Bo, Sun Han-Ying, Du Da-Wei. The electronic structure and thermodynamic properties of Mg2Sn from first-principles calculations. Acta Physica Sinica, 2008, 57(11): 7145-7150. doi: 10.7498/aps.57.7145
    [19] Men Fu-Dian. Thermodynamic properties of a weakly interacting Fermi gas in weak magnetic field. Acta Physica Sinica, 2006, 55(4): 1622-1627. doi: 10.7498/aps.55.1622
    [20] Zhang Ya-Nan, Yan Shi-Lei. Thermodynamic properties of random transverse mixed Ising spin system with cryst al field. Acta Physica Sinica, 2003, 52(11): 2890-2895. doi: 10.7498/aps.52.2890
Metrics
  • Abstract views:  1047
  • PDF Downloads:  19
  • Cited By: 0
Publishing process
  • Received Date:  30 April 2025
  • Accepted Date:  04 June 2025
  • Available Online:  01 July 2025
  • Published Online:  05 September 2025
  • /

    返回文章
    返回
    Baidu
    map