Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Vibrational excitation and dissociation processes in high-temperature N2-O2 state-to-state collisions based on neural network and dynamic simulation

GUO Changmin ZHANG Hong CHENG Xinlu

Citation:

Vibrational excitation and dissociation processes in high-temperature N2-O2 state-to-state collisions based on neural network and dynamic simulation

GUO Changmin, ZHANG Hong, CHENG Xinlu
cstr: 32037.14.aps.74.20250533
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The scattering cross-sections and reaction rate coefficients are crucial parameters for elucidating the energy transfer mechanism of state-to-state collisions between molecular gases and also serve as a fundamental basis for modeling the non-equilibrium flow field. However, the database of kinetic processes related to nitrogen shock flows is still being developed. In this work, a detailed kinetic study of the N2 + O2 collision is carried out by combining the quasi-classical trajectory method (QCT) and neural network model (NN). Firstly, QCT is used to calculate 90 N2(v) + O2(w) processes with various initial vibrational states (v,w), and the contributions of all vibrational excitation and dissociation reaction channels are discussed. The following conclusions are drawn: 1) The contributions of the vibration-vibration (VV) energy exchange channel of O2 and N2 are similar, while the vibration-translational (VT) transition mainly occurs on O2; 2) The total dissociation cross-section primarily results from the O2 single-dissociation channel, followed by the exchange-dissociation channel, with relatively minor contributions from the N2 single- and double-dissociation channels. Then, based on the QCT dataset, a high-performance NN model (R-value of 0.99) is trained to predict the total dissociation cross-section caused by N2(v) + O2(w) collisions. Compared with the method that only uses QCT, the method that jointly uses OCT and NN model can achieve an approximately 91.94% reduction in computational cost. Finally, to facilitate use in kinetic modeling, Arrhenius-type fits for the VV/VT rate coefficients are provided over the temperature range of 5000–30000 K, and an exponential form related to the translational energy Et is used to fit the total dissociation cross-section.
      Corresponding author: CHENG Xinlu, chengxl@scu.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2024YFF0508503).
    [1]

    王庆洋, 丛堃林, 刘丽丽, 陆宏志, 徐胜金 2017 气体物理 2 46Google Scholar

    Wang Q Y, Cong K L, Liu L L, Lu H Z, Xu S J 2017 Phys. Gases 2 46Google Scholar

    [2]

    吕达仁, 陈泽宇, 郭霞, 田文寿 2009 力学进展 39 674Google Scholar

    Lu D R, Chen Z Y, Guo X, Tian W S 2009 Adv. Mech. 39 674Google Scholar

    [3]

    董维中, 丁明松, 高铁锁, 江涛 2013 空气动力学学报 31 692

    Dong W Z, DIing M S, Gao T S, Jiang T 2013 Acta Aerodyn. Sin. 31 692

    [4]

    国义军, 曾磊, 张昊元, 代光月, 王安龄, 邱波, 周述光, 刘骁 2017 空气动力学学报 35 496Google Scholar

    Guo Y J, Zeng L, Zhang H Y, Dai G Y, Wang A L, Qiu B, Zhou S G, Liu X 2017 Acta Aerodyn. Sin. 35 496Google Scholar

    [5]

    Cacciatore M 1996 Mol. Phys. Hypersonic Flows 482 21

    [6]

    Pavlov A V 2011 Geomag. Aeron. 51 143Google Scholar

    [7]

    Treanor C E 1965 J. Chem. Phys. 43 532Google Scholar

    [8]

    Nagnibeda E, Papina K, Kunova O 2018 AIP Conf. Proc. 1 060012Google Scholar

    [9]

    Laux C O, Pierrot L, Gessman R J 2012 Chem. Phys. 398 46Google Scholar

    [10]

    Zhao X, Xu X, Xu H 2024 J. Chem. Phys. 161 231101Google Scholar

    [11]

    Hong Q, Bartolomei M, Pirani F, Sun Q, Coletti C 2025 J. Chem. Phys. 162 114308Google Scholar

    [12]

    Feng D, Song Y, Wang Z, Yang L, Zhang Z, Yang Y 2025 J. Chem. Phys. 162 114107Google Scholar

    [13]

    He D, Liu T, Li R, Hong Q, Li F, Sun Q, Si T, Luo X 2024 J. Chem. Phys. 161 244302Google Scholar

    [14]

    Andrienko D, Boyd I D 2017 55th AIAA Aerospace Sciences Meeting Grapevine Texas, January 9-13, 2017 p2017-0659

    [15]

    Kurnosov A K, Napartovich A P, Shnyrev S L, Cacciatore M 2010 Plasma Sources Sci. Technol. 19 045015Google Scholar

    [16]

    Esposito F, Garcia E, Laganà A 2017 Plasma Sources Sci. Technol. 26 045005Google Scholar

    [17]

    Lino Da Silva M, Loureiro J, Guerra V 2012 Chem. Phys. Lett. 531 28Google Scholar

    [18]

    Varga Z, Meana-Pañeda R, Song G, Paukku Y, Truhlar D G 2016 J. Chem. Phys. 144 024310Google Scholar

    [19]

    Garcia E, Verdasco J E, Laganà A 2020 J. Phys. Chem. A 124 6445Google Scholar

    [20]

    Andrienko D A, Boyd I D 2018 J. Chem. Phys. 148 084309Google Scholar

    [21]

    Garcia E, Pirani F, Laganà A, Martí C 2017 Phys. Chem. Chem. Phys. 19 11206Google Scholar

    [22]

    Garcia E, Laganà A, Pirani F, Bartolomei M, Cacciatore M, Kurnosov A 2016 J. Phys. Chem. A 120 5208Google Scholar

    [23]

    Billing G D, Jolicard G 1982 Chem. Phys. 65 323Google Scholar

    [24]

    Billing G D 1994 Chem. Phys. 179 463Google Scholar

    [25]

    Garcia E, Kurnosov A, Laganà A, Pirani F, Bartolomei M, Cacciatore M 2016 J. Phys. Chem. B 120 1476Google Scholar

    [26]

    Koner D, Unke O T, Boe K, Bemish R J, Meuwly M 2019 J. Chem. Phys. 150 211101Google Scholar

    [27]

    Chen J, Li J, Bowman J M, Guo H 2020 J. Chem. Phys. 153 054310Google Scholar

    [28]

    Hong Q, Storchi L, Bartolomei M, Pirani F, Sun Q, Coletti C 2023 Eur. Phys. J. D 77 128Google Scholar

    [29]

    Gu K M, Zhang H, Cheng X L 2023 J. Chem. Phys. 158 244302Google Scholar

    [30]

    Huang X, Gu K M, Guo C M, Cheng X L 2023 Phys. Chem. Chem. Phys. 25 29475Google Scholar

    [31]

    Guo C M, Zhang H, Cheng X L 2024 J. Phys. Chem. A 128 5435Google Scholar

    [32]

    Bernstein R B, Bederson B 1980 Phys. Today 33 79Google Scholar

    [33]

    Fernández-Ramos A, Miller J A, Klippenstein S J, Truhlar D G 2006 Chem. Rev. 106 4518Google Scholar

    [34]

    Hu X, Hase W L, Pirraglia T 1991 J. Comput. Chem. 12 1014Google Scholar

    [35]

    Gutzwiller M C 1990 Chaos in Classical and Quantum Mechanics (Berlin: Springer

    [36]

    Chaudhry R S, Bender J D, Valentini P, Schwartzentruber T E, Candler G V 2016 46th AIAA Thermophysics Conference Washington, June 13–17, 2016 p4319

    [37]

    Mankodi T K, Bhandarkar U V, Myong R S 2020 Phys. Fluids 32 036102Google Scholar

    [38]

    Andrienko D, Boyd I D 2017 47th AIAA Thermophysics Conference Denver, Colorado, June 5–9, 2017 p3163

    [39]

    Andrienko D, Boyd I D 2018 J. Thermophys. Heat Transfer 32 904Google Scholar

    [40]

    Rumelhart D E, Hintont G E, Williams R J 1986 Nature 323 533Google Scholar

    [41]

    Moré J J 1978 Numerical Analysis (Berlin, Heidelberg: Springer-Verlag) p105

    [42]

    Chaudhry R S, Candler G V 2019 AIAA Scitech Forum San Diego, California, January 7–11, 2019 p2019-0789

    [43]

    Mankodi T K, Bhandarkar U V, Puranik B P 2018 J. Chem. Phys. 148 144305Google Scholar

  • 图 1  VV过程(1, 0) → (0, 1) (a) 和VT过程(1, 0) → (0, 0) (b)的速率系数作为平动温度的函数: 我们的计算结果(黑色实线)与已报道的理论数据[25,39]对比

    Figure 1.  Rate coefficients for the VV process (1, 0) → (0, 1) (a) and VT process (1, 0) → (0, 0) (b) as a function of translational temperature: comparison between our calculated results (in solid black line) and reported theoretical data[25,39].

    图 2  N2(v) + O2(10), N2(v) + O2(21)和N2(v) + O2(30)过程中VVN和VVO单量子跃迁截面随初始能级(v)和初始平动能(Et)的等值线图

    Figure 2.  Contour map of VVN and VVO single-quantum transition cross sections with the initial energy level (v) and initial translational energy (Et) of N2(v) + O2(10), N2(v) + O2(21) and N2(v) + O2(30) processes.

    图 3  N2(v) + O2(10), N2(v) + O2(21)和N2(v) + O2(30)过程中VTN和VTO单量子跃迁截面随N2初始能级(v)和初始平动能(Et)的等值线图

    Figure 3.  Contour map of VTN and VTO single-quantum transition cross sections with the initial energy level (v) and initial translational energy (Et) of N2(v) + O2(10), N2(v) + O2(21) and N2(v) + O2(30) processes.

    图 4  不同N2(v)-O2(w)碰撞过程中单量子和多量子VVO和VTO速率系数的温度依赖性

    Figure 4.  Temperature dependence of single- and multi-quantum VVO and VTO rate coefficients during different N2(v)-O2(w) collisions.

    图 5  各个解离通道的反应截面随N2初始振动能级(v)和初始平动能(Et)的等值线图

    Figure 5.  Contour map of reaction cross sections of each dissociation channel with N2 initial vibrational energy level (v) and initial translational energy (Et).

    图 6  各个解离通道的反应截面随O2初始振动能级(w)和初始平动能(Et)的等值线图

    Figure 6.  Contour map of reaction cross sections of each dissociation channel with O2 initial vibrational energy level (w) and initial translational energy (Et).

    图 7  (a) NN-totaldiss模型预测值和QCT原始值对比; (b) NN预测值与原始QCT数据之间的误差直方图, 虚线表示误差为零

    Figure 7.  (a) Comparison of NN-totaldiss predicted data and the raw QCT data; (b) error histogram between the predicted values and the raw QCT data. The black dash line indicates zero error.

    图 8  QCT计算的(左)和NN-totaldiss模型预测的(右)总解离截面随初始平动能(Et)以及O2和N2初始振动能级的等值线图

    Figure 8.  Contour map of QCT calculated (left) and NN-totaldiss predicted (right) total dissociation cross sections with initial translational energy (Et) and the initial vibrational levels of O2 and N2.

    表 1  QCT数据集包含的N2(v) + O2(w)碰撞过程

    Table 1.  N2(v) + O2(w) collision processes contained in the QCT dataset.

    Group N2(v) O2(w) Et (eV)
    1 {0, 5, 10, 21, 30} {0, 1, 3, 7, 10, 15, 21, 25, 30} {0.2, 0.6, 1, 2,
    3, 4, 5, 6, 7, 8, 9, 10}
    2 {0, 1, 3, 7, 10, 15, 21, 25, 30, 35} {0, 5, 10, 21, 30}
    DownLoad: CSV

    表 A1  VV/VT反应速率系数(单位: k/(cm3·s–1))的Arrhenius拟合参数表(A, n, B). MSE是均方误差(单位: k/(cm3·s–1)), 温度范围为5000—30000 K

    Table A1.  Arrhenius fitting parameters (A, n, B) for VV/VT reaction rate coefficient (unit: k/(cm3·s–1)). MSE is the mean square error (unit: k/(cm3·s–1)), and the temperature range is 5000–30000 K.

    N2(v) + O2(w) → N2(v') + O2(w') A n B MSE
    (0, 10) → (1, 9) 4.10 × 10–10 –2.91 × 10–1 4.81 × 104 4.27 × 10–26
    (0, 10) → (0, 9) 2.44 × 10–10 4.28 × 10–2 2.01 × 104 7.67 × 10–22
    (0, 10) → (0, 8) 3.33 × 10–10 –6.70 × 10–2 3.10 × 104 3.04 × 10–23
    (0, 10) → (0, 7) 3.95 × 10–10 –1.39 × 10–1 3.96 × 104 2.66 × 10–24
    (0, 21) → (1, 20) 4.24 × 10–10 –4.58 × 10–1 –4.53 × 103 4.21 × 10–23
    (0, 21) → (0, 20) 3.50 × 10–10 2.04 × 10–1 2.78 × 103 7.96 × 10–21
    (0, 21) → (0, 19) 2.51 × 10–10 –3.01 × 10–2 1.94 × 104 2.32 × 10–22
    (0, 21) → (0, 18) 2.87 × 10–10 –7.43 × 10–2 2.46 × 104 5.62 × 10–23
    (0, 30) → (1, 29) 3.01 × 10–10 –3.75 × 10–1 4.79 × 104 6.99 × 10–27
    (0, 30) → (0, 29) 1.39 × 10–10 9.46 × 10–2 7.06 × 103 6.44 × 10–21
    (0, 30) → (0, 28) 1.49 × 10–10 2.78 × 10–3 9.00 × 103 9.18 × 10–22
    (0, 30) → (0, 27) 1.74 × 10–10 –5.01 × 10–2 1.14 × 104 2.99 × 10–22
    (15, 10) → (16, 9) 2.31 × 10–10 –9.11 × 10–2 1.73 × 104 8.85 × 10–23
    (15, 10) → (17, 8) 3.46 × 10–10 –2.77 × 10–1 3.64 × 104 2.77 × 10–25
    (15, 10) → (18, 7) 3.94 × 10–10 –3.69 × 10–1 4.36 × 104 1.97 × 10–26
    (15, 10) → (15, 9) 1.97 × 10–10 5.51 × 10–3 1.30 × 104 8.14 × 10–22
    (15, 10) → (15, 8) 2.78 × 10–10 –1.96 × 10–1 2.58 × 104 4.40 × 10–24
    (15, 10) → (15, 7) 3.17 × 10–10 –3.04 × 10–1 3.38 × 104 2.16 × 10–25
    (15, 21) → (16, 20) 1.79 × 10–10 –2.61 × 10–2 1.56 × 104 2.42 × 10–22
    (15, 21) → (17, 19) 2.69 × 10–10 –3.02 × 10–1 2.64 × 104 5.21 × 10–25
    (15, 21) → (18, 18) 3.12 × 10–10 –3.82 × 10–1 3.60 × 104 3.42 × 10–26
    (15, 21) → (15, 20) 1.96 × 10–10 7.64 × 10–2 1.35 × 104 2.82 × 10–21
    (15, 21) → (15, 19) 2.46 × 10–10 –1.03 × 10–1 2.19 × 104 3.80 × 10–23
    (15, 21) → (15, 18) 2.07 × 10–10 –1.88 × 10–1 2.49 × 104 3.33 × 10–24
    (15, 30) → (16, 29) 9.24 × 10–11 –8.39 × 10–2 1.39 × 103 3.39 × 10–22
    (15, 30) → (17, 28) 2.05 × 10–10 –3.47 × 10–1 2.70 × 104 1.23 × 10–25
    (15, 30) → (18, 27) 3.20 × 10–10 –4.66 × 10–1 3.90 × 104 4.67 × 10–27
    (15, 30) → (15, 29) 1.17 × 10–10 1.13 × 10–1 4.53 × 103 1.04 × 10–20
    (15, 30) → (15, 28) 1.57 × 10–10 –1.67 × 10–2 1.10 × 104 5.05 × 10–22
    (15, 30) → (15, 27) 5.12 × 10–10 –2.19 × 10–1 1.17 × 104 1.06 × 10–22
    (35, 10) → (36, 9) 5.68 × 10–10 –5.32 × 10–2 3.17 × 103 1.51 × 10–20
    (35, 10) → (37, 8) 1.30 × 10–9 –2.97 × 10–1 6.01 × 103 4.83 × 10–22
    (35, 10) → (38, 7) 4.10 × 10–10 –3.94 × 10–1 6.35 × 103 7.64 × 10–24
    (35, 10) → (35, 9) 2.01 × 10–10 –6.83 × 10–2 1.58 × 104 1.33 × 10–22
    (35, 10) → (35, 8) 1.98 × 10–10 –2.33 × 10–1 1.85 × 104 3.73 × 10–24
    (35, 10) → (35, 7) 1.88 × 10–10 –3.31 × 10–1 2.17 × 104 3.19 × 10–25
    (35, 21) → (36, 20) 1.79 × 10–10 –2.60 × 10–2 1.56 × 104 2.42 × 10–22
    (35, 21) → (37, 19) 2.69 × 10–10 –3.02 × 10–1 2.64 × 104 5.21 × 10–25
    (35, 21) → (38, 18) 3.12 × 10–10 –3.82 × 10–1 3.60 × 104 3.4 × 10–26
    (35, 21) → (35, 20) 1.96 × 10–10 7.64 × 10–2 1.35 × 104 2.82 × 10–21
    (35, 21) → (35, 19) 2.46 × 10–10 –1.03 × 10–1 2.19 × 104 3.80 × 10–23
    (35, 21) → (35, 18) 2.07 × 10–10 –1.88 × 10–1 2.49 × 104 3.33 × 10–24
    (35, 30) → (36, 29) 5.99 × 10–10 –8.87 × 10–2 1.96 × 103 1.15 × 10–20
    (35, 30) → (37, 28) 4.54 × 10–10 –2.35 × 10–1 3.14 × 103 3.48 × 10–22
    (35, 30) → (38, 27) 9.69 × 10–11 –2.38 × 10–1 5.53 × 103 9.00 × 10–24
    (35, 30) → (35, 29) 6.49 × 10–11 1.25 × 10–1 3.21 × 103 5.24 × 10–21
    (35, 30) → (35, 28) 1.25 × 10–10 –9.18 × 10–2 1.26 × 104 6.00 × 10–23
    (35, 30) → (35, 27) 1.61 × 10–10 –2.35 × 10–1 1.59 × 104 3.84 × 10–24
    DownLoad: CSV

    表 A2  总解离截面(单位: Å2)的拟合参数表(a, b, c). 初始平动能Et范围为0.2—10 eV, RMSE是均方根误差(单位: Å2)

    Table A2.  Fitting parameters (a, b, c) of total dissociation cross-section (unit: Å2). The range of initial translational energy Et is 0.2–10 eV, and RMSE is root mean square error (unit: Å2).

    N2(v) O2(w) a b c RMSE
    0 1 1.98 × 101 –1.02 × 102 9.03 × 100 1.82 × 10–4
    0 3 1.13 × 101 –5.82 × 101 5.11 × 100 3.54 × 10–4
    0 5 8.29 × 100 –4.30 × 101 3.87 × 100 2.95 × 10–3
    0 7 6.43 × 100 –3.35 × 101 3.14 × 100 8.48 × 10–3
    0 10 –2.46 × 102 3.52 × 101 –9.70 × 10–1 5.70 × 10–3
    0 15 –9.18 × 101 1.06 × 101 2.57 × 10–1 8.02 × 10–3
    0 21 –2.04 × 101 2.24 × 10–1 8.60 × 10–1 3.37 × 10–2
    0 25 –5.67 × 100 –1.11 × 100 1.01 × 100 6.37 × 10–2
    0 30 –6.06 × 10–1 –5.62 × 10–1 1.10 × 100 1.30 × 10–1
    1 21 –2.03 × 101 3.57 × 10–1 8.50 × 10–1 2.33 × 10–2
    1 30 –7.54 × 10–1 –4.60 × 10–1 1.09 × 100 1.58 × 10–1
    3 15 –7.75 × 101 8.74 × 100 3.16 × 10–1 1.44 × 10–2
    3 21 –2.10 × 101 1.02 × 100 7.94 × 10–1 4.72 × 10–2
    3 30 –8.40 × 10–1 –3.81 × 10–1 1.09 × 100 1.73 × 10–1
    5 30 –8.07 × 10–1 –3.74 × 10–1 1.09 × 100 1.94 × 10–1
    5 0 8.27 × 100 –4.28 × 101 3.65 × 100 6.98 × 10–3
    5 1 8.21 × 100 –4.25 × 101 3.75 × 100 3.78 × 10–3
    5 3 7.21 × 100 –3.75 × 101 3.44 × 100 6.53 × 10–3
    5 7 –3.96 × 102 6.61 × 101 –2.62 × 100 1.60 × 10–3
    5 10 –2.83 × 102 4.83 × 101 –1.81 × 100 5.40 × 10–3
    5 15 –7.95 × 101 9.94 × 100 2.43 × 10–1 2.80 × 10–2
    5 21 –1.95 × 101 8.26 × 10–1 8.08 × 10–1 3.42 × 10–2
    5 25 –6.46 × 100 –4.60 × 10–1 9.66 × 10–1 6.22 × 10–2
    7 15 –6.79 × 101 8.41 × 100 2.93 × 10–1 2.57 × 10–2
    7 21 –1.85 × 101 6.82 × 10–1 8.22 × 10–1 3.75 × 10–2
    7 30 –7.52 × 101 –3.87 × 10–1 1.09 × 100 2.02 × 10–1
    10 15 –6.21 × 101 7.99 × 100 3.14 × 10–1 3.16 × 10–2
    10 21 –1.75 × 101 7.87 × 10–1 8.16 × 10–1 4.21 × 10–2
    10 30 –6.64 × 10–1 –4.20 × 10–1 1.09 × 100 2.00 × 10–1
    15 0 3.92 × 100 –2.04 × 101 2.03 × 100 1.68 × 10–2
    15 3 3.21 × 100 –1.68 × 101 1.83 × 100 4.68 × 10–2
    15 7 –1.97 × 102 3.56 × 101 –1.29 × 100 2.32 × 10–2
    15 10 –1.12 × 102 1.78 × 101 –2.20 × 10–1 3.96 × 10–2
    15 15 –4.74 × 101 5.30 × 100 5.20 × 10–1 3.20 × 10–2
    15 21 –1.20 × 101 –4.00 × 10–1 9.19 × 10–1 5.88 × 10–2
    15 25 –5.0 × 100 –5.65 × 10–1 9.88 × 10–1 3.51 × 10–2
    15 30 –6.92 × 10–1 –3.97 × 10–1 1.09 × 100 1.50 × 10–1
    18 21 –1.16 × 101 –2.55 × 10–1 9.34 × 10–1 5.33 × 10–2
    21 15 –3.44 × 101 4.04 × 100 6.22 × 10–1 4.97 × 10–2
    21 0 –7.70 × 101 5.01 × 100 5.89 × 10–1 1.06 × 10–2
    21 1 –7.61 × 101 5.57 × 100 5.54 × 10–1 7.48 × 10–3
    21 3 –8.50 × 101 9.82 × 100 2.65 × 10–1 1.68 × 10–2
    21 7 –6.54 × 101 7.75 × 100 3.69 × 10–1 2.71 × 10–2
    21 10 –4.66 × 101 4.61 × 100 5.73 × 10–1 1.65 × 10–2
    21 18 –1.81 × 101 8.87 × 10–1 8.42 × 10–1 6.70 × 10–2
    21 21 –1.09 × 101 8.07 × 10–2 9.19 × 10–1 5.56 × 10–2
    21 25 –3.91 × 100 –8.38 × 10–1 1.04 × 100 6.94 × 10–2
    21 27 –2.07 × 100 –7.80 × 10–1 1.07 × 100 6.97 × 10–2
    21 30 –4.61 × 10–1 –5.58 × 10–1 1.12 × 100 1.79 × 10–1
    27 21 –6.79 × 100 –4.70 × 10–1 1.02 × 100 8.37 × 10–2
    30 15 –9.22 × 100 –3.68 × 10–1 9.65 × 10–1 1.25 × 10–1
    30 21 –4.34 × 100 –9.02 × 10–1 1.08 × 100 1.40 × 10–1
    30 30 1.01 × 10–1 –8.90 × 10–1 1.23 × 100 3.85 × 10–1
    35 21 –2.49 × 100 –8.65 × 10–1 1.13 × 100 1.79 × 10–1
    35 5 –1.15 × 101 5.75 × 10–1 8.62 × 10–1 5.73 × 10–2
    35 10 –8.09 × 100 –4.55 × 10–2 9.44 × 10–1 7.15 × 10–2
    35 30 1.06 × 10–1 –8.47 × 10–1 1.29 × 100 5.14 × 10–1
    DownLoad: CSV
    Baidu
  • [1]

    王庆洋, 丛堃林, 刘丽丽, 陆宏志, 徐胜金 2017 气体物理 2 46Google Scholar

    Wang Q Y, Cong K L, Liu L L, Lu H Z, Xu S J 2017 Phys. Gases 2 46Google Scholar

    [2]

    吕达仁, 陈泽宇, 郭霞, 田文寿 2009 力学进展 39 674Google Scholar

    Lu D R, Chen Z Y, Guo X, Tian W S 2009 Adv. Mech. 39 674Google Scholar

    [3]

    董维中, 丁明松, 高铁锁, 江涛 2013 空气动力学学报 31 692

    Dong W Z, DIing M S, Gao T S, Jiang T 2013 Acta Aerodyn. Sin. 31 692

    [4]

    国义军, 曾磊, 张昊元, 代光月, 王安龄, 邱波, 周述光, 刘骁 2017 空气动力学学报 35 496Google Scholar

    Guo Y J, Zeng L, Zhang H Y, Dai G Y, Wang A L, Qiu B, Zhou S G, Liu X 2017 Acta Aerodyn. Sin. 35 496Google Scholar

    [5]

    Cacciatore M 1996 Mol. Phys. Hypersonic Flows 482 21

    [6]

    Pavlov A V 2011 Geomag. Aeron. 51 143Google Scholar

    [7]

    Treanor C E 1965 J. Chem. Phys. 43 532Google Scholar

    [8]

    Nagnibeda E, Papina K, Kunova O 2018 AIP Conf. Proc. 1 060012Google Scholar

    [9]

    Laux C O, Pierrot L, Gessman R J 2012 Chem. Phys. 398 46Google Scholar

    [10]

    Zhao X, Xu X, Xu H 2024 J. Chem. Phys. 161 231101Google Scholar

    [11]

    Hong Q, Bartolomei M, Pirani F, Sun Q, Coletti C 2025 J. Chem. Phys. 162 114308Google Scholar

    [12]

    Feng D, Song Y, Wang Z, Yang L, Zhang Z, Yang Y 2025 J. Chem. Phys. 162 114107Google Scholar

    [13]

    He D, Liu T, Li R, Hong Q, Li F, Sun Q, Si T, Luo X 2024 J. Chem. Phys. 161 244302Google Scholar

    [14]

    Andrienko D, Boyd I D 2017 55th AIAA Aerospace Sciences Meeting Grapevine Texas, January 9-13, 2017 p2017-0659

    [15]

    Kurnosov A K, Napartovich A P, Shnyrev S L, Cacciatore M 2010 Plasma Sources Sci. Technol. 19 045015Google Scholar

    [16]

    Esposito F, Garcia E, Laganà A 2017 Plasma Sources Sci. Technol. 26 045005Google Scholar

    [17]

    Lino Da Silva M, Loureiro J, Guerra V 2012 Chem. Phys. Lett. 531 28Google Scholar

    [18]

    Varga Z, Meana-Pañeda R, Song G, Paukku Y, Truhlar D G 2016 J. Chem. Phys. 144 024310Google Scholar

    [19]

    Garcia E, Verdasco J E, Laganà A 2020 J. Phys. Chem. A 124 6445Google Scholar

    [20]

    Andrienko D A, Boyd I D 2018 J. Chem. Phys. 148 084309Google Scholar

    [21]

    Garcia E, Pirani F, Laganà A, Martí C 2017 Phys. Chem. Chem. Phys. 19 11206Google Scholar

    [22]

    Garcia E, Laganà A, Pirani F, Bartolomei M, Cacciatore M, Kurnosov A 2016 J. Phys. Chem. A 120 5208Google Scholar

    [23]

    Billing G D, Jolicard G 1982 Chem. Phys. 65 323Google Scholar

    [24]

    Billing G D 1994 Chem. Phys. 179 463Google Scholar

    [25]

    Garcia E, Kurnosov A, Laganà A, Pirani F, Bartolomei M, Cacciatore M 2016 J. Phys. Chem. B 120 1476Google Scholar

    [26]

    Koner D, Unke O T, Boe K, Bemish R J, Meuwly M 2019 J. Chem. Phys. 150 211101Google Scholar

    [27]

    Chen J, Li J, Bowman J M, Guo H 2020 J. Chem. Phys. 153 054310Google Scholar

    [28]

    Hong Q, Storchi L, Bartolomei M, Pirani F, Sun Q, Coletti C 2023 Eur. Phys. J. D 77 128Google Scholar

    [29]

    Gu K M, Zhang H, Cheng X L 2023 J. Chem. Phys. 158 244302Google Scholar

    [30]

    Huang X, Gu K M, Guo C M, Cheng X L 2023 Phys. Chem. Chem. Phys. 25 29475Google Scholar

    [31]

    Guo C M, Zhang H, Cheng X L 2024 J. Phys. Chem. A 128 5435Google Scholar

    [32]

    Bernstein R B, Bederson B 1980 Phys. Today 33 79Google Scholar

    [33]

    Fernández-Ramos A, Miller J A, Klippenstein S J, Truhlar D G 2006 Chem. Rev. 106 4518Google Scholar

    [34]

    Hu X, Hase W L, Pirraglia T 1991 J. Comput. Chem. 12 1014Google Scholar

    [35]

    Gutzwiller M C 1990 Chaos in Classical and Quantum Mechanics (Berlin: Springer

    [36]

    Chaudhry R S, Bender J D, Valentini P, Schwartzentruber T E, Candler G V 2016 46th AIAA Thermophysics Conference Washington, June 13–17, 2016 p4319

    [37]

    Mankodi T K, Bhandarkar U V, Myong R S 2020 Phys. Fluids 32 036102Google Scholar

    [38]

    Andrienko D, Boyd I D 2017 47th AIAA Thermophysics Conference Denver, Colorado, June 5–9, 2017 p3163

    [39]

    Andrienko D, Boyd I D 2018 J. Thermophys. Heat Transfer 32 904Google Scholar

    [40]

    Rumelhart D E, Hintont G E, Williams R J 1986 Nature 323 533Google Scholar

    [41]

    Moré J J 1978 Numerical Analysis (Berlin, Heidelberg: Springer-Verlag) p105

    [42]

    Chaudhry R S, Candler G V 2019 AIAA Scitech Forum San Diego, California, January 7–11, 2019 p2019-0789

    [43]

    Mankodi T K, Bhandarkar U V, Puranik B P 2018 J. Chem. Phys. 148 144305Google Scholar

  • [1] TAN Xu, FANG Fan, ZHANG Yu, SUN Dehao, WU Yijiao, YIN Hao, MENG Tianming, TU Bingsheng, WEI Baoren. Dissociation of fluoromethane trication induced by highly charged ion collisions. Acta Physica Sinica, 2025, 74(21): . doi: 10.7498/aps.74.20251099
    [2] Zhou Yong. Quantum dynamics study of C—H stretching vibrational excitation in the F+CHD3 → HF+CD3 reaction. Acta Physica Sinica, 2024, 73(9): 098201. doi: 10.7498/aps.73.20231832
    [3] Yang Ying, Cao Huai-Xin. Two types of neural network representations of quantum mixed states. Acta Physica Sinica, 2023, 72(11): 110301. doi: 10.7498/aps.72.20221905
    [4] Wei Qiang. Exploring the stereodynamics of C(3P)+NO(X2)CO(X1+)+N(4S) reaction on 4A potential energy surface. Acta Physica Sinica, 2015, 64(17): 173401. doi: 10.7498/aps.64.173401
    [5] Hu Mei, Liu Xin-Guo, Tan Rui-Shan. Influence of collision energy and reagent vibrational excitation on the stereodynamics of reaction Ar+H2+→ArH++H. Acta Physica Sinica, 2014, 63(2): 023402. doi: 10.7498/aps.63.023402
    [6] Qu Ding-Rong, Fan Feng-Ying, Song Zeng-Yun. Quenching rate of laser-excited lithium atoms with argon molecules in photochemical reaction. Acta Physica Sinica, 2014, 63(3): 032801. doi: 10.7498/aps.63.032801
    [7] Wang Xiao-Lian, Feng Hao, Sun Wei-Guo, Fan Qun-Chao, Wang Bin, Zeng Yang-Yang. Momentum transfer cross sections of low-energy electron scattering from H2 molecule with the polarization potential using the distributed spherical Gaussian model. Acta Physica Sinica, 2011, 60(2): 023401. doi: 10.7498/aps.60.023401
    [8] Wang Wei, Jiang Gang. Study on rate coefficient of dielectronic recombination in dense plasma based on doubly excited state. Acta Physica Sinica, 2010, 59(11): 7815-7823. doi: 10.7498/aps.59.7815
    [9] Wang Xiao-Lian, Feng Hao, Sun Wei-Guo, Fan Qun-Chao, Zeng Yang-Yang, Wang Bin. Momentum transfer cross sections of low-energy electron scattering from H2 molecule. Acta Physica Sinica, 2010, 59(2): 937-942. doi: 10.7498/aps.59.937
    [10] Shen Guang-Xian, Wang Rong-Kai, Linghu Rong-Feng, Yang Xiang-Dong. Theoretical study on the partial cross section for the second vibrational excitation in He-H2 collisions. Acta Physica Sinica, 2009, 58(6): 3827-3832. doi: 10.7498/aps.58.3827
    [11] Wang Bin, Feng Hao, Sun Wei-Guo, Zeng Yang-Yang, Dai Wei. Vibrational excitation integrated cross sections of e-H2 scattering. Acta Physica Sinica, 2009, 58(10): 6932-6937. doi: 10.7498/aps.58.6932
    [12] Dai Wei, Feng Hao, Sun Wei-Guo, Tang Yong-Jian, Shen Li, Yu Jiang-Zhou. Studies on vibrational excitation differential cross sections of low-energy electron scattering from N2 molecule by vibrational close-coupling method. Acta Physica Sinica, 2008, 57(1): 143-148. doi: 10.7498/aps.57.143
    [13] Yu Jiang-Zhou, Feng Hao, Sun Wei-Guo. Studies on the momentum transfer cross sections for low-energy electron scattering by nitrogen molecule. Acta Physica Sinica, 2008, 57(7): 4143-4147. doi: 10.7498/aps.57.4143
    [14] Yu A-Long. Research on the amplitude frequency characteristics compensation based on wavelet neural network for vibration velocity transducer. Acta Physica Sinica, 2007, 56(6): 3166-3171. doi: 10.7498/aps.56.3166
    [15] Zheng Dun-Sheng, Guo Xi-Kun. Dissociation of the HCN molecule in the highly excited vibrational states. Acta Physica Sinica, 2004, 53(10): 3347-3352. doi: 10.7498/aps.53.3347
    [16] Tan Wen, Wang Yao-Nan, Zhou Shao-Wu, Liu Zu-Run. Prediction of the chaotic time series using neuro-fuzzy networks. Acta Physica Sinica, 2003, 52(4): 795-801. doi: 10.7498/aps.52.795
    [17] WANG HONG-XIA, YU JUE-BANG. ANALYSIS OF STABILITY FOR EQUILIBRIUM OFCELLULAR NEURAL NETWORKS. Acta Physica Sinica, 2001, 50(12): 2303-2306. doi: 10.7498/aps.50.2303
    [18] FANG QUAN-YU, CAI WEI, ZOU YU, LI PING. A GENERALIZED BETHE ANALYTIC FORMULA: DIPOLE-EXCITED COLLISION STRENGTHS AND CORRESPONDING RATE COEFFICIENTS IN Au50+. Acta Physica Sinica, 1998, 47(10): 1612-1620. doi: 10.7498/aps.47.1612
    [19] FANG QUAN-YU, CAI WEI, SHEN ZHI-JUN, ZOU YU, LI PING, XU YUAN-GUANG. COLLISION STRENGTHS AND RATE COEFFICIENTS OF Li-LIKE IONS BY ELECTRON IMPACT. Acta Physica Sinica, 1996, 45(10): 1641-1646. doi: 10.7498/aps.45.1641
    [20] NI GUANG-JIONG. THE PAIRING VIBRATION MODEL OF MESON STATES. Acta Physica Sinica, 1976, 25(4): 336-339. doi: 10.7498/aps.25.336
Metrics
  • Abstract views:  731
  • PDF Downloads:  38
  • Cited By: 0
Publishing process
  • Received Date:  23 April 2025
  • Accepted Date:  23 May 2025
  • Available Online:  06 June 2025
  • Published Online:  05 August 2025
  • /

    返回文章
    返回
    Baidu
    map