Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Electroosmotic slip reduction mechanism of solutions in domain-limited channels

WU Jicheng LU Yan

Citation:

Electroosmotic slip reduction mechanism of solutions in domain-limited channels

WU Jicheng, LU Yan
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Electroosmosis drives a large slip velocity at the interface by altering the electrokinetic double layer effect at the fluid-solid interface, thereby generating high shear rates within the channel. In this paper, molecular dynamics simulations are used to construct an electroosmotic flow nanochannel model, and the fluid flow characteristics and wall slip reduction properties within graphene charged-wall nanochannels are investigated. The results show that the electroosmotic flow changes the structure of the bilayer to increase the mobility of its diffusion layer, and at the same time, the ions in the diffusion layer under the action of the applied electric field undergo directional migration and drive the overall fluid flow through the viscous effect, which enhances the mobility performance. After the introduction of ions, Na+ is adsorbed at the wall surface, which weakens the adsorption force between the fluid and the wall surface and enhances the driving force of the fluid in the confined domain space, thus increasing the slip length and flow rate. Finally, by modulating the charge size on the upper and lower wall surfaces, asymmetric channel wall charges are formed. The electric field gradient superimposed on the applied electric field further enhances the driving force of ions, changes the distribution of the of Na+ adsorption layer and the migration behavior of Cl, thereby increasing the transport of the solution in the channel. Therefore, in this paper, a method is proposed to realize the ultrafast transport of solution in the channel by modulating the asymmetric wall charge of graphene, successfully achieving the slip reduction effect of the electroosmotic flow of solution in the graphene channel. A theoretical basis is laid for the fast and energy-saving transportation of microfluidics in the nano-limited space.
  • 图 1  纳米通道流动模型示意图 (a) 石墨烯纳米通道内水流动模型; (b) 石墨烯纳米通道内离子溶液的流动模型(上下灰色层为三层石墨烯壁面, 中间蓝色区域为水溶液)

    Figure 1.  Schematic diagram of the nanochannel flow model: (a) The water flow model inside the graphene nano-channel; (b) the flow model of the ionic solution inside the graphene nano-channel. The upper and lower gray layers are the three-layer graphene wall, and the middle blue region is the water solution.

    图 2  石墨烯纳米通道内壁面电荷为0.10 e下不同外加电场强度通道内水分子密度分布图

    Figure 2.  Density distribution of water molecules in the channel for different applied electric field strengths at a wall charge of 0.10 e inside the graphene nano-channel.

    图 3  不同电压下密度曲线中上壁面(a)和下壁面(b)峰值处的局部放大图

    Figure 3.  Localized magnification of the density profiles at the peaks of the upper (a) and lower (b) walls at different voltages.

    图 4  不同电场强度下石墨烯通道内水的流动特性分析 (a) 不同电场强度下通道内水分子归一化速度分布曲线; (b) 不同电场强度下通道内水溶液流动过程中受到的黏性阻力、范德瓦耳斯力和静电力的柱状分布; (c) 水流动过程中滑移长度的变化曲线与驱动力的柱状分布

    Figure 4.  Characterization of water flow in graphene channel under different electric field strengths: (a) Normalized velocity distribution curves of water molecules in the channel under different electric field strengths; (b) Columnar distributions of viscous resistance, van der Waals force and electrostatic force during the flow of aqueous solution in the channel under different electric field strengths; (c) variation curves of the slip length in the flow of water with the columnar distributions of the driving force.

    图 5  电场强度为0.10 V/nm、壁面电荷为0.05 e条件下通道内水和离子溶液速度平均值归一化分布曲线

    Figure 5.  Normalized distribution curves of the mean water and ion solution velocities in the channel at an electric field strength of 0.10 V/nm and a wall charge of 0.05 e.

    图 6  石墨烯通道内离子溶液流动过程中的水分子的密度以及离子排布 (a) 不同壁面电荷下离子溶液的密度分布; (b) 水分子在下壁面7.5 Å处密度分布峰值的局部放大图; (c) 壁面加电荷后离子溶液在流动过程中通道内离子的排布; (d) 壁面电荷为0.08 e下石墨烯通道内Na+与Cl的电荷密度曲线. (其中不同颜色的曲线代表不同电荷下的密度曲线)

    Figure 6.  Density of water molecules during the flow of ionic solution in the graphene channel and ionic arrangement: (a) Density distribution of ionic solution at different wall charges of graphene; (b) local magnification of the peak density distribution of water molecules at 7.5 Å on the lower wall; (c) ionic arrangement of ions in the channel during the flow of ionic solution after the wall charge; (d) charge density profile of Na+ in the graphene channel at a wall charge of 0.08 e and Cl charge density curves (curves of different colors represent density profiles at different charges).

    图 7  石墨烯通道内不同壁面电荷下离子溶液流动过程中的速度、滑移以及受到的力的分析 (a) 不同石墨烯壁面电荷下离子溶液的归一化速度分布(其中不同颜色的电线代表不同电荷下离子溶液流动的速度曲线); (b) 不同壁面电荷下离子溶液流动过程中受到的范德瓦耳斯力、黏性阻力和静电力的柱状分布; (c) 不同壁面电荷下石墨烯通道内溶液的滑移量的变化曲线与溶液受到的驱动力柱状分布

    Figure 7.  Analysis of the velocity, slip, and the force applied during the flow of ionic solutions under different wall charges in the graphene channel: (a) Normalized velocity distribution of ionic solutions under different graphene wall charges (different colored wires represent the velocity profiles of ionic solutions flowing under different charges); (b) Columnar distributions of van der Waals force, viscous resistance, and electrostatic force applied to the flow of ionic solutions under different wall charges distributions; (c) the variation curves of the slip of the solution in the graphene channel under different wall charges with the Columnar distribution of the driving force on the solution.

    图 8  不同壁面电荷差值下溶液中Na+和Cl的电荷密度分布曲线 (a), (b), (c)分别是壁面电荷差值为0.01 e, 0.05 e和0.09 e下溶液中的离子密度分布曲线(其中蓝色点线为Na+的密度曲线, 红色点线为Cl的密度曲线); (d) 不同壁面电荷差值下石墨烯上壁面吸附Na+的数量变化曲线

    Figure 8.  Charge density distribution curves of Na+ and Cl in solution for different values of wall charge difference: (a), (b), (c) Ion density distribution curves in solution at wall charge difference values of 0.01 e, 0.05 e, and 0.09 e, respectively (the blue dotted line is the density curve of Na+ and the red dotted line is the density curve of Cl); (d) variation curves of the amount of adsorbed Na+ on the graphene on the walls at different values of wall charge difference.

    图 9  石墨烯通道内不同壁面电荷差值下离子溶液流动过程中的速度对比 (a) 石墨烯通道不同壁面电荷差值下离子溶液在纳米通道内的归一化速度变化曲线; (b) X方向0.10 V/nm的电场作用下, 壁面电荷差值为0.05 e、壁面电荷0.05 e、壁面电荷0.09 e的速度分布曲线对比

    Figure 9.  Comparison of velocities during the flow of ionic solutions in graphene channels with different wall charge differences: (a) Normalized velocity change curves of ionic solutions in nano-channels with different wall charge differences in graphene channels; (b) comparison of velocity distribution curves with 0.05 e, 0.05 e, and 0.09 e under the action of the electric field of 0.10 V/nm in the X direction.

    图 10  石墨烯通道内不同壁面电荷差值下离子溶液流动过程中的受力以及滑移分析 (a) 不同壁面电荷差值下溶液流动过程中受到的范德瓦耳斯力、黏性阻力和静电力的柱状分布; (b) 不同壁面电荷差值下溶液的滑移曲线和溶液受到驱动力的柱状分布

    Figure 10.  Force as well as slip analysis during the flow of ionic solutions in graphene channels with different wall charge differences: (a) Columnar distributions of van der Waals force, viscous drag force and electrostatic force applied to the flow of solutions with different wall charge differences; (b) slip profiles of solutions with different wall charge differences and columnar distributions of driving force applied to the solutions.

    表 1  原子对之间的相互作用参数

    Table 1.  Interaction parameters between atom pairs.

    原子类型(i) 原子类型(j) σ ε/meV 电荷q/e
    O (H2O) O (H2O) 3.154 6.72 –1.04
    H (H2O) H (H2O) 0.00 0.00 0.52
    Na+ (NaCl) Na+ (NaCl) 2.575 0.648 1.00
    Cl (NaCl) Cl (NaCl) 4.448 4.607 –1.00
    C (石墨烯) C (石墨烯) 3.40 3.73 –0.01 — –0.10
    DownLoad: CSV
    Baidu
  • [1]

    Schutzius T M, Jung S, Maitra T, Graeber G, Poulikakos D 2015 Nature 527 82Google Scholar

    [2]

    Liu Q, Xu B 2015 Langmuir 31 9070Google Scholar

    [3]

    Zhang Z, Wang Y, Ding M, Mao D, Chen M, Han Y, Xue X 2023 J. Mol. Liq. 380 121698Google Scholar

    [4]

    Song Y Y, Liu Y, Jiang H B, Li S Y, Kaya C, Stegmaier T, Han Z W, Ren L Q 2017 Sci. Rep. 7 12056Google Scholar

    [5]

    Fabio P, Wenjie S 2018 Nat. Nanotechnol. 13 633Google Scholar

    [6]

    Zhang Y S, Qi Z Y, Ding M M, Li M L, Shi T F 2024 Chin. J. Polym. Sci. 42 2048Google Scholar

    [7]

    Liu B, Wu R, Baimova J A, Wu H, Law A W K, Dmitriev S V, Zhou K 2016 Phys. Chem. Chem. Phys. 18 1886Google Scholar

    [8]

    Giovambattista N, Debenedetti P G, Rossky P J 2007 J. Phys. Chem. B. 111 9581Google Scholar

    [9]

    梅涛, 陈占秀, 杨历, 王坤, 苗瑞灿 2019 68 094701Google Scholar

    Mei T, Chen Z X, Yang L, Wang K, Miao R C 2019 Acta Phys. Sin. 68 094701Google Scholar

    [10]

    Basu M, Joshi V P, Das S, DasGupta S 2021 J. Electrostat. 109 103541Google Scholar

    [11]

    杨慧慧, 高峰, 戴明金, 胡平安 2017 66 216804Google Scholar

    Yang H H, Gao F, Dai M J, Hu P A 2017 Acta Phys. Sin. 66 216804Google Scholar

    [12]

    Celebi A T, Barisik M, Beskok A 2017 J. Chem. Phys. 147 164311Google Scholar

    [13]

    Celebi A T, Barisik M, Beskok A 2018 Microfluid Nanofluid. 22 7Google Scholar

    [14]

    Ghorbanian J, Beskok A 2016 Microfluid. Nanofluid. 20 121Google Scholar

    [15]

    Ghorbanian J, Celebi A T, Beskok A 2016 J. Chem. Phys. 145 184109Google Scholar

    [16]

    张程宾, 许兆林, 陈永平 2014 63 214706Google Scholar

    Zhang C B, Xu Z L, Chen Y P 2014 Acta Phys. Sin. 63 214706Google Scholar

    [17]

    Horn H W, Swope W C, Pitera J W, Madura J D, Dick T J, Hura G L, Head-Gordon T 2004 J. Chem. Phys. 120 9665Google Scholar

    [18]

    Stuart S J, Tutein A B, Harrison J A 2000 J. Chem. Phys. 112 6472Google Scholar

    [19]

    Patra M, Karttunen M 2004 J. Comput. Chem. 25 678Google Scholar

    [20]

    Bongrand P 2018 Physical Basis of Cell-Cell Adhesion. 37 283

    [21]

    Hoover W G 1985 Phys. Rev. A. 31 1695Google Scholar

    [22]

    Binder K, Horbach J, Kob W, Paul W, Varnik F 2004 J. Phys. Condens. Matter. 16 S429Google Scholar

    [23]

    Liu B, Wu R, Baimova J A, Wu H, Law A W K, Dmitriev S V, Zhou K 2016 Phys. Chem. Chem. Phys. 18 1886Google Scholar

    [24]

    Hummer G, Rasaiah J C, Noworyta J P 2001 Nature 414 188Google Scholar

    [25]

    Yeh L H, Xue S, Joo S W, Qian S, Hsu J P 2012 J. Phys. Chem. C. 116 4209Google Scholar

    [26]

    Snapp P, Kim J M, Cho C, Leem J, Haque M F, Nam S 2020 NPG Asia Mater 12 22Google Scholar

    [27]

    Telles I M, Bombardelli R K, dos Santos A P, Levin Y 2021 J. Mol. Liq. 336 116263Google Scholar

    [28]

    Huang S, Rahmani A M, Singletary T, Colosqui C E 2020 Colliods Surf. , A 603 125100Google Scholar

  • [1] Zhang Zhen, Yi Shi-He, Liu Xiao-Lin, Chen Shi-Kang, Zhang Zhen. Flow evolution of mixed layer on convex curvature wall under hypersonic conditions. Acta Physica Sinica, doi: 10.7498/aps.73.20240128
    [2] Yu Xin-Ru, Cui Ji-Feng, Chen Xiao-Gang, Mu Jiang-Yong, Qiao Yu-Ran. Time period electroosmotic flow of a class of incompressible micropolar fluid in parallel plate microchannels under high Zeta potential. Acta Physica Sinica, doi: 10.7498/aps.73.20240591
    [3] Mu Jiang-Yong, Cui Ji-Feng, Chen Xiao-Gang, Zhao Yi-Kang, Tian Yi-Lin, Yu Xin-Ru, Yuan Man-Yu. Electroosmotic flow and heat transfer characteristics of a class of biofluids in microchannels at high Zeta potential. Acta Physica Sinica, doi: 10.7498/aps.73.20231685
    [4] Chen Jiang-Li, Chen Shao-Qiang, Ren Feng, Hu Hai-Bao. Artificially intelligent control of drag reduction around a circular cylinder based on wall pressure feedback. Acta Physica Sinica, doi: 10.7498/aps.71.20212171
    [5] Zhong Ting-Ting, Wu Meng-Hao. Research progress of two-dimensional interlayer-sliding ferroelectricity. Acta Physica Sinica, doi: 10.7498/aps.69.20201432
    [6] Liang Ding-Kang,  Chen Yi-Hao,  Xu Wei,  Ji Xin-Cun,  Tong Yi,  Wu Guo-Dong. Ultralow-voltage albumen-gated electric-double-layer thin film transistors. Acta Physica Sinica, doi: 10.7498/aps.67.20181539
    [7] Duan Juan, Chen Yao-Qin, Zhu Qing-Yong. Electroosmotically-driven flow of power-law fluid in a micro-diffuser. Acta Physica Sinica, doi: 10.7498/aps.65.034702
    [8] Lu Chang-Gen, Shen Lu-Yu. Numerical study on boundary-layer receptivity with localized wall blowing/suction. Acta Physica Sinica, doi: 10.7498/aps.64.224702
    [9] Jiang Yu-Ting, Qi Hai-Tao. Electro-osmotic slip flow of Eyring fluid in a slit microchannel. Acta Physica Sinica, doi: 10.7498/aps.64.174702
    [10] Guan Xin-Lei, Wang Wei, Jiang Nan. Influnce of polymer additives on the transport process in drag reducing turbulent flow. Acta Physica Sinica, doi: 10.7498/aps.64.094703
    [11] Guo Wen-Hao, Xiao Hui, Men Chuan-Ling. Effects of protons within SiO2 solid-state electrolyte on performances of oxide electric-double-layer thin film transistor. Acta Physica Sinica, doi: 10.7498/aps.64.077302
    [12] Huang Qiao-Gao, Pan Guang, Song Bao-Wei. Lattice Boltzmann simulation of slip flow and drag reduction characteristics of hydrophobic surfaces. Acta Physica Sinica, doi: 10.7498/aps.63.054701
    [13] Qing Shao-Wei, E Peng, Duan Ping. Effect of wall secondary electron emission on the characteristics of double sheath near the dielectric wall in Hall thruster. Acta Physica Sinica, doi: 10.7498/aps.62.055202
    [14] Hou Li-Kai, Ren Yu-Kun, Jiang Hong-Yuan. Electrorotation characteristics of gold-coated SU-8 microrods at low frequency. Acta Physica Sinica, doi: 10.7498/aps.62.200702
    [15] Liu Quan-Sheng, Yang Lian-Gui, Su Jie. Transient electroosmotic flow of general Jeffrey fluid between two micro-parallel plates. Acta Physica Sinica, doi: 10.7498/aps.62.144702
    [16] Chang Long, Jian Yong-Jun. Time periodic electroosmotic flow of the generalized Maxwell fluids between two micro-parallel plates with high Zeta potential. Acta Physica Sinica, doi: 10.7498/aps.61.124702
    [17] Jiang Hong-Yuan, Li Shan-Shan, Hou Zhen-Xiu, Ren Yu-Kun, Sun Yong-Jun. Effect of asymmetrical micro electrode surface topography on alternating current electroosmosis flow rate. Acta Physica Sinica, doi: 10.7498/aps.60.020702
    [18] Jiang Hong-Yuan, Ren Yu-Kun, Tao Ye. Electrorotation manipulation of microparticles induced by torque and electroosmotic slip in microsystem. Acta Physica Sinica, doi: 10.7498/aps.60.010701
    [19] Mei Dong-Jie, Fan Bao-Chun, Huang Le-Ping, Dong Gang. Drag reduction in turbulent channel flow by spanwise oscillating Lorentz force. Acta Physica Sinica, doi: 10.7498/aps.59.6786
    [20] Yang Tao, He Dong-Hui, Zhang Qing-Lan, Ma Hong-Ru. Effective interaction between charged plane and charged colloidal particle in electrolyte. Acta Physica Sinica, doi: 10.7498/aps.54.5937
Metrics
  • Abstract views:  330
  • PDF Downloads:  8
  • Cited By: 0
Publishing process
  • Received Date:  04 April 2025
  • Accepted Date:  14 June 2025
  • Available Online:  24 July 2025
  • /

    返回文章
    返回
    Baidu
    map