Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Multi-party quantum secret sharing protocol based on orthogonal product states

CHEN Yun LI Xuanbing LI Shuai

Citation:

Multi-party quantum secret sharing protocol based on orthogonal product states

CHEN Yun, LI Xuanbing, LI Shuai
cstr: 32037.14.aps.74.20250394
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Quantum secret sharing (QSS) is a cryptographic protocol that utilizes fundamental principles of quantum mechanics to securely distribute and reconstruct secret information among multiple participants. Most existing protocols rely on entangled states (such as Bell and GHZ states), but in practical applications. The preparation of entangled state is constrained by a short quantum coherence time, low state fidelity, etc., which makes it difficult to implement entangled resource-dependent QSS protocols. In this work, a novel practical and verifiable multi-party QSS protocol is proposed based on orthogonal product states, which are easier to prepare than entangled states. During the protocol preparation stage, the secret distributor first converts pre-shared classical secret information into the corresponding orthogonal product states according to the encoding rules, and pre-shares a communication key with participants via quantum key distribution (QKD), which is used to hide the initial quantum sequence information through subsequent particle transformation operations. After preparing the orthogonal product states, the distributor reorganizes the particles by position, extracting particles at the same position from each state to form new sequences, shuffling their order, then applying Hadamard operations using a pre-shared key, inserting decoy particles, and sending the sequences to the participants. After receiving it, participants conduct eavesdropping detection, use the same key for the inverse transformations, retain one particle from each sequence, and sequentially pass the remaining particles until the last participant receives a complete set, triggering state verification with the arbiter distributor. If the verification is successful, the particles will be returned to the first participant and the return stage will follow the same procedure. Only after both the transmission and return stage verifications have passed, will the distributor reveal the initial particle positions, allowing participants to collaboratively reconstruct the secret. In the protocol, the secret distributor acts as an arbitrator to verify the particle state information together with participants at designated points (the end of the transmission stage and the end of the return stage) in order to determine whether the particle-state information is error-free during transmission. If the verification fails at either stage, the protocol will be terminated immediately. Meanwhile, considering that the number of participants may change during the execution of the protocol, a dynamic scheme for personnel changes is designed to ensure the flexibility of the protocol. Through the analysis of possible internal and external attacks, It can be proven that our protocol can effectively resist the existing common attack. Using Qiskit simulation experiments, the core quantum procedures of the protocol can be successfully modeled. The experimental results provide strong computational validation of the theoretical feasibility of the protocol.
      Corresponding author: LI Shuai, lis@nxu.edu.cn
    [1]

    Hellman M, Diffie W 1976 IEEE Trans. Inf. Theory 22 644Google Scholar

    [2]

    Fujisaki E, Okamoto T 1999 Annual international cryptology conference Santa Barbara, California, USA, August 15–19, 1999 p537

    [3]

    Bellare M, Desai A, Jokipii E, Rogaway P 1997 Proceedings 38 th Annual Symposium on Foundations of Computer Science Miami Beach, FL, USA, October 20–22, 1997 p394

    [4]

    Feistel H 1973 Sci. Amer. 228 15

    [5]

    Shor P W 1999 SIAM Rev. 41 303Google Scholar

    [6]

    Grover L K 1996 Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing Philadelphia, Pennsylvania, May 22–24, 1996 p212

    [7]

    Bennett C H, Brassard G 1984 Proc. Workshop on the Theory and Application of Cryptographic Techniques Santa Barbara, California, USA, August 19–22, 1984 p475

    [8]

    冯发勇, 张强 2007 4 1924Google Scholar

    Feng F Y, Zhang Q 2007 Acta Phys. Sin. 4 1924Google Scholar

    [9]

    Zhao Z, Chen Y A, Zhang A N, Yang T, Briegel H J, Pan J W 2004 Nature 430 54Google Scholar

    [10]

    Wang T Y, Wen Q Y 2011 Chin. Phys. B 20 040307Google Scholar

    [11]

    Jiang S X, Zhao B, Liang X Z 2021 Chin. Phys. B 30 060303Google Scholar

    [12]

    Deng F G, Long G L, Liu X S 2003 Phys. Rev. A 68 042317Google Scholar

    [13]

    赵宁, 江英华, 周贤韬 2022 71 150304Google Scholar

    Zhao N, Jiang Y H, Zhou X T 2022 Acta Phys. Sin. 71 150304Google Scholar

    [14]

    Deng F G, Zhou H Y, Long G L 2006 J. Phys. A: Math. Gen. 39 14089Google Scholar

    [15]

    孙莹, 杜建忠, 秦素娟, 温巧燕, 朱甫臣 2008 08 4689Google Scholar

    Sun Y, Du J Z, Qin S J, Wen Q Y, Zhu F C 2008 Acta Phys. Sin. 08 4689Google Scholar

    [16]

    Dai Y W, Qin H Y 2015 Chin. Phys. Lett. 32 100301Google Scholar

    [17]

    Hillery M, Bužek V, Berthiaume A 1999 Phys. Rev. A 59 1829Google Scholar

    [18]

    Karlsson A, Koashi M, Imoto N 1999 Phys. Rev. A 59 162Google Scholar

    [19]

    Xiao L, Lu Long G, Deng F G, Pan J W 2004 Phys. Rev. A 69 052307Google Scholar

    [20]

    Yang Y, Wen Q, Zhu F 2007 Sci. China Ser. G-Phys. Mech. Astron. 50 331Google Scholar

    [21]

    Wang T Y, Wen Q Y, Chen X B, Guo F Z, Zhu F C 2008 Opt. Commun. 281 6130Google Scholar

    [22]

    Wang C, Zhang Y 2009 Chin. Phys. B 18 3238Google Scholar

    [23]

    Jia H Y, Wen Q Y, Gao F, Qin S J, Guo F Z 2012 Phys. Lett. A 376 1035Google Scholar

    [24]

    Hsu J L, Chong S K, Hwang T, Tsai C W 2013 Quantum Inf. Process. 12 331Google Scholar

    [25]

    Du Y T, Bao W S 2018 Chin. Phys. B 27 080304Google Scholar

    [26]

    Yang C W, Tsai C W 2020 Quantum Inf. Process. 19 1Google Scholar

    [27]

    Hu W, Zhou R G, Li X, Fan P, Tan C 2021 Quantum Inf. Process. 20 1Google Scholar

    [28]

    Tian Y, Wang J, Bian G, Chang J, Li J 2024 Adv. Quantum Technol. 7 2400116Google Scholar

    [29]

    Lin J, Chen C C, Huang C Y 2024 Physica A 638 129615Google Scholar

    [30]

    Yu S, Oh C H 2015 arXiv: 1502.01274 [quant-ph]

    [31]

    Guo G P, Li C F, Shi B S, Li J, Guo G C 2001 Phys. Rev. A 64 042301Google Scholar

    [32]

    Jiang D H, Wang J, Liang X Q, Xu G B, Qi H F 2020 Int. J. Theor. Phys. 59 436Google Scholar

    [33]

    Jiang D H, Hu Q Z, Liang X Q, Xu G B 2020 Int. J. Theor. Phys. 59 1442Google Scholar

    [34]

    Walgate J, Hardy L 2002 Phys. Rev. Lett. 89 147901Google Scholar

    [35]

    Xu G B, Wen Q Y, Qin S J, Yang Y H, Gao F 2016 Phys. Rev. A 93 032341Google Scholar

    [36]

    Feng Y, Shi Y 2009 IEEE Trans. Inf. Theory 55 2799Google Scholar

    [37]

    Deng F G, Li X H, Zhou H Y, Zhang Z J 2005 Phys. Rev. A 72 044302Google Scholar

    [38]

    Li X H, Deng F G, Zhou H Y 2006 Phys. Rev. A 74 054302Google Scholar

    [39]

    Cabello A 2000 Phys. Rev. Lett. 85 5635Google Scholar

  • 图 1  协议整体流程图. 其中红色标注的量子序列是在传输阶段参与者进行保留的序列, 蓝色标注的量子序列是在传输阶段不同参与者的传输回合中待发送的序列

    Figure 1.  The overall flowchart of the protocol. The quantum sequences marked in red are the sequences that the participants retain during the transmission stage, and the quantum sequences marked in blue are the sequences to be sent in the transmission rounds of different participants during the transmission phase.

    图 2  有接收方退出时的协议流程, 其中红色标注的量子序列是在传输阶段参与者进行保留的序列, 蓝色标注的量子序列是在传输阶段不同参与者的传输回合中待发送的序列

    Figure 2.  The protocol flow when a receiver withdraws, the quantum sequences marked in red are the sequences that the participants retain during the transmission stage, and the quantum sequences marked in blue are the sequences to be sent in the transmission rounds of different participants during the transmission phase.

    图 3  有新的接收方加入时的协议流程, 其中红色标注的量子序列是在传输阶段参与者进行保留的序列, 蓝色标注的量子序列是在传输阶段不同参与者的传输回合中待发送的序列

    Figure 3.  The protocol flow when a new receiver joins, the quantum sequences marked in red are the sequences that the participants retain during the transmission stage, and the quantum sequences marked in blue are the sequences to be sent in the transmission rounds of different participants during the transmission phase.

    图 4  正交乘积态$ |\psi_2\rangle $的制备及仿真结果

    Figure 4.  Preparation and simulation results of orthogonal product state $ |\psi_2\rangle $

    图 5  正交乘积态$ |\psi_4\rangle $的制备及仿真结果

    Figure 5.  Preparation and simulation results of orthogonal product state $ |\psi_4\rangle $.

    图 6  正交乘积态$ |\psi_2\rangle $中的粒子在密钥值为011情况下的变换和恢复的电路图

    Figure 6.  Circuit diagram for the transformation and recovery of particles in the orthogonal product state $ |\psi_2\rangle $under the key value of 011

    图 7  正交乘积态$ |\psi_2\rangle $中的粒子在密钥值为011情况下的变换和恢复的测量结果

    Figure 7.  Measurement results for the transformation and recovery of particles in the orthogonal product state $ |\psi_2\rangle $under the key value of 011.

    图 8  正交乘积态$ |\psi_4\rangle $中的粒子在密钥值为101情况下的变换和恢复的电路图

    Figure 8.  Circuit diagram for the transformation and recovery of particles in the orthogonal product state $ |\psi_4\rangle $under the key value of 101.

    图 9  正交乘积态$ |\psi_4\rangle $中的粒子在密钥值为101情况下的变换和恢复的测量结果

    Figure 9.  Measurement results for the transformation and recovery of particles in the orthogonal product state $ |\psi_4\rangle $ under the key value of 101.

    表 1  文献[25-29]的协议与我们的协议比较

    Table 1.  Compare the protocols in Refs. [25-29] with our protocol.

    协议 [25] [26] [27] [28] [29] 提出的协议
    量子态 广义GHZ态 Bell态 GHZ态 Bell态 Bell态 正交乘积态
    参与者测量 单粒子测量 单粒子测量 单粒子测量 Bell态测量 Bell态/单粒子测量 单粒子测量
    量子比特数(QR) $N(n - 1)$ $2 n-2$ $N(n+1)$ $2 nm$ $2 N(n - 1)$ $Nn$
    量子效率 $ \dfrac{1}{n - 1} $ $ \dfrac{1}{2 n - 2} $ $ \dfrac{1}{n + 1} $ $ \dfrac{1}{2 n} $ $ \dfrac{1}{2 n - 2} $ $\dfrac{\lfloor\log_2 n\rfloor + 1}{n}$
    窃听检测资源 诱饵粒子 诱饵粒子 GHZ 诱饵粒子 诱饵粒子 诱饵粒子
    准备量子位以添加代理 单光子 Bell态 d级GHZ态 Bell态 Bell态 随机量子态序列
    易受合谋攻击 No No No No No No
    是否对粒子执行变换操作 No Yes Yes Yes No Yes
    DownLoad: CSV
    Baidu
  • [1]

    Hellman M, Diffie W 1976 IEEE Trans. Inf. Theory 22 644Google Scholar

    [2]

    Fujisaki E, Okamoto T 1999 Annual international cryptology conference Santa Barbara, California, USA, August 15–19, 1999 p537

    [3]

    Bellare M, Desai A, Jokipii E, Rogaway P 1997 Proceedings 38 th Annual Symposium on Foundations of Computer Science Miami Beach, FL, USA, October 20–22, 1997 p394

    [4]

    Feistel H 1973 Sci. Amer. 228 15

    [5]

    Shor P W 1999 SIAM Rev. 41 303Google Scholar

    [6]

    Grover L K 1996 Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing Philadelphia, Pennsylvania, May 22–24, 1996 p212

    [7]

    Bennett C H, Brassard G 1984 Proc. Workshop on the Theory and Application of Cryptographic Techniques Santa Barbara, California, USA, August 19–22, 1984 p475

    [8]

    冯发勇, 张强 2007 4 1924Google Scholar

    Feng F Y, Zhang Q 2007 Acta Phys. Sin. 4 1924Google Scholar

    [9]

    Zhao Z, Chen Y A, Zhang A N, Yang T, Briegel H J, Pan J W 2004 Nature 430 54Google Scholar

    [10]

    Wang T Y, Wen Q Y 2011 Chin. Phys. B 20 040307Google Scholar

    [11]

    Jiang S X, Zhao B, Liang X Z 2021 Chin. Phys. B 30 060303Google Scholar

    [12]

    Deng F G, Long G L, Liu X S 2003 Phys. Rev. A 68 042317Google Scholar

    [13]

    赵宁, 江英华, 周贤韬 2022 71 150304Google Scholar

    Zhao N, Jiang Y H, Zhou X T 2022 Acta Phys. Sin. 71 150304Google Scholar

    [14]

    Deng F G, Zhou H Y, Long G L 2006 J. Phys. A: Math. Gen. 39 14089Google Scholar

    [15]

    孙莹, 杜建忠, 秦素娟, 温巧燕, 朱甫臣 2008 08 4689Google Scholar

    Sun Y, Du J Z, Qin S J, Wen Q Y, Zhu F C 2008 Acta Phys. Sin. 08 4689Google Scholar

    [16]

    Dai Y W, Qin H Y 2015 Chin. Phys. Lett. 32 100301Google Scholar

    [17]

    Hillery M, Bužek V, Berthiaume A 1999 Phys. Rev. A 59 1829Google Scholar

    [18]

    Karlsson A, Koashi M, Imoto N 1999 Phys. Rev. A 59 162Google Scholar

    [19]

    Xiao L, Lu Long G, Deng F G, Pan J W 2004 Phys. Rev. A 69 052307Google Scholar

    [20]

    Yang Y, Wen Q, Zhu F 2007 Sci. China Ser. G-Phys. Mech. Astron. 50 331Google Scholar

    [21]

    Wang T Y, Wen Q Y, Chen X B, Guo F Z, Zhu F C 2008 Opt. Commun. 281 6130Google Scholar

    [22]

    Wang C, Zhang Y 2009 Chin. Phys. B 18 3238Google Scholar

    [23]

    Jia H Y, Wen Q Y, Gao F, Qin S J, Guo F Z 2012 Phys. Lett. A 376 1035Google Scholar

    [24]

    Hsu J L, Chong S K, Hwang T, Tsai C W 2013 Quantum Inf. Process. 12 331Google Scholar

    [25]

    Du Y T, Bao W S 2018 Chin. Phys. B 27 080304Google Scholar

    [26]

    Yang C W, Tsai C W 2020 Quantum Inf. Process. 19 1Google Scholar

    [27]

    Hu W, Zhou R G, Li X, Fan P, Tan C 2021 Quantum Inf. Process. 20 1Google Scholar

    [28]

    Tian Y, Wang J, Bian G, Chang J, Li J 2024 Adv. Quantum Technol. 7 2400116Google Scholar

    [29]

    Lin J, Chen C C, Huang C Y 2024 Physica A 638 129615Google Scholar

    [30]

    Yu S, Oh C H 2015 arXiv: 1502.01274 [quant-ph]

    [31]

    Guo G P, Li C F, Shi B S, Li J, Guo G C 2001 Phys. Rev. A 64 042301Google Scholar

    [32]

    Jiang D H, Wang J, Liang X Q, Xu G B, Qi H F 2020 Int. J. Theor. Phys. 59 436Google Scholar

    [33]

    Jiang D H, Hu Q Z, Liang X Q, Xu G B 2020 Int. J. Theor. Phys. 59 1442Google Scholar

    [34]

    Walgate J, Hardy L 2002 Phys. Rev. Lett. 89 147901Google Scholar

    [35]

    Xu G B, Wen Q Y, Qin S J, Yang Y H, Gao F 2016 Phys. Rev. A 93 032341Google Scholar

    [36]

    Feng Y, Shi Y 2009 IEEE Trans. Inf. Theory 55 2799Google Scholar

    [37]

    Deng F G, Li X H, Zhou H Y, Zhang Z J 2005 Phys. Rev. A 72 044302Google Scholar

    [38]

    Li X H, Deng F G, Zhou H Y 2006 Phys. Rev. A 74 054302Google Scholar

    [39]

    Cabello A 2000 Phys. Rev. Lett. 85 5635Google Scholar

  • [1] LIAO Qin, FEI Zhuoying, WANG Yijun. Kalman filter based local local oscillator continuous-variable quantum secret sharing. Acta Physica Sinica, 2025, 74(16): 160303. doi: 10.7498/aps.74.20250227
    [2] YIN Hualei, SHEN Jianyu, CHEN Nuo, CHEN Zengbing. Research status and prospects of quantum secret sharing. Acta Physica Sinica, 2025, 74(16): 160301. doi: 10.7498/aps.74.20250586
    [3] Lai Hong, Wan Lin-Chun. Dynamic and scalable secret sharing schemes based on matrix product compressed states. Acta Physica Sinica, 2024, 73(18): 180302. doi: 10.7498/aps.73.20240191
    [4] Wu Xiao-Dong, Huang Duan. Practical continuous variable quantum secret sharing scheme based on non-ideal quantum state preparation. Acta Physica Sinica, 2024, 73(2): 020304. doi: 10.7498/aps.73.20230138
    [5] Guan Fu-Rong, Li Cheng-Qian, Deng Min-Yi. Effects of dynamic change of action potential on evolution behavior of spiral wave. Acta Physica Sinica, 2022, 71(11): 110502. doi: 10.7498/aps.71.20220021
    [6] Zhai Shu-Qin, Kang Xiao-Lan, Liu Kui. Quantum steering based on cascaded four-wave mixing processes. Acta Physica Sinica, 2021, 70(16): 160301. doi: 10.7498/aps.70.20201981
    [7] Wang Xiu-Juan, Li Sheng-Hao. Extracting Luttinger liquid parameter K based on U(1) symmetric infinite matrix product states. Acta Physica Sinica, 2019, 68(16): 160201. doi: 10.7498/aps.68.20190379
    [8] Sun Wei, Yin Hua-Lei, Sun Xiang-Xiang, Chen Teng-Yun. Nonorthogonal decoy-state quantum key distribution based on coherent-state superpositions. Acta Physica Sinica, 2016, 65(8): 080301. doi: 10.7498/aps.65.080301
    [9] Liang Jian-Wu, Cheng Zi, Shi Jin-Jing, Guo Ying. Quantum secret sharing with quantum graph states. Acta Physica Sinica, 2016, 65(16): 160301. doi: 10.7498/aps.65.160301
    [10] Sun Xin-Mei, Zha Xin-Wei, Qi Jian-Xia, Lan Qian. High-efficient quantum state sharing via non-maximally five-qubit cluster state. Acta Physica Sinica, 2013, 62(23): 230302. doi: 10.7498/aps.62.230302
    [11] Wei Ke-Jin, Ma Hai-Qiang, Wang Long. A quantum secret sharing scheme based on two polarization beam splitters. Acta Physica Sinica, 2013, 62(10): 104205. doi: 10.7498/aps.62.104205
    [12] Zhou Yuan-Yuan, Zhou Xue-Jun. Nonorthogonal passive decoy-state quantum key distribution with a weak coherent state source. Acta Physica Sinica, 2011, 60(10): 100301. doi: 10.7498/aps.60.100301
    [13] Xiao Hai-Lin, Ouyang Shan, Xie Wu. Quantum turbo product codes. Acta Physica Sinica, 2011, 60(2): 020301. doi: 10.7498/aps.60.020301
    [14] Hu Hua-Peng, Wang Jin-Dong, Huang Yu-Xian, Liu Song-Hao, Lu Wei. Nonorthogonal decoy-state quantum key distribution based on conditionally prepared down-conversion source. Acta Physica Sinica, 2010, 59(1): 287-292. doi: 10.7498/aps.59.287
    [15] Huang Xi, Zhang Xin-Liang, Dong Jian-Ji, Huang De-Xiu. Theoretical study of ultrafast index dynamics in semiconductor optical amplifiers. Acta Physica Sinica, 2009, 58(5): 3185-3192. doi: 10.7498/aps.58.3185
    [16] Liu Yu-Ling, Man Zhong-Xiao, Xia Yun-Jie. Quantum secret sharing of an arbitrary two-particle entangled state via non-maximally entangled channels. Acta Physica Sinica, 2008, 57(5): 2680-2686. doi: 10.7498/aps.57.2680
    [17] Sun Ying, Du Jian-Zhong, Qin Su-Juan, Wen Qiao-Yan, Zhu Fu-Chen. Quantum secret sharing with bidirectional authentication. Acta Physica Sinica, 2008, 57(8): 4689-4694. doi: 10.7498/aps.57.4689
    [18] Zha Xin-Wei. The expansion of orthogonal complete set and transformation operator in teleportation. Acta Physica Sinica, 2007, 56(4): 1875-1880. doi: 10.7498/aps.56.1875
    [19] Yang Yu-Guang, Wen Qiao-Yan, Zhu Fu-Chen. Single N-dimensional quNit quantum secret sharing. Acta Physica Sinica, 2006, 55(7): 3255-3258. doi: 10.7498/aps.55.3255
    [20] Zeng Gui-Hua, Zhu Hong-Wen. . Acta Physica Sinica, 2002, 51(4): 727-730. doi: 10.7498/aps.51.727
Metrics
  • Abstract views:  684
  • PDF Downloads:  15
  • Cited By: 0
Publishing process
  • Received Date:  27 March 2025
  • Accepted Date:  27 June 2025
  • Available Online:  08 July 2025
  • Published Online:  05 September 2025
  • /

    返回文章
    返回
    Baidu
    map