搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低空飞行器的µ子单粒子效应风险评估研究

邱子健 崔昱东 林苏杰 刘奕含 杨莉莉

引用本文:
Citation:

低空飞行器的µ子单粒子效应风险评估研究

邱子健, 崔昱东, 林苏杰, 刘奕含, 杨莉莉

Risk Assessment of Muon Single-Event Effects for Low-Altitude Aircraft

QIU Zijian, CUI Yudong, LIN Sujie, LIU Yihan, YANG Lili
Article Text (iFLYTEK Translation)
PDF
导出引用
在线预览
  • 随着低空经济的快速发展,无人机、电动垂直起降飞行器(eVTOL)等低空飞行器的辐射环境安全问题日益凸显。传统研究多聚焦于中子、质子等粒子的影响,而对µ子诱发的单粒子效应(SEE)风险,尤其是在极端太阳事件下的影响,尚缺乏系统评估。本研究首次采用本地化大气模型,利用CORSIKA蒙特卡洛程序模拟了不同城市上空的大气簇射过程,并结合其他先进半导体器件的电子学模拟工作,量化评估了我国不同地区低空飞行器在静态宇宙射线背景及地面增强事件(GLE)下的µ子SEE风险。结果表明,在静态情况下,采用先进制程(≤ 45nm)体硅(Bulk)工艺芯片的飞控系统(1 MB内存)在我国所有城市均面临不可忽视的µ子SEE风险;相比之下,采用全耗尽硅绝缘体(FD-SOI)晶体管的系统则能有效规避该风险。而对于内存较大的系统(1GB),无论选用何种工艺,都必须采用冗余等加固措施。针对地面增强事件(GLE),本研究创新性地提出了µ子危害等级概念以评估区域风险差异,结果显示,GLE期间,中低纬度地区的µ子SEE风险加剧可忽略,但高纬度地区风险显著增加。
    Motivation : With the rapid development of the low-altitude economy, increasing attention has been paid to the radiation environment safety of low-altitude aircraft such as drones and electric vertical takeoff and landing (eVTOL) aircraft. Traditional views hold that the dense lower atmosphere is an effective barrier against cosmic radiation, but the shrinking feature sizes of modern integrated circuits (ICs) have significantly increased their susceptibility to single-event effects (SEEs). Most conventional studies have focused on the effects of particles such as neutrons and protons, while systematic evaluations of the risks induced by muons —the most abundant charged particles at sea level—remain scarce, particularly during extreme solar events. Therefore, this study quantitatively evaluates the muon-induced SEE risks of lowaltitude aircraft in different regions of China under both static cosmic ray backgrounds and Ground Level Enhancements (GLEs), aiming to provide critical insights for the operational safety of next-generation low-altitude aviation platforms.
    Methods : This study employs city-specific atmospheric models and simulates atmospheric shower processes over different cities within the CORSIKA framework, yielding reliable energy spectra of lowenergy muons (10–100 MeV) across diverse regions. Drawing on electrical simulation data from other research groups, this study estimates muon-induced SEE cross sections in transistors with different process nodes, covering Bulk, FD-SOI, and FinFET processes. Subsequently, by integrating solar energetic particle (SEP) energy spectra associated with Ground Level Enhancement (GLE) events, we evaluate muoninduced SEE risks for systems of varying sizes under both static conditions (only cosmic-ray injection) and GLE event scenarios.
    Results : Our results indicate that under static conditions, flight control systems (with 1 MB of memory) incorporating advanced process-node (≤ 45nm) Bulk transistors are exposed to non-negligible muon-induced SEE risks across all cities in China. In contrast, systems utilizing FD-SOI transistors can effectively alleviate such risks. For systems with large memory capacities (1 GB), irrespective of the process technology employed, redundancy and other radiation-hardening measures must be adopted. Regarding GLE events, this study innovatively introduces the concept of muon hazard levels to evaluate regional variations in risk. Specifically, during GLEs, the aggravation of muon-induced SEE risks in mid-to-low latitude regions is negligible, whereas high-latitude regions experience a significant rise in such risk.
      Keywords:
    •  / 
    •  / 
    •  / 
    •  
  • [1]

    Ziegler J F 1996 IBM J. Res. Dev. 40 19

    [2]

    Sierawski B D, Reed R A, Mendenhall M H, Weller R A, Schrimpf R D, Wen S J, Wong R, Tam N, Baumann R C 2011 In 2011 International Reliability Physics Symposium. pp 3C.3.1-3C.3.6

    [3]

    Kato T, Tampo M, Takeshita S, Tanaka H, Matsuyama H, Hashimoto M, Miyake Y 2021 IEEE Trans. Nucl. Sci. 68 1436

    [4]

    Hubert G, Artola L, Regis D 2015 Integr. VLSI J. 50 39

    [5]

    Infantino A, Alía R G, Brugger M 2017 IEEE Trans. Nucl. Sci. 64 596

    [6]

    Liao W, Hashimoto M, Manabe S, Watanabe Y, Abe S I, Nakano K, Sato H, Kin T, Hamada K, Tampo M, Miyake Y 2018 IEEE Trans. Nucl. Sci. 65 1734

    [7]

    Deng Y, Watanabe Y, Manabe S, Liao W, Hashimoto M, Abe S I, Tampo M, Miyake Y 2024 IEEE Trans. Nucl. Sci. 71 912

    [8]

    Lei F, Hands A, Clucas S, Dyer C, Truscott P 2006 IEEE Trans. Nucl. Sci. 53 1851

    [9]

    Lei F, Clucas S, Dyer C, Truscott P 2004 IEEE Trans. Nucl. Sci. 51 3442

    [10]

    Sato T 2015 PLOS ONE 10 1

    [11]

    Sanuki T 2002 Phys. Lett. B 541 234

    [12]

    Motoki M, Sanuki T, Orito S, Abe K, Anraku K, Asaoka Y, Fujikawa M, Fuke H, Haino S, Imori M, Izumi K, Maeno T, Makida Y, Matsui N, Matsumoto H, Matsunaga H, Mitchell J, Mitsui T, Moiseev A, Nishimura J, Nozaki M, Ormes J, Saeki T, Sasaki M, Seo E S, Shikaze Y, Sonoda T, Streitmatter R, Suzuki J, Tanaka K, Ueda I, Wang J Z, Yajima N, Yamagami T, Yamamoto A, Yamamoto Y, Yamato K, Yoshida T, Yoshimura K 2003 Astropart. Phys. 19 113

    [13]

    Haino S, Sanuki T, Abe K, Anraku K, Asaoka Y, Fuke H, Imori M, Itasaki A, Maeno T, Makida Y, Matsuda S, Matsui N, Matsumoto H, Mitchell J W, Moiseev A A, Nishimura J, Nozaki M, Orito S, Ormes J F, Sasaki M, Seo E S, Shikaze Y, Streitmatter R E, Suzuki J, Takasugi Y, Tanaka K, Tanizaki K, Yamagami T, Yamamoto A, Yamamoto Y, Yamato K, Yoshida T, Yoshimura K 2004 Phys. Lett. B 594 35

    [14]

    Sato H, Kin T, Giammanco A 2022 JINST 17 P08009

    [15]

    Simpson J A, Fonger W, Treiman S B 1953 Phys. Rev. 90 934

    [16]

    Navia C E, Augusto C R A, Robba M B, Malheiro M, Shigueoka H 2005 Astrophys. J. 621 1137

    [17]

    Timashkov D, Balabin Y, Barbashina N, Kokoulin R, Kompaniets K, Mannocchi G, Petrukhin A, Saavedra O, Shutenko V, Trinchero G, Vashenyuk E, Yashin I 2008 Astropart. Phys. 30 117

    [18]

    Heck D, Knapp J, Capdevielle J N, Schatz G, Thouw T 1998 CORSIKA: a Monte Carlo code to simulate extensive air showers.

    [19]

    Pierog T, Karpenko I, Katzy J M, Yatsenko E, Werner K 2015 Phys. Rev. C 92 034906

    [20]

    Bass S A, et al. 1998 Prog. Part. Nucl. Phys. 41 255

    [21]

    Bleicher M, et al. 1999 J. Phys. G 25 1859

    [22]

    Aab A, et al. 2014 Phys. Rev. D 90 122005

    [23]

    International Geomagnetic Reference Field (IGRF), 14th Generation Calculator :https://geomag.bgs.ac.uk

    [24]

    Aguilar M, Ali Cavasonza L, Ambrosi G, Arruda L, Attig N, Barao F, Barrin L, Bartoloni A, Başeğmez-du Pree S, Bates J, Battiston R, Behlmann M, Beischer B, Berdugo J, Bertucci B, Bindi V, de Boer W, Bollweg K, Borgia B, Boschini M J, Bourquin M, Bueno E F, Burger J, Burger W J, Burmeister S, Cai X D, Capell M, Casaus J, Castellini G, Cervelli F, Chang Y H, Chen G M, Chen H S, Chen Y, Cheng L, Chou H Y, Chouridou S, Choutko V, Chung C H, Clark C, Coignet G, Consolandi C, Contin A, Corti C, Cui Z, Dadzie K, Dai Y M, Delgado C, Della Torre S, Demirköz M B, Derome L, Di Falco S, Di Felice V, Díaz C, Dimiccoli F, von Doetinchem P, Dong F, Donnini F, Duranti M, Egorov A, Eline A, Feng J, Fiandrini E, Fisher P, Formato V, Freeman C, Galaktionov Y, Gámez C, García-López R J, Gargiulo C, Gast H, Gebauer I, Gervasi M, Giovacchini F, Gómez-Coral D M, Gong J, Goy C, Grabski V, Grandi D, Graziani M, Guo K H, Haino S, Han K C, Hashmani R K, He Z H, Heber B, Hsieh T H, Hu J Y, Huang Z C, Hungerford W, Incagli M, Jang W Y, Jia Y, Jinchi H, Kanishev K, Khiali B, Kim G N, Kirn T, Konyushikhin M, Kounina O, Kounine A, Koutsenko V, Kuhlman A, Kulemzin A, La Vacca G, Laudi E, Laurenti G, Lazzizzera I, Lebedev A, Lee H T, Lee S C, Leluc C, Li J Q, Li M, Li Q, Li S, Li T X, Li Z H, Light C, Lin C H, Lippert T, Liu Z, Lu S Q, Lu Y S, Luebelsmeyer K, Luo J Z, Lyu S S, Machate F, Mañá C, Marín J, Marquardt J, Martin T, Martínez G, Masi N, Maurin D, MenchacaRocha A, Meng Q, Mo D C, Molero M, Mott P, Mussolin L, Ni J Q, Nikonov N, Nozzoli F, Oliva A, Orcinha M, Palermo M, Palmonari F, Paniccia M, Pashnin A, Pauluzzi M, Pensotti S, Phan H D, Plyaskin V, Pohl M, Porter S, Qi X M, Qin X, Qu Z Y, Quadrani L, Rancoita P G, Rapin D, Reina Conde A, RosierLees S, Rozhkov A, Rozza D, Sagdeev R, Schael S, Schmidt S M, Schulz von Dratzig A, Schwering G, Seo E S, Shan B S, Shi J Y, Siedenburg T, Solano C, Song J W, Sonnabend R, Sun Q, Sun Z T, Tacconi M, Tang X W, Tang Z C, Tian J, Ting S C C, Ting S M, Tomassetti N, Torsti J, Tüysüz C, Urban T, Usoskin I, Vagelli V, Vainio R, Valente E, Valtonen E, Vázquez Acosta M, Vecchi M, Velasco M, Vialle J P, Wang L Q 2021 Phys. Rep. 894 1

    [25]

    Gaisser T K, Stanev T, Tilav S 2013 Front. Phys. 8 748

    [26]

    AJ T, WF D 2009 In Proceedings of the 31st International Cosmic Ray Conference

    [27]

    Band D, Matteson J, Ford L, Schaefer B, Palmer D, Teegarden B, Cline T, Briggs M, Paciesas W, Pendleton G, Fishman G, Kouveliotou C, Meegan C, Wilson R, Lestrade P 1993 Astrophys. J. 413 281

    [28]

    Raukunen O, Vainio R, Tylka A J, Dietrich W F, Jiggens P, Heynderickx D, Dierckxsens M, Crosby N, Ganse U, Siipola R 2018 JSWSC 8 A04

    [29]

    GeoMagSphere Online calculator (version 1.8) website currently supported within the space radiation environment activities of ASIF (ASI - Italian Space Agency -Supported Irradiation Facilities)

    [30]

    Liao W, Hashimoto M, Manabe S, Watanabe Y, Abe S I, Nakano K, Takeshita H, Tampo M, Takeshita S, Miyake Y 2019 In 2019 IEEE International Reliability Physics Symposium (IRPS). pp 1-5

    [31]

    Gomi Y, Takami K, Mizuno R, Niikura M, Deng Y, Kawase S, Watanabe Y, Abe S I, Liao W, Tampo M, Umegaki I, Takeshita S, Shimomura K, Miyake Y, Hashimoto M 2023 In 2023 23rd European Conference on Radiation and Its Effects on Components and Systems (RADECS). pp 1-4

    [32]

    Hubert G, Duzellier S, Inguimbert C, BoatellaPolo C, Bezerra F, Ecoffet R 2009 IEEE Trans. Nucl. Sci. 56 3032

    [33]

    ISO 26262-9:2018 Road vehicles —Functional safety Part 9: Automotive safety integrity level (ASIL)-oriented and safety-oriented analyses

    [34]

    Hayakawa H, Koldobskiy S, Mishev A, Poluianov S, Gil A, Usoskina I, Usoskin I 2024 Astron. Astrophys. 684 A46

    [35]

    ,09]: www.geomagsphere.org

  • [1] 胡志良, 莫莉华, 周斌, 易天成, 李梦朝, 赵齐, 梁天骄. 中国散裂中子源大气中子辐照谱仪的大气中子 能谱及单粒子效应评估.  , doi: 10.7498/aps.74.20250975
    [2] 黄馨雨, 张晋新, 王信, 吕玲, 郭红霞, 冯娟, 闫允一, 王辉, 戚钧翔. 基于锗硅异质结双极晶体管的低噪声放大器及其反模结构的单粒子瞬态数值仿真研究.  , doi: 10.7498/aps.73.20240307
    [3] 李培, 董志勇, 郭红霞, 张凤祁, 郭亚鑫, 彭治钢, 贺朝会. SiGe BiCMOS低噪声放大器激光单粒子效应研究.  , doi: 10.7498/aps.73.20231451
    [4] 杨卫涛, 胡志良, 何欢, 莫莉华, 赵小红, 宋伍庆, 易天成, 梁天骄, 贺朝会, 李永宏, 王斌, 吴龙胜, 刘欢, 时光. 近存计算架构AI芯片中子单粒子效应.  , doi: 10.7498/aps.73.20240430
    [5] 琚安安, 郭红霞, 张凤祁, 刘晔, 钟向丽, 欧阳晓平, 丁李利, 卢超, 张鸿, 冯亚辉. N阱电阻的单粒子效应仿真.  , doi: 10.7498/aps.72.20220125
    [6] 沈睿祥, 张鸿, 宋宏甲, 侯鹏飞, 李波, 廖敏, 郭红霞, 王金斌, 钟向丽. 全耗尽绝缘体上硅氧化铪基铁电场效应晶体管存储单元单粒子效应计算机模拟研究.  , doi: 10.7498/aps.71.20211655
    [7] 傅婧, 蔡毓龙, 李豫东, 冯婕, 文林, 周东, 郭旗. 质子辐照下正照式和背照式图像传感器的单粒子瞬态效应.  , doi: 10.7498/aps.71.20211838
    [8] 张云峰, 贾焕玉, 王辉. 太阳宇宙线地面增强事件(GLE72)峰值能谱研究.  , doi: 10.7498/aps.70.20201662
    [9] 韩金华, 覃英参, 郭刚, 张艳文. 一种二进制降能器设计方法.  , doi: 10.7498/aps.69.20191514
    [10] 韩金华, 郭刚, 刘建成, 隋丽, 孔福全, 肖舒颜, 覃英参, 张艳文. 100 MeV质子双环双散射体扩束方案设计.  , doi: 10.7498/aps.68.20181787
    [11] 王勋, 张凤祁, 陈伟, 郭晓强, 丁李利, 罗尹虹. 中国散裂中子源在大气中子单粒子效应研究中的应用评估.  , doi: 10.7498/aps.68.20181843
    [12] 李培, 郭红霞, 郭旗, 文林, 崔江维, 王信, 张晋新. 锗硅异质结双极晶体管单粒子效应加固设计与仿真.  , doi: 10.7498/aps.64.118502
    [13] 赵雯, 郭晓强, 陈伟, 邱孟通, 罗尹虹, 王忠明, 郭红霞. 质子与金属布线层核反应对微纳级静态随机存储器单粒子效应的影响分析.  , doi: 10.7498/aps.64.178501
    [14] 张晋新, 贺朝会, 郭红霞, 唐杜, 熊涔, 李培, 王信. 不同偏置影响锗硅异质结双极晶体管单粒子效应的三维数值仿真研究.  , doi: 10.7498/aps.63.248503
    [15] 肖尧, 郭红霞, 张凤祁, 赵雯, 王燕萍, 丁李利, 范雪, 罗尹虹, 张科营. 累积剂量影响静态随机存储器单粒子效应敏感性研究.  , doi: 10.7498/aps.63.018501
    [16] 张晋新, 郭红霞, 郭旗, 文林, 崔江维, 席善斌, 王信, 邓伟. 重离子导致的锗硅异质结双极晶体管单粒子效应电荷收集三维数值模拟.  , doi: 10.7498/aps.62.048501
    [17] 刘必慰, 陈建军, 陈书明, 池雅庆. 带有n+深阱的三阱CMOS工艺中寄生NPN双极效应及其对电荷共享的影响.  , doi: 10.7498/aps.61.096102
    [18] 刘凡宇, 刘衡竹, 刘必慰, 梁斌, 陈建军. 90 nm CMOS工艺下p+深阱掺杂浓度对电荷共享的影响.  , doi: 10.7498/aps.60.046106
    [19] 蔡明辉, 韩建伟, 李小银, 李宏伟, 张振力. 临近空间大气中子环境的仿真研究.  , doi: 10.7498/aps.58.6659
    [20] 贺朝会, 耿斌, 杨海亮, 陈晓华, 王燕萍, 李国政. 浮栅ROM器件的辐射效应实验研究.  , doi: 10.7498/aps.52.180
计量
  • 文章访问数:  35
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2025-12-06

/

返回文章
返回
Baidu
map