-
随着低空经济的快速发展,无人机、电动垂直起降飞行器(eVTOL)等低空飞行器的辐射环境安全问题日益凸显。传统研究多聚焦于中子、质子等粒子的影响,而对µ子诱发的单粒子效应(SEE)风险,尤其是在极端太阳事件下的影响,尚缺乏系统评估。本研究首次采用本地化大气模型,利用CORSIKA蒙特卡洛程序模拟了不同城市上空的大气簇射过程,并结合其他先进半导体器件的电子学模拟工作,量化评估了我国不同地区低空飞行器在静态宇宙射线背景及地面增强事件(GLE)下的µ子SEE风险。结果表明,在静态情况下,采用先进制程(≤ 45nm)体硅(Bulk)工艺芯片的飞控系统(1 MB内存)在我国所有城市均面临不可忽视的µ子SEE风险;相比之下,采用全耗尽硅绝缘体(FD-SOI)晶体管的系统则能有效规避该风险。而对于内存较大的系统(1GB),无论选用何种工艺,都必须采用冗余等加固措施。针对地面增强事件(GLE),本研究创新性地提出了µ子危害等级概念以评估区域风险差异,结果显示,GLE期间,中低纬度地区的µ子SEE风险加剧可忽略,但高纬度地区风险显著增加。Motivation : With the rapid development of the low-altitude economy, increasing attention has been paid to the radiation environment safety of low-altitude aircraft such as drones and electric vertical takeoff and landing (eVTOL) aircraft. Traditional views hold that the dense lower atmosphere is an effective barrier against cosmic radiation, but the shrinking feature sizes of modern integrated circuits (ICs) have significantly increased their susceptibility to single-event effects (SEEs). Most conventional studies have focused on the effects of particles such as neutrons and protons, while systematic evaluations of the risks induced by muons —the most abundant charged particles at sea level—remain scarce, particularly during extreme solar events. Therefore, this study quantitatively evaluates the muon-induced SEE risks of lowaltitude aircraft in different regions of China under both static cosmic ray backgrounds and Ground Level Enhancements (GLEs), aiming to provide critical insights for the operational safety of next-generation low-altitude aviation platforms.
Methods : This study employs city-specific atmospheric models and simulates atmospheric shower processes over different cities within the CORSIKA framework, yielding reliable energy spectra of lowenergy muons (10–100 MeV) across diverse regions. Drawing on electrical simulation data from other research groups, this study estimates muon-induced SEE cross sections in transistors with different process nodes, covering Bulk, FD-SOI, and FinFET processes. Subsequently, by integrating solar energetic particle (SEP) energy spectra associated with Ground Level Enhancement (GLE) events, we evaluate muoninduced SEE risks for systems of varying sizes under both static conditions (only cosmic-ray injection) and GLE event scenarios.
Results : Our results indicate that under static conditions, flight control systems (with 1 MB of memory) incorporating advanced process-node (≤ 45nm) Bulk transistors are exposed to non-negligible muon-induced SEE risks across all cities in China. In contrast, systems utilizing FD-SOI transistors can effectively alleviate such risks. For systems with large memory capacities (1 GB), irrespective of the process technology employed, redundancy and other radiation-hardening measures must be adopted. Regarding GLE events, this study innovatively introduces the concept of muon hazard levels to evaluate regional variations in risk. Specifically, during GLEs, the aggravation of muon-induced SEE risks in mid-to-low latitude regions is negligible, whereas high-latitude regions experience a significant rise in such risk. -
[1] Ziegler J F 1996 IBM J. Res. Dev. 40 19
[2] Sierawski B D, Reed R A, Mendenhall M H, Weller R A, Schrimpf R D, Wen S J, Wong R, Tam N, Baumann R C 2011 In 2011 International Reliability Physics Symposium. pp 3C.3.1-3C.3.6
[3] Kato T, Tampo M, Takeshita S, Tanaka H, Matsuyama H, Hashimoto M, Miyake Y 2021 IEEE Trans. Nucl. Sci. 68 1436
[4] Hubert G, Artola L, Regis D 2015 Integr. VLSI J. 50 39
[5] Infantino A, Alía R G, Brugger M 2017 IEEE Trans. Nucl. Sci. 64 596
[6] Liao W, Hashimoto M, Manabe S, Watanabe Y, Abe S I, Nakano K, Sato H, Kin T, Hamada K, Tampo M, Miyake Y 2018 IEEE Trans. Nucl. Sci. 65 1734
[7] Deng Y, Watanabe Y, Manabe S, Liao W, Hashimoto M, Abe S I, Tampo M, Miyake Y 2024 IEEE Trans. Nucl. Sci. 71 912
[8] Lei F, Hands A, Clucas S, Dyer C, Truscott P 2006 IEEE Trans. Nucl. Sci. 53 1851
[9] Lei F, Clucas S, Dyer C, Truscott P 2004 IEEE Trans. Nucl. Sci. 51 3442
[10] Sato T 2015 PLOS ONE 10 1
[11] Sanuki T 2002 Phys. Lett. B 541 234
[12] Motoki M, Sanuki T, Orito S, Abe K, Anraku K, Asaoka Y, Fujikawa M, Fuke H, Haino S, Imori M, Izumi K, Maeno T, Makida Y, Matsui N, Matsumoto H, Matsunaga H, Mitchell J, Mitsui T, Moiseev A, Nishimura J, Nozaki M, Ormes J, Saeki T, Sasaki M, Seo E S, Shikaze Y, Sonoda T, Streitmatter R, Suzuki J, Tanaka K, Ueda I, Wang J Z, Yajima N, Yamagami T, Yamamoto A, Yamamoto Y, Yamato K, Yoshida T, Yoshimura K 2003 Astropart. Phys. 19 113
[13] Haino S, Sanuki T, Abe K, Anraku K, Asaoka Y, Fuke H, Imori M, Itasaki A, Maeno T, Makida Y, Matsuda S, Matsui N, Matsumoto H, Mitchell J W, Moiseev A A, Nishimura J, Nozaki M, Orito S, Ormes J F, Sasaki M, Seo E S, Shikaze Y, Streitmatter R E, Suzuki J, Takasugi Y, Tanaka K, Tanizaki K, Yamagami T, Yamamoto A, Yamamoto Y, Yamato K, Yoshida T, Yoshimura K 2004 Phys. Lett. B 594 35
[14] Sato H, Kin T, Giammanco A 2022 JINST 17 P08009
[15] Simpson J A, Fonger W, Treiman S B 1953 Phys. Rev. 90 934
[16] Navia C E, Augusto C R A, Robba M B, Malheiro M, Shigueoka H 2005 Astrophys. J. 621 1137
[17] Timashkov D, Balabin Y, Barbashina N, Kokoulin R, Kompaniets K, Mannocchi G, Petrukhin A, Saavedra O, Shutenko V, Trinchero G, Vashenyuk E, Yashin I 2008 Astropart. Phys. 30 117
[18] Heck D, Knapp J, Capdevielle J N, Schatz G, Thouw T 1998 CORSIKA: a Monte Carlo code to simulate extensive air showers.
[19] Pierog T, Karpenko I, Katzy J M, Yatsenko E, Werner K 2015 Phys. Rev. C 92 034906
[20] Bass S A, et al. 1998 Prog. Part. Nucl. Phys. 41 255
[21] Bleicher M, et al. 1999 J. Phys. G 25 1859
[22] Aab A, et al. 2014 Phys. Rev. D 90 122005
[23] International Geomagnetic Reference Field (IGRF), 14th Generation Calculator :https://geomag.bgs.ac.uk
[24] Aguilar M, Ali Cavasonza L, Ambrosi G, Arruda L, Attig N, Barao F, Barrin L, Bartoloni A, Başeğmez-du Pree S, Bates J, Battiston R, Behlmann M, Beischer B, Berdugo J, Bertucci B, Bindi V, de Boer W, Bollweg K, Borgia B, Boschini M J, Bourquin M, Bueno E F, Burger J, Burger W J, Burmeister S, Cai X D, Capell M, Casaus J, Castellini G, Cervelli F, Chang Y H, Chen G M, Chen H S, Chen Y, Cheng L, Chou H Y, Chouridou S, Choutko V, Chung C H, Clark C, Coignet G, Consolandi C, Contin A, Corti C, Cui Z, Dadzie K, Dai Y M, Delgado C, Della Torre S, Demirköz M B, Derome L, Di Falco S, Di Felice V, Díaz C, Dimiccoli F, von Doetinchem P, Dong F, Donnini F, Duranti M, Egorov A, Eline A, Feng J, Fiandrini E, Fisher P, Formato V, Freeman C, Galaktionov Y, Gámez C, García-López R J, Gargiulo C, Gast H, Gebauer I, Gervasi M, Giovacchini F, Gómez-Coral D M, Gong J, Goy C, Grabski V, Grandi D, Graziani M, Guo K H, Haino S, Han K C, Hashmani R K, He Z H, Heber B, Hsieh T H, Hu J Y, Huang Z C, Hungerford W, Incagli M, Jang W Y, Jia Y, Jinchi H, Kanishev K, Khiali B, Kim G N, Kirn T, Konyushikhin M, Kounina O, Kounine A, Koutsenko V, Kuhlman A, Kulemzin A, La Vacca G, Laudi E, Laurenti G, Lazzizzera I, Lebedev A, Lee H T, Lee S C, Leluc C, Li J Q, Li M, Li Q, Li S, Li T X, Li Z H, Light C, Lin C H, Lippert T, Liu Z, Lu S Q, Lu Y S, Luebelsmeyer K, Luo J Z, Lyu S S, Machate F, Mañá C, Marín J, Marquardt J, Martin T, Martínez G, Masi N, Maurin D, MenchacaRocha A, Meng Q, Mo D C, Molero M, Mott P, Mussolin L, Ni J Q, Nikonov N, Nozzoli F, Oliva A, Orcinha M, Palermo M, Palmonari F, Paniccia M, Pashnin A, Pauluzzi M, Pensotti S, Phan H D, Plyaskin V, Pohl M, Porter S, Qi X M, Qin X, Qu Z Y, Quadrani L, Rancoita P G, Rapin D, Reina Conde A, RosierLees S, Rozhkov A, Rozza D, Sagdeev R, Schael S, Schmidt S M, Schulz von Dratzig A, Schwering G, Seo E S, Shan B S, Shi J Y, Siedenburg T, Solano C, Song J W, Sonnabend R, Sun Q, Sun Z T, Tacconi M, Tang X W, Tang Z C, Tian J, Ting S C C, Ting S M, Tomassetti N, Torsti J, Tüysüz C, Urban T, Usoskin I, Vagelli V, Vainio R, Valente E, Valtonen E, Vázquez Acosta M, Vecchi M, Velasco M, Vialle J P, Wang L Q 2021 Phys. Rep. 894 1
[25] Gaisser T K, Stanev T, Tilav S 2013 Front. Phys. 8 748
[26] AJ T, WF D 2009 In Proceedings of the 31st International Cosmic Ray Conference
[27] Band D, Matteson J, Ford L, Schaefer B, Palmer D, Teegarden B, Cline T, Briggs M, Paciesas W, Pendleton G, Fishman G, Kouveliotou C, Meegan C, Wilson R, Lestrade P 1993 Astrophys. J. 413 281
[28] Raukunen O, Vainio R, Tylka A J, Dietrich W F, Jiggens P, Heynderickx D, Dierckxsens M, Crosby N, Ganse U, Siipola R 2018 JSWSC 8 A04
[29] GeoMagSphere Online calculator (version 1.8) website currently supported within the space radiation environment activities of ASIF (ASI - Italian Space Agency -Supported Irradiation Facilities)
[30] Liao W, Hashimoto M, Manabe S, Watanabe Y, Abe S I, Nakano K, Takeshita H, Tampo M, Takeshita S, Miyake Y 2019 In 2019 IEEE International Reliability Physics Symposium (IRPS). pp 1-5
[31] Gomi Y, Takami K, Mizuno R, Niikura M, Deng Y, Kawase S, Watanabe Y, Abe S I, Liao W, Tampo M, Umegaki I, Takeshita S, Shimomura K, Miyake Y, Hashimoto M 2023 In 2023 23rd European Conference on Radiation and Its Effects on Components and Systems (RADECS). pp 1-4
[32] Hubert G, Duzellier S, Inguimbert C, BoatellaPolo C, Bezerra F, Ecoffet R 2009 IEEE Trans. Nucl. Sci. 56 3032
[33] ISO 26262-9:2018 Road vehicles —Functional safety Part 9: Automotive safety integrity level (ASIL)-oriented and safety-oriented analyses
[34] Hayakawa H, Koldobskiy S, Mishev A, Poluianov S, Gil A, Usoskina I, Usoskin I 2024 Astron. Astrophys. 684 A46
[35] ,09]: www.geomagsphere.org
计量
- 文章访问数: 35
- PDF下载量: 1
- 被引次数: 0








下载: