搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于中子和质子分离能约束的神经网络对原子核质量的预测

王东东 李鹏 王之恒

引用本文:
Citation:

基于中子和质子分离能约束的神经网络对原子核质量的预测

王东东, 李鹏, 王之恒

Nuclear mass predictions through neural networks incorporating neutron and proton separation energy constraints

WANG Dongdong, Li Peng, WANG Zhiheng
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 原子核质量是反映核结构与稳定性的重要物理量, 在核结构研究与天体核物理过程中均具有关键作用. 目前, 基于神经网络的研究多集中于结合能或中子、质子分离能的单一预测, 较少关注结合能与分离能之间的物理约束关系. 本研究基于相对论平均场点耦合模型 PCF-PK1, 结合神经网络对原子核结合能以及单、双中子和单、双质子分离能进行了系统预测. 在训练过程中引入分离能约束, 以保持结合能与分离能之间的物理自洽性. 结果表明, 神经网络能够显著提升结合能的整体预测精度. 其中, 在特定损失函数权重组合下, 结合能的预测均方根偏差可达到 0.140 MeV. 进一步分析发现, 在保持物理自洽性的前提下, 引入分离能约束能够同时对结合能和分离能的预测结果实现小幅优化. 本文数据集可在https://doi.org/10.57760/sciencedb.j00213.00239中访问获取.
    Nuclear masses are fundamental observables that reflect nuclear structure and stability, playing a key role in nuclear physics and astrophysical processes. Most existing neural network studies focus on predicting either binding energies or neutron/proton separation energies individually, with limited attention to the physical correlations between these observables. Based on the relativistic point-coupling model PCF-PK1, a physics-informed artificial neural network (ANN) was developed to systematically predict nuclear binding energies along with single- and double-neutron/proton separation energies, while preserving the physical self-consistency of the predictions. To assess the impact of incorporating separation-energy constraints, networks were trained with varying loss function weight combinations, enabling a comparison between networks without separation-energy constraints (e.g., ANN1) and those including such constraints (e.g., ANN3).The neural network significantly improves the overall prediction accuracy of binding energies compared with the PCF-PK1 model. Without separation-energy constraints, ANN1 already achieves high precision for binding energies (RMSE $\approx$ 0.147 MeV) and separation energies (RMSE $\approx$ 0.158–0.185 MeV). Incorporating separation-energy constraints in ANN3 results in a slight improvement in overall prediction accuracy. The binding energy predictions improve by approximately 4.6%, while the separation energy predictions increase by 8.9–12.0%. The improvement is particularly noticeable for nuclei where the deviations of ANN1 predictions from experimental values exceed 0.2 MeV. Supporting datasets are publicly accessible at the Science Data Bank (https://doi.org/10.57760/sciencedb.j00213.00239).
  • 图 1  引入分离能约束的多层前馈神经网络结构示意图

    Fig. 1.  Diagram of the feedforward neural network with separation energy constraints.

    图 2  训练过程中训练集(红色)与验证集(蓝色)均方根偏差随训练步数的变化示意. 当验证集偏差达到最小值时, 模型参数被保存

    Fig. 2.  Root-mean-square deviations of training (red) and validation (blue) sets over epochs; parameters at minimum validation deviation are saved.

    图 3  ANN1、ANN2、ANN3、ANN4以及PCF-PK1模型对原子核E、$ S_{\mathrm{n}} $、$ S_{\mathrm{2 n}} $、$ S_{\mathrm{p}} $和$ S_{\mathrm{2 p}} $的预测值与AME2020实验值均方根偏差的对比

    Fig. 3.  Comparison of RMSE between ANN1, ANN2, ANN3, ANN4, and PCF-PK1 predictions and AME2020 experimental values for E, $ S_{\mathrm{n}} $, $ S_{\mathrm{2 n}} $, $ S_{\mathrm{p}} $, and $ S_{\mathrm{2 p}} $.

    图 4  ANN1和ANN3预测值相对于实验值的偏差随核质量数的变化, 包括结合能E(a, f); 单、双中子分离能$ S_\mathrm{n} $(b, g)、$ S_\mathrm{2 n} $(c, h) 以及单、双质子分离能$ S_\mathrm{p} $(d, i)、$ S_\mathrm{2 p} $(e, j). 其中(a—e)为ANN1预测结果, (f—j)为ANN3预测结果, 阴影区域对应结合能预测值与实验值偏差的$ \pm $0.1 MeV范围

    Fig. 4.  Deviations of ANN1 and ANN3 predictions from experimental values as a function of nuclear mass number, including binding energy E(a, f), single- and double-neutron separation energies $ S_\mathrm{n} $(b, g) and $ S_\mathrm{2 n} $(c, h), and single- and double-proton separation energies $ S_\mathrm{p} $(d, i) and $ S_\mathrm{2 p} $(e, j). Panels (a–e) show ANN1 predictions, and panels (f–j) show ANN3 predictions. The shaded areas indicate $ \pm $0.1 MeV deviations of binding energies.

    图 5  ANN1(红色实线)、ANN2(蓝色虚线)、ANN3(绿色点线)和ANN3_ZNP(橙色点划线)对Ca($ Z=20 $)及Pb($ Z=82 $)同位素链结合能E(a, f)、单中子分离能$ S_{\mathrm{n}} $(b, g)、双中子分离能$ S_{\mathrm{2 n}} $(c, h)、单质子分离能$ S_{\mathrm{p}} $(d, i)以及双质子分离能$ S_{\mathrm{2 p}} $(e, j)的预测值与实验值偏差. 图中深浅不同的阴影分别对应预测值与实验值偏差在$ \pm $0.1 MeV和$ \pm $0.2 MeV的区间

    Fig. 5.  Deviations between the predictions and experimental values of the binding energy E(a, f), single- and double-neutron separation energies $ S_{\mathrm{n}} $, $ S_{\mathrm{2 n}} $(b, g, c, h), single- and double-proton separation energies $ S_{\mathrm{p}} $, $ S_{\mathrm{2 p}} $(d, i, e, j), obtained with ANN1 (red solid line), ANN2 (blue dashed line), ANN3 (green dotted line), and ANN3_ZNP (orange dash-dot line) for the Ca($ Z=20 $) and Pb($ Z=82 $) isotopic chains. Dark and light shaded areas represent deviations from experimental values of $ \pm $0.1 MeV and $ \pm $0.2 MeV, respectively.

    图 6  图4, ANN1(红色实线)、ANN2(蓝色虚线)、ANN3(绿色点线)和ANN3_ZNP(橙色点划线)对$ N=28 $及$ N=126 $同中子素链结合能E(a, f)、单中子分离能$ S_{\mathrm{n}} $(b, g)、双中子分离能$ S_{\mathrm{2 n}} $(c, h)、单质子分离能$ S_{\mathrm{p}} $(d, i)以及双质子分离能$ S_{\mathrm{2 p}} $(e, j)的预测值与实验值偏差. 图中深浅不同的阴影分别对应预测值与实验值偏差在$ \pm $0.1 MeV和$ \pm $0.2 MeV的区间

    Fig. 6.  Similar to Fig. 4. Deviations between the predictions and experimental values of the binding energy E(a, f), single- and double-neutron separation energies $ S_{\mathrm{n}} $, $ S_{\mathrm{2 n}} $(b, g, c, h), single- and double-proton separation energies $ S_{\mathrm{p}} $, $ S_{\mathrm{2 p}} $(d, i, e, j), obtained with ANN1 (red solid line), ANN2 (blue dashed line), ANN3 (green dotted line), and ANN3_ZNP (orange dash-dot line) for the N = 28 and $ N = 126 $ >$ Z=82 $) isotonic chains. Dark and light shaded areas represent deviations from experimental values of $ \pm $0.1 MeV and $ \pm $0.2 MeV, respectively.

    图 7  ANN3对整个核素图上原子核结合能E的预测值与实验值的偏差分布

    Fig. 7.  Distribution of prediction residuals of ANN3 with respect to experimental values on the nuclear chart for the binding energy E.

    图 8  ANN3对整个核素图上原子核单/双中子分离能$ S_\mathrm{n} $(a), $ S_\mathrm{2 n} $(b)以及单/双质子分离能$ S_\mathrm{p} $(c), $ S_\mathrm{2 p} $(d)的预测值与实验值的偏差分布

    Fig. 8.  Distribution of prediction residuals of ANN3 with respect to experimental values on the nuclear chart for the one- and two-neutron separation energies $ S_\mathrm{n} $ (a) and $ S_\mathrm{2 n} $ (b), as well as one- and two-proton separation energies $ S_\mathrm{p} $ (c) and $ S_\mathrm{2 p} $ (d).

    Baidu
  • [1]

    Lunney D, Pearson J M, Thibault C 2003 Rev. Mod. Phys. 75 1021Google Scholar

    [2]

    Bender M, Heenen P H, Reinhard P G 2003 Rev. Mod. Phys. 75 121Google Scholar

    [3]

    Burbidge E M, Burbidge G R, Fowler W A, Hoyle F 1957 Rev. Mod. Phys. 29 547Google Scholar

    [4]

    Bethe H A 1939 Phys. Rev. 55 434Google Scholar

    [5]

    Huang W J, Wang M, Kondev F G, Audi G, Naimi S 2021 Chin. Phys. C 45 030002Google Scholar

    [6]

    Wang M, Huang W J, Kondev F G, Audi G, Naimi S 2021 Chin. Phys. C 45 030003Google Scholar

    [7]

    Xia X W, LiM Y, Zhao P W, Liang H Z, Qu X Y, Chen Y, Liu H, Zhang L F, Zhang S Q, Kim Y, Meng J 2018 At. Data Nucl. Data Tables 121 1

    [8]

    Bethe H A, Bacher R F 1936 Nucl. Phys. 8 82

    [9]

    Möller P, Myers W D, Sagawa H, Yoshida S 2012 Phys. Rev. Lett. 108 052501Google Scholar

    [10]

    Geng L, Toki H, Meng J 2005 Prog. Theor. Phys 113 785Google Scholar

    [11]

    Hua X M, Heng T H, Niu Z M, Sun B H, Guo J Y 2012 Sci. China Phys. Mech. Astron. 55 2414Google Scholar

    [12]

    Möller P, Sierk A J, Ichikawa T, Sagawa H 2016 At. Data Nucl. Data Tables 109-110 1Google Scholar

    [13]

    Möller P, Mumpower M R, Kawano T, Myers W D 2019 At. Data Nucl. Data Tables 125 1Google Scholar

    [14]

    Wang N, Liu M, Wu X Z, Meng J 2014 Phys. Lett. B 734 215Google Scholar

    [15]

    Neufcourt L, Cao Y C, Nazarewicz W, Viens F 2018 Phys. Rev. C 98 034318Google Scholar

    [16]

    Otsuka T, Suzuki T, Fujimoto R, Grawe H, Akaishi Y 2005 Phys. Rev. Lett. 95 232502Google Scholar

    [17]

    Sorlin O, Porquet M G 2008 Prog. Part. Nucl. Phys. 61 602Google Scholar

    [18]

    Utama R, Piekarewicz J, Prosper H B 2016 Phys. Rev. C 93 014311Google Scholar

    [19]

    Gao Z P, Wang Y J, Lü H L, Li Q F, Shen C W, Liu L 2021 Nucl. Sci. Tech. 32 109Google Scholar

    [20]

    Ming X C, Zhang H F, Xu R R, Sun X D, Tian Y, Ge Z G 2022 Nucl. Sci. Tech. 33 48Google Scholar

    [21]

    Wu X H, Lu Y Y, Zhao P W 2022 Phys. Lett. B 834 137394Google Scholar

    [22]

    Mumpower M R, Sprouse T M, Lovell A E, Mohan A T 2022 Phys. Rev. C 106 L021301

    [23]

    Niu Z M, Liang H Z 2018 Phys. Lett. B 778 48Google Scholar

    [24]

    Wu X H, Guo L H, Zhao P W 2021 Phys. Lett. B 819 136387Google Scholar

    [25]

    Niu Z M, Liang H Z 2022 Phys. Rev. C 106 L021303Google Scholar

    [26]

    Lu Y H, Shang T S, Du P X, Li J, Liang H Z, Niu Z M 2025 Phys. Rev. C 111 014325Google Scholar

    [27]

    陈存宇, 陈爱喜, 戚晓秋, 王韩奎 2025 74 012101Google Scholar

    Chen C Y, Chen A X, Qi X Q, Wang H K 2025 Acta Phys. Sin. 74 012101Google Scholar

    [28]

    陶世杰, 张力菲, 张庆一, 刘健, 许昌 2022 中国科学:物理学 力学 天文学 52 252009

    Tao S J, Zhang L F, Zhang Q Y, Liu J, Xu C 2022 Sci. China Phys. Mech. Astron. 52 252009

    [29]

    Li Z L, Wang Y J, Li Q F, Lv B F 2025 Phys. Rev. C 112 014312

    [30]

    Costiris N J, Mavrommatis E, Gernoth K A, Clark J W 2009 Phys. Rev. C 80 044332Google Scholar

    [31]

    Niu Z M, Liang H Z, Sun B H, Long W H, Niu Y F 2019 Phys. Rev. C 99 064307

    [32]

    李鹏, 白景虎, 牛中明, 牛一斐 2022 中国科学:物理学 力学 天文学 52 252006Google Scholar

    Li P, Bai J H, Niu Z M, Niu Y F 2022 Sci. China Phys. Mech. Astron. 52 252006Google Scholar

    [33]

    魏凯文, 尚天帅, 田榕赫, 杨东, 李春娟, 陈军, 李剑, 黄小龙, 朱佳丽 2025 74 182901Google Scholar

    Wei K W, Shang T S, Tian R H, Yang D, Li C J, Chen J, Li J, Huang X L, Zhu J L 2025 Acta Phys. Sin. 74 182901Google Scholar

    [34]

    Li W F, Zhang X Y, Niu Y F, Niu Z M 2024 J. Phys. G: Nucl. Part. Phys. 51 015103Google Scholar

    [35]

    Li P, Niu Y F, Niu Z M 2025 Nucl. Sci. Tech. 36 50Google Scholar

    [36]

    Jin Z S, Yan M S, Zhou H, Cheng A, Ren Z Z, Liu J 2023 Phys. Rev. C 108 014326Google Scholar

    [37]

    Liu J, Jin Z S, Ren Z Z 2025 Phys. Rev. C 112 024309

    [38]

    Ma N N, Zhao T L, Wang W X, Zhang H F 2023 Phys. Rev. C 107 014310

    [39]

    陈海军, 盛浩文, 黄文豪, 吴彬琪, 赵天亮, 包小军 2025 74 192301Google Scholar

    Chen H J, Sheng H W, Huang W H, Wu L Q, Zhao T L, Bao X J 2025 Acta Phys. Sin. 74 192301Google Scholar

    [40]

    Wang Z A, Pei J C, Liu Y, Qiang Y 2019 Phys. Rev. Lett. 123 122501Google Scholar

    [41]

    Qiao C Y, Pei J C, Wang Z A, Qiang Y, Chen Y J 2021 Phys. Rev. C 103 034621Google Scholar

    [42]

    Zhao Q, Ren Z X, Zhao P W, Meng J 2022 Phys. Rev. C 106 034315Google Scholar

    [43]

    Mumpower M R, Surman R, McLaughlin G C, Aprahamian A 2016 Prog. Part. Nucl. Phys. 86 86Google Scholar

  • [1] 武庆, 牛中明, 梁豪兆. 原子核质量不确定性对β衰变半衰期和中子俘获率的影响.  , doi: 10.7498/aps.75.20251195
    [2] 刘亚琪, 李志龙, 王永佳, 李庆峰, 马春旺. 基于机器学习的原子核质量表的进一步探究.  , doi: 10.7498/aps.75.20251526
    [3] 魏凯文, 尚天帅, 田榕赫, 杨东, 李春娟, 陈军, 李剑, 黄小龙, 朱佳丽. 基于神经网络方法研究β衰变释放粒子的平均能量数据.  , doi: 10.7498/aps.74.20250655
    [4] 田文静, 杨宗谕, 许敏, 龙婷, 何小雪, 柯锐, 杨硕苏, 余德良, 石中兵, 高喆. 光谱诊断中神经网络快速分析模型及外推方法.  , doi: 10.7498/aps.74.20241739
    [5] 陈海军, 盛浩文, 黄文豪, 吴彬琪, 赵天亮, 包小军. 基于神经网络方法研究超重核的稳定性和衰变性质.  , doi: 10.7498/aps.74.20250720
    [6] 马锐垚, 王鑫, 李树, 勇珩, 上官丹骅. 基于神经网络的粒子输运问题高效计算方法.  , doi: 10.7498/aps.73.20231661
    [7] 方波浪, 王建国, 冯国斌. 基于物理信息神经网络的光斑质心计算.  , doi: 10.7498/aps.71.20220670
    [8] 李靖, 孙昊. 识别Z玻色子喷注的卷积神经网络方法.  , doi: 10.7498/aps.70.20201557
    [9] 孙立望, 李洪, 汪鹏君, 高和蓓, 罗孟波. 利用神经网络识别高分子链在表面的吸附相变.  , doi: 10.7498/aps.68.20190643
    [10] 黄宇航, 陈理想. 基于未训练神经网络的分数傅里叶变换成像.  , doi: 10.7498/aps.73.20240050
    [11] 魏德志, 陈福集, 郑小雪. 基于混沌理论和改进径向基函数神经网络的网络舆情预测方法.  , doi: 10.7498/aps.64.110503
    [12] 李欢, 王友国. 一类非线性神经网络中噪声改善信息传输.  , doi: 10.7498/aps.63.120506
    [13] 陈铁明, 蒋融融. 混沌映射和神经网络互扰的新型复合流密码.  , doi: 10.7498/aps.62.040301
    [14] 李华青, 廖晓峰, 黄宏宇. 基于神经网络和滑模控制的不确定混沌系统同步.  , doi: 10.7498/aps.60.020512
    [15] 赵海全, 张家树. 混沌通信系统中非线性信道的自适应组合神经网络均衡.  , doi: 10.7498/aps.57.3996
    [16] 王永生, 孙 瑾, 王昌金, 范洪达. 变参数混沌时间序列的神经网络预测研究.  , doi: 10.7498/aps.57.6120
    [17] 王瑞敏, 赵 鸿. 神经元传输函数对人工神经网络动力学特性的影响.  , doi: 10.7498/aps.56.730
    [18] 王耀南, 谭 文. 混沌系统的遗传神经网络控制.  , doi: 10.7498/aps.52.2723
    [19] 谭文, 王耀南, 刘祖润, 周少武. 非线性系统混沌运动的神经网络控制.  , doi: 10.7498/aps.51.2463
    [20] 神经网络的自适应删剪学习算法及其应用.  , doi: 10.7498/aps.50.674
计量
  • 文章访问数:  173
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-09-24
  • 修回日期:  2025-11-04
  • 上网日期:  2025-12-06

/

返回文章
返回
Baidu
map