搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于R矩阵理论的氚氚反应截面数据评价

韩旭 叶涛 陈振鹏 应阳君 郭海瑞 祖铁军

引用本文:
Citation:

基于R矩阵理论的氚氚反应截面数据评价

韩旭, 叶涛, 陈振鹏, 应阳君, 郭海瑞, 祖铁军

Evaluation of T+T reaction cross sections based on R-matrix theory

HAN Xu, YE Tao, CHEN Zhenpeng, YING Yangjun, GUO Hairui, ZU Tiejun
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 基于广义约化 R 矩阵理论, 使用RAC程序( R -matrix analysis code)综合分析了6He系统中所有可以利用的实验数据, 给出了氚核入射10–2—20 MeV能量范围内主要反应道的评价核数据. 其中积分截面包括T(t, 2n)4He, T(t, n)5He, T(t, d)4H; 微分截面包括T(t, 2n)4He, T(t, n)5He, T(t, d)4H, T(t, t)T. 结果表明, RAC的评价结果与实验数据和ENDF/B-VIII.1的评价数据整体符合良好. 重点关注T(t, 2n)4He反应, 评价值在10–2—20 MeV范围内与已有实验数据一致, 在2.9 MeV附近出现由2+能级主导的共振, 在1.9 MeV处, 已有实验同时测量了积分截面和角分布, 本工作的评价结果在两类数据上均表现出良好的一致性, 积分截面与微分截面的联合约束有效提升了 R 矩阵参数的稳定性和评价结果的可靠性. 基于6He系统的整体评价, 进一步补充了T(t, n)5He和T(t, d)4H反应的截面数据. 本工作完善了聚变反应相关的数据基础, 并为后续与镜像系统6Be系统的联合分析奠定了基础. 本文数据集可在https://www.doi.org/10.57760/sciencedb.j00213.00202中访问获取
    Based on the generalized reduced R -matrix theory, this work performs a comprehensive analysis of all available experimental data for the 6He system by using the R -matrix analysis code (RAC). A complete set of evaluated nuclear data is obtained for major reaction channels induced by triton beams in an energy range of 10–2—20 MeV. The evaluated integral cross sections include T(t, 2n)4He, T(t, n)5He, and T(t, d)4H reactions, and the differential cross sections include T(t, 2n)4He, T(t, n)5He, T(t, d)4H, and T(t, t)T. The evaluation results show that they are in good agreement with experimental data and the evaluated data of ENDF/B-VIII.1. In particular, for the T(t, 2n)4He reaction, the evaluated cross sections are consistent with the existing experimental results over the full energy range, and a resonance dominated by the 2+ level is observed near 2.9 MeV. At 1.9 MeV, where experimental measurements of both integral cross sections and angular distributions are available, the evaluation accurately reproduces both observables. The combined constraint of integral and differential data significantly improves the stability of R-matrix parameters and the reliability of the evaluation. Based on the global analysis of the 6He system, this work also provides supplementary cross section data for the T(t, n)5He and T(t, d)4H reactions. The results contribute to the nuclear data foundation for fusion-related reactions and lay the groundwork for future joint evaluation with the mirror 6Be system.The datasets presented in this paper are openly available at https://www.doi.org/10.57760/sciencedb.j00213.00202.
  • 图 1  RAC程序的主要输入文件及工作流程示意图

    Fig. 1.  Main input files and workflow diagram of the RAC program.

    图 2  T(t, 2n)4He反应积分截面 (a) 0.01—0.1 MeV; (b) 0.1—20 MeV

    Fig. 2.  Integral cross section of T(t, 2n)4He: (a) 0.01—0.1 MeV; (b) 0.1—20 MeV.

    图 3  T(t, n)5He反应和T(t, d)4H反应的积分截面 (a) T(t, n)5He反应; (b) T(t, d)4H反应)

    Fig. 3.  Integral cross section of T(t, n)5He and T(t, d)4H: (a) T(t, n)5He; (b) T(t, d)4H).

    图 4  T(t, 2n)4He反应4He出射的微分截面(部分), 能量分布 (a) 0°; (b) 30°; (c) 90°; 角分布(d) 1.9 MeV

    Fig. 4.  Differential cross section of 4He from the T(t, 2n)4He reaction (partial), energy distribution: (a) 0°; (b) 30°; (c) 90°; and angular distribution (d) 1.9 MeV.

    图 5  T(t, n)5He反应微分截面(部分), 入射能分别为 (a) 5.98 MeV; (b) 10.45 MeV; (c) 16.41 MeV; (d) 19.14 MeV

    Fig. 5.  Differential cross section of T(t, n)5He (partial) at incident energies: (a) 5.98 MeV; (b) 10.45 MeV; (c) 16.41 MeV; (d) 19.14 MeV.

    图 6  T(t, d)4H反应微分截面(部分), 入射能分别为 (a) 16.41 MeV; (b) 19.14 MeV

    Fig. 6.  Differential cross section of T(t, d)4H (partial) at incident energies: (a) 16.41 MeV; (b) 19.14 MeV.

    图 7  T(t, t)T反应微分截面(部分), 入射能分别为 (a) 1.582 MeV; (b) 1.8 MeV

    Fig. 7.  Differential cross section of T(t, t)T (partial) at incident energies: (a) 1.582 MeV; (b) 1.8 MeV.

    表 1  反应道的道半径、阈值以及设置的能量范围

    Table 1.  Radius, threshold and energy range of reaction channels.

    Channel Radius ac/fm Threshold/MeV Energy range/MeV
    t+T 4.301 0 10–2—20
    2n+4He 4.186 11.346
    n+5He 3.990 10.600
    d+4H 4.593 –7.852
    下载: 导出CSV

    表 2  实验数据的使用情况

    Table 2.  Experimental data used in the RAC program.

    Reaction
    channel
    Cross section
    type
    Energy
    range/MeV
    Data
    point
    Average
    $ {\chi }^{2} $
    T(t, 2n)4HeIntegral3.125×10–2
    1.900
    411.580
    T(t, n)5HeIntegral5.980—19.14050.022
    T(t, d)4HIntegral16.410—19.14020.012
    T(t, 2n)4HeDifferential0.040—2.22811.654
    T(t, n)5HeDifferential5.980—19.140330.121
    T(t, d)4HDifferential16.410—19.14020.042
    T(t, t)TDifferential1.582—2.013183.509
    Total182
    下载: 导出CSV
    Baidu
  • [1]

    Umar A S, Simenel C, Oberacker V E 2014 Phys. Rev. C 89 034611Google Scholar

    [2]

    孙有文, 仇志勇, 万宝年 2024 73 175202Google Scholar

    Sun Y W, Qiu Z Y, Wan B N 2024 Acta Phys. Sin. 73 175202Google Scholar

    [3]

    谷建法, 葛峰峻, 戴振生, 邹士阳 2020 计算物理 37 631

    Gu J F, Ge F J, Dai Z S, Zou S Y 2020 Chin. J. Comput. Phys. 37 631

    [4]

    Chadwick M B, Paris M W, Hale G M, Lestone J P, Alhumaidi S, Wilhelmy J B, Gibson N A 2024 Fusion Sci. Technol. 80 971

    [5]

    Magee R M, Ogawa K, Tajima T, Allfrey I, Goat H, Mccarroll P, Ohdachi S, Isobe M, Kamio S, Klumper V, Nuga H, Shoji M, Ziaei S, Binderbauer M W, Osakabe M 2023 Nat. Commun. 14 955Google Scholar

    [6]

    Breunlich W, Kammel P, Cohen J S, Leon M 1989 Annu. Rev. Nucl. Part. Sci. 39 311356

    [7]

    Chadwick M B, Obložinský P, Herman M, Greene N M, McKnight R D, Smith D L, Young P G, MacFarlane R E, Hale G M, Frankle S C, Kahler A C, Kawano T, Little R C, Madland D G, Moller P, Mosteller R D, Page P R, Talou P, Trellue H, White M C, Wilson W B, Arcilla R, Dunford C L, Mughabghab S F, Pritychenko B, Rochman D, Sonzogni A A, Lubitz C R, Trumbull T H, Weinman J P, Brown D A, Cullen D E, Heinrichs D P, McNabb D P, Derrien H, Dunn M E, Larson N M, Leal L C, Carlson A D, Block R C, Briggs J B, Cheng E T, Huria H C, Zerkle M L, Kozier K S, Courcelle A, Pronyaev V, van der Marck S C 2006 Nucl. Data Sheets 107 29313060

    [8]

    Casey D T, Frenje J A, Gatu J M, Li C, Manuel M J-E, Petrasso R D, Seguin F H, Sinenian N, Zylstra A B, Glebov V Y, Radha P B, Meyerhofer D D, Sangster T C, McNabb D P, Amendt P A, Boyd R N, Hatchett S P, Quaglioni S, Rygg J R, Thompson I J, Bacher A D, Herrmann H W, Kim Y H 2012 Phys. Rev. Lett. 109 025003Google Scholar

    [9]

    Robert A M, William A F 1989 Ann. Phys. 192 4558

    [10]

    Typel S, Blüge G, Langanke K, Fowler W A 1991 Z. Physik A 339 249253

    [11]

    White R M, Resler D A, Warshaw S I 1992 Nuclear Data for Science and Technology. Research Reports in Physics Springer, Berlin, Heidelberg, May 13–17, 1992 p834839

    [12]

    Bosch H S, Hale G M 1992 Nucl. Fusion 32 611Google Scholar

    [13]

    Tilley D R, Weller H R, Hale G M 1992 Nucl. Phys. A 541 1104

    [14]

    Tilley D R, Cheves C M, Godwin J L, Hale G M, Hofmann H M, Kelley J H, Sheu C G, Weller H R 2002 Nucl. Phys. A 708 3163

    [15]

    Hupin G, Quaglioni S, Navrátil P 2019 Nat. Commun. 10 351Google Scholar

    [16]

    Wigner E P, Eisenbud L 1947 Phys. Rev. 72 2941

    [17]

    Hale G M, Paris M W 2015 Nucl. Data Sheets 123 165170

    [18]

    Carlson A D, Pronyaev V G, Smith D L, Larson N M, Chen Z P, Hale G M, Hambsch F J, Gai E V, Oh S, Badikov S A, Kawano T, Hofmann H M, Vonach H, Tagesen S 2009 Nucl. Data Sheets 110 32153324

    [19]

    Odell D, Brune C R, Phillips D R, deBoer R J, Paneru S N 2022 Front. Phys. 10 476

    [20]

    Chen Z P, Sun Y Y 2019 INDC Reports INDC(NDS)-0791

    [21]

    Leeb H, Dimitriou P, Thompson I 2019 INDC Reports INDC(NDS)-0787

    [22]

    Carlson A D, Pronyaev V G, Smith D L, Capote R, Schnabel G 2020 INDC Reports INDC(NDS)-0820

    [23]

    Liu J, Cui Z Q, Hu Y W, Bai H F, Chen Z P, Xia C, Fan T S, Chen J X, Zhang G H, Ruan X C, Huang H X, Ren J, Chen H T 2023 Phys. Lett. B 842 137985Google Scholar

    [24]

    周历波, 叶涛, 王佳, 孙伟力 2022 计算物理 39 631

    Zhou L B, Ye T, Wang J, Sun W L 2022 Chin. J. Comput. Phys. 39 631

    [25]

    韩旭 2025 硕士学位论文 (北京: 中国工程物理研究院研究生院)

    Han X 2025 M. S. Thesis (Beijing: Graduate School, China Academy of Engineering Physics

    [26]

    Hauser W, Feshbach H 1952 Phys. Rev. 87 366373

    [27]

    Lane A M, Thomas R G 1958 Rev. Mod. Phys. 30 257353

    [28]

    Otuka N, Dupont E, Semkova V, Pritychenko B, Blokhin A I, Aikawa M, Babykina S, Bossant M, Chen G, Dunaeva S, Forrest R A, Fukahori T, Furutachi N, Ganesan S, Ge Z, Gritzay O O, Herman M, Hlavač S, Katō K, Lalremruata B, Lee T O, Makinaga A, Mastumoto K, Mikhaylyukova M, Pikulina G, Pronyaev V G, Saxena A, Schwerer O, Simakov S P, Soppera N, Suzuki R, Takács S, Tao X, Taova, Tárkányi F, Varlamov V V, Wang J, Yang S C, Zerkin V, Zhuang Y. 2014 Nucl. Data Sheets 120 272276

    [29]

    Zerkin V V, Pritychenko B 2018 Nucl. Instrum. Methods Phys. Res. , Sect A 888 31Google Scholar

    [30]

    Drosg M, Steurer M M, Jericha E, Drake D M 2016 Nucl. Sci. Eng. 184 114124

    [31]

    Xu Y, Takahashi K, Goriely S, Arnould M, Ohta M, Utsunomiya H 2013 Nucl. Phys. A 918 61169

    [32]

    Jarmie N, Allen R C 1958 Phys. Rev. 111 11211128

  • [1] 沈刚, 衷斌, 吴勇, 王建国. 非均匀混合下氘氚聚变反应速率的理论研究.  , doi: 10.7498/aps.72.20221197
    [2] 朱传新, 秦建国, 郑普, 蒋励, 朱通华, 鹿心鑫. 14 MeV附近191Ir(n,2n)190Ir反应截面实验研究.  , doi: 10.7498/aps.71.20220776
    [3] 陈忠, 赵子甲, 吕中良, 李俊汉, 潘冬梅. 基于蒙特卡罗-离散纵标方法的氘氚激光等离子体聚变反应率数值模拟.  , doi: 10.7498/aps.68.20190440
    [4] 底马可, 沈光先, 赵云强, 曾若生, 汪荣凯. Ar-H2(D2, T2)碰撞体系的振转相互作用势及散射截面的理论计算.  , doi: 10.7498/aps.64.133101
    [5] 羊奕伟, 刘荣, 蒋励, 鹿心鑫, 王玫, 严小松. 一维贫铀/聚乙烯交替系统中D-T中子诱发的232Th(n,γ)反应率的测定与分析.  , doi: 10.7498/aps.63.162801
    [6] 米利, 周宏伟, 孙祉伟, 刘丽霞, 徐升华. 光散射聚集速率测定中T矩阵方法的应用.  , doi: 10.7498/aps.62.134704
    [7] 羊奕伟, 严小松, 刘荣, 鹿心鑫, 蒋励, 王玫, 林菊芳. 贫铀球壳中D-T中子诱发的铀反应率的测量与分析.  , doi: 10.7498/aps.62.022801
    [8] 朱志艳, 朱正和, 张莉, 李培刚, 唐为华, 郑莹莹. T+OD体系的同位素交换反应动力学.  , doi: 10.7498/aps.60.123102
    [9] 沈光先, 汪荣凯, 令狐荣锋, 杨向东. He-H2(D2,T2)碰撞体系振转相互作用势及分波截面的理论计算.  , doi: 10.7498/aps.60.013101
    [10] 沈光先, 汪荣凯, 令狐荣锋, 杨向东. 不同能量的氦原子与同位素分子H2(D2,T2)碰撞分波截面的理论计算.  , doi: 10.7498/aps.57.155
    [11] 陈 志, 邓柏权, 冯开明. 先进燃料聚变反应性增强的新机制.  , doi: 10.7498/aps.55.1724
    [12] 郝延明. R2Fe17-xAlx化合物中R-T交换耦合常量的计算.  , doi: 10.7498/aps.49.2287
    [13] 袁乃荣, 邬鸿彦, 李 铮, 邱庆春. T1uhg Jahn-Teller系统中的频率约化矩阵.  , doi: 10.7498/aps.49.1769
    [14] 凌瑞良. R(t)LC介观电路的量子力学处理.  , doi: 10.7498/aps.48.2343
    [15] 王少杰, 邱励俭. 中性束注入产生的非麦氏分布对D-T聚变反应率的影响.  , doi: 10.7498/aps.45.1492
    [16] 姚立山, 靳玉玲, 蔡敦九. 14MeV中子(n,T)与(n,3He)反应截面的系统学研究.  , doi: 10.7498/aps.42.17
    [17] 杨同华, 包宗渝. 用6Li(n,α)t反应研究在直流电场作用下α-LiIO3中锂离子的迁移.  , doi: 10.7498/aps.33.1149
    [18] 李名复, 任尚元, 茅德强. Si中深能级T2对称波函数理论.  , doi: 10.7498/aps.32.1263
    [19] 施兵. 12C(7Li,t)16O和20Ne(d,6Li)16O反应的研究.  , doi: 10.7498/aps.26.333
    [20] 姜承烈, 赵葵, 王大椿, 李卫江, 周恩臣, 李志常, 蔡敦九, 程业浩, 吕富宝, 韩树奎. Be9(d,p),(d,t),(d,a)反应研究.  , doi: 10.7498/aps.23.64
计量
  • 文章访问数:  444
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-09-18
  • 修回日期:  2025-10-11
  • 上网日期:  2025-11-12

/

返回文章
返回
Baidu
map