搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于蒙特卡罗-离散纵标方法的氘氚激光等离子体聚变反应率数值模拟

陈忠 赵子甲 吕中良 李俊汉 潘冬梅

引用本文:
Citation:

基于蒙特卡罗-离散纵标方法的氘氚激光等离子体聚变反应率数值模拟

陈忠, 赵子甲, 吕中良, 李俊汉, 潘冬梅

Numerical simulation of deuterium-tritium fusion reaction rate in laser plasma based on Monte Carlo-discrete ordinate method

Chen Zhong, Zhao Zi-Jia, Lü Zhong-Liang, Li Jun-Han, Pan Dong-Mei
cstr: 32037.14.aps.68.20190440
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 惯性约束聚变(ICF)是实现受控热核聚变可能途径之一. 聚变中子源项是氘氚激光等离子体物理设计与分析的重要参数之一, 其准确性直接影响分析结果的可靠性. 目前国内外对于ICF氘氚聚变反应产生的中子源项研究主要基于解析公式法, 在温度和反应类型等方面适用范围有限. 本文采用粒子云概念对氘、氚粒子云团开展了随机抽样与时空网格划分, 然后基于麦克斯韦速率分布律对氘氚聚变反应开展了多普勒能量展宽效应分析与微分截面温度修正工作, 耦合蒙特卡罗方法和离散纵标方法, 开展了激光等离子体中D-T粒子云团聚变反应率的数值模拟工作. 研究结果显示, 与原核数据库截面相比, D-T, D-D, T-D截面经修正后多普勒温度效应显著. 在20—100 keV的等离子体温度范围内, 相较传统的解析公式法, 本文模拟结果更符合最新的ENDF核数据库的氘氚反应截面数据, 且与解析公式法结果在低能区存在较大误差, 可能是计算方法不同与低温截面差异过大原因导致.
    Inertial confinement fusion (ICF) is one of the possible ways to realize controlled thermonuclear fusion. The fusion neutron source term is one of the important parameters in the physical design and analysis of laser plasma. The accuracy of the fusion neutron source term directly affects the reliability of the analysis results. At present, the neutron source term of deuterium-tritium fusion reaction in ICF is mainly based on formula method. It has limited applications in temperature and reaction type. Because of a large quantity of data, it is impossible to simulate the fusion reaction of each particle. In this paper, the concept of particle cloud is introduced, that is, the collection of the like particles with the same position and speed, and it is considered that the action of particle cloud is the same reaction. Because the particles should satisfy the Maxwell velocity distribution at a certain temperature and the direction is all around the circumference angle, the collision cross sections between the incident particle and different target particles are different. Therefore, the design program takes all the possible velocities, polar angles and direction angles, reads the collision cross sections between deuterium and tritium and makes corrections, and obtains the multi-temperature differential correction cross sections of deuterium and tritium fusion with Doppler energy broadening. On these bases, Monte Carlo method and discrete ordinate method method are used. A numerical simulation program for the fusion rate of D-T particles in laser plasma is developed in this paper. It is found that there are significant differences between the DT, DD, TD cross sections and the original cross sections after Doppler broadening. In a range of plasma temperature between 20 keV and 100 keV, the simulation results are more consistent with the cross section data of ENDF/B-VI and ENDF/B-VII databases of deuterium-tritium fusion reaction than those from the analytical formula method. There is a large error between the numerical simulation results and the analytical formula method in the low energy region. It may be caused by the difference of calculation methods and too big difference among the used fusion cross sections at low temperature.
      通信作者: 赵子甲, sszdzl1@mail.ustc.edu.cn
    • 基金项目: 西南科技大学博士基金(批准号: 13zx7138)、湖南省科技创新计划(批准号: 2018JJ2473)、国家自然科学基金(批准号: 11475150, 11475260)、中国科学院中子输运理论与辐射安全重点实验室开放研究课题基金(批准号: NEUTRON201707)、哈尔滨工程大学核安全与仿真技术国防重点学科实验室基金(批准号: HEUNSS18SF04)和特殊环境机器人技术四川省重点实验室基金(批准号: 17kftk01)资助的课题
      Corresponding author: Zhao Zi-Jia, sszdzl1@mail.ustc.edu.cn
    • Funds: Project supported by the Doctoral Fund of Southwest University of Science and Technology, China (Grant No. 13zx7138), the Natural Science Foundation of Hunan Province, China (Grant No. 2018JJ2473), the National Natural Science Foundation of China (Grant Nos. 11475260, 11475150), the Opening Foundation of Key Laboratory of Neutronics and Radiation Safety of CAS (Grant No. NEUTRON201707), the Fund of Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University, China (Grant No. HEUNSS18SF04), and the Fund of Robot Technology Used for Special Environment Key Laboratory of Sichuan Province, China (Grant No. 17kftk01)
    [1]

    Nuckolls J H 1982 Phys. Today 35 24Google Scholar

    [2]

    Johnson T H 2005 Proc. IEEE 72 548Google Scholar

    [3]

    Brysk H 1973 Plasma Phys. 15 611Google Scholar

    [4]

    Davis J, Petrov G M, Petrova T, Willingale L, Maksimchuk A, Krushelnick K 2010 Plasma Phys. Controlled Fusion 52 045015Google Scholar

    [5]

    Petrov G M, Higginson D P, Davis J, et al. 2013 Plasma Phys. Controlled Fusion 55 105009Google Scholar

    [6]

    Ditmire T, Zweiback J, Yanovsky V P, et al. 1999 Nature 398 6727Google Scholar

    [7]

    Bang W, Dyer G, Quevedo H J, Bernstein A C, Gaul E, Donovan M, Ditmire T 2013 Phys. Rev. E 87 023106Google Scholar

    [8]

    Bang W, Barbui M, Bonasera A, et al. T 2013 Phys. Rev. E 88 033108Google Scholar

    [9]

    Jung D, Falk K, Guler N, et al. 2013 Phys. Plasmas 20 056706Google Scholar

    [10]

    Ni M, Wang Y, Yuan B, Jiang J, Wu Y 2013 Fusion Eng. Des. 88 2422Google Scholar

    [11]

    Nie B, Ni M, Wei S 2017 J. Hazardous Mater. 327 135Google Scholar

    [12]

    Nie B, Ran G, Zeng Q, Du H, Li Z, Chen Y, Zhu Z, Zhao X, Ni M, Li F 2019 Energ. Sci. Eng. 7 457Google Scholar

    [13]

    He M Q, Cai H B, Zhang H, et al. 2015 Phys. Plasmas 22 44Google Scholar

    [14]

    Pomerantz I, Mccary E, Meadows A R, et al. 2014 Phys. Rev. Lett. 113 184801Google Scholar

    [15]

    Fausser C, Puma A L, Gabriel F, Villari R 2012 Fusion Eng. Des. 87 787Google Scholar

    [16]

    林尊琪 2006 第五届全国光子学大会会议论文集 黄山 2004年10月18日 p4

    Lin Z Q 2006 The Proc. the Fifth National Conference on Photonics Huangshan, China, October 18, 2004 p4 (in Chinese)

    [17]

    樊铁栓, 黄钢, 冯玉清 2005 原子能科学技术 39 28Google Scholar

    Fan T S, Huang G, Feng Y Q 2005 At. Energ. Sci. Technol. 39 28Google Scholar

    [18]

    Xu B, Ma Y, Yang X, Tang W, Wang S, Ge Z, Zhao Y, Ke Y 2017 Laser and Particle Beams 35 366Google Scholar

    [19]

    Bosch H S, Hale G M 1992 Nucl. Fusion 32 611Google Scholar

    [20]

    https://t2.lanl.gov/nis/data/endf/ [2019−3−28]

  • 图 1  动量矢量分解

    Fig. 1.  Momentum vector decomposition.

    图 2  二维网格误差分析

    Fig. 2.  Two-dimensional grid error analysis.

    图 3  二维网格大小造成的误差

    Fig. 3.  Error caused by two-dimensional mesh size.

    图 4  仰角对应球带(球坐标)

    Fig. 4.  Elevation corresponding to the ball belt (ball coordinate).

    图 5  氘氚等离子体聚变反应模拟流程图

    Fig. 5.  Simulation flow of deuterium-tritium plasma fusion reaction.

    图 6  氘氚等离子体聚变反应修正 (a) D-D反应截面修正; (b) D-T反应截面修正; (c) T-D反应截面修正

    Fig. 6.  Correction of fusion reaction of deuterium-tritium plasma: (a) D-D fusion cross section correction; (b) D-T fusion cross section correction; (c) T-D fusion cross section correction.

    图 7  氘氚等离子体聚变反应中子产生率

    Fig. 7.  Neutron production rate of deuterium-tritium plasma fusion reaction.

    图 8  两种方法聚变反应截面对比[19,20]

    Fig. 8.  Comparison of fusion cross sections of the two methods[19,20].

    Baidu
  • [1]

    Nuckolls J H 1982 Phys. Today 35 24Google Scholar

    [2]

    Johnson T H 2005 Proc. IEEE 72 548Google Scholar

    [3]

    Brysk H 1973 Plasma Phys. 15 611Google Scholar

    [4]

    Davis J, Petrov G M, Petrova T, Willingale L, Maksimchuk A, Krushelnick K 2010 Plasma Phys. Controlled Fusion 52 045015Google Scholar

    [5]

    Petrov G M, Higginson D P, Davis J, et al. 2013 Plasma Phys. Controlled Fusion 55 105009Google Scholar

    [6]

    Ditmire T, Zweiback J, Yanovsky V P, et al. 1999 Nature 398 6727Google Scholar

    [7]

    Bang W, Dyer G, Quevedo H J, Bernstein A C, Gaul E, Donovan M, Ditmire T 2013 Phys. Rev. E 87 023106Google Scholar

    [8]

    Bang W, Barbui M, Bonasera A, et al. T 2013 Phys. Rev. E 88 033108Google Scholar

    [9]

    Jung D, Falk K, Guler N, et al. 2013 Phys. Plasmas 20 056706Google Scholar

    [10]

    Ni M, Wang Y, Yuan B, Jiang J, Wu Y 2013 Fusion Eng. Des. 88 2422Google Scholar

    [11]

    Nie B, Ni M, Wei S 2017 J. Hazardous Mater. 327 135Google Scholar

    [12]

    Nie B, Ran G, Zeng Q, Du H, Li Z, Chen Y, Zhu Z, Zhao X, Ni M, Li F 2019 Energ. Sci. Eng. 7 457Google Scholar

    [13]

    He M Q, Cai H B, Zhang H, et al. 2015 Phys. Plasmas 22 44Google Scholar

    [14]

    Pomerantz I, Mccary E, Meadows A R, et al. 2014 Phys. Rev. Lett. 113 184801Google Scholar

    [15]

    Fausser C, Puma A L, Gabriel F, Villari R 2012 Fusion Eng. Des. 87 787Google Scholar

    [16]

    林尊琪 2006 第五届全国光子学大会会议论文集 黄山 2004年10月18日 p4

    Lin Z Q 2006 The Proc. the Fifth National Conference on Photonics Huangshan, China, October 18, 2004 p4 (in Chinese)

    [17]

    樊铁栓, 黄钢, 冯玉清 2005 原子能科学技术 39 28Google Scholar

    Fan T S, Huang G, Feng Y Q 2005 At. Energ. Sci. Technol. 39 28Google Scholar

    [18]

    Xu B, Ma Y, Yang X, Tang W, Wang S, Ge Z, Zhao Y, Ke Y 2017 Laser and Particle Beams 35 366Google Scholar

    [19]

    Bosch H S, Hale G M 1992 Nucl. Fusion 32 611Google Scholar

    [20]

    https://t2.lanl.gov/nis/data/endf/ [2019−3−28]

计量
  • 文章访问数:  12781
  • PDF下载量:  107
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-28
  • 修回日期:  2019-08-13
  • 上网日期:  2019-11-01
  • 刊出日期:  2019-11-05

/

返回文章
返回
Baidu
map