搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微合金化元素La对经Al-5Ti-1B处理的Al-Mg合金凝固组织影响

李赐宇 张丽丽 张悦 江鸿翔 赵九洲 何杰

引用本文:
Citation:

微合金化元素La对经Al-5Ti-1B处理的Al-Mg合金凝固组织影响

李赐宇, 张丽丽, 张悦, 江鸿翔, 赵九洲, 何杰

Influence of micro-alloying element La on solidification microstructure of Al-Mg alloy inoculated with Al-5Ti-1B

LI Ciyu, ZHANG Lili, ZHANG Yue, JIANG Hongxiang, ZHAO Jiuzhou, HE Jie
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 实验研究了微合金化元素La对经Al-5Ti-1B细化处理的Al-Mg合金凝固组织的影响, 发现添加微量的La可进一步细化Al-Mg合金凝固组织, 降低α-Al的形核过冷度. 建立了微合金化元素La在Al合金熔体和TiB2界面处偏析行为模型, 探明了微合金化元素La增强TiB2粒子对α-Al异质形核能力的作用机理, 计算结果表明, 微合金化元素La富集于Al熔体和TiB2粒子间界面处, 降低TiB2和α-Al间的界面能和接触角, 增强TiB2对α-Al的形核能力, 进一步细化基体晶粒组织.
    Grain refinement is an effective method to enhance the comprehensive properties of alloys. In industrial production, Al-5Ti-1B master alloys are commonly used to refine the microstructure of aluminum alloys. However, the grain refinement potency of Al-Ti-B master alloys is limited and cannot meet the requirements for high-performance aluminum alloy applications. It has been demonstrated that adding trace amount of micro-alloying element La to the aluminum alloy melt inoculated with Al-5Ti-1B master alloy can further refine the solidification microstructure. Previous research indicates that the addition of 0.06% (weight percent) La is sufficient to achieve an ideal α-Al grain refinement. Our recent experimental results demonstrate that for an Al-Mg alloy of high Mg content inoculated with Al-5Ti-1B master alloy, the optimal addition level of La is about 0.02% (weight percent).Solidification experiments are carried out for Al-Mg alloys inoculated with Al-5Ti-1B master alloy and different addition levels of micro-alloying element La. It is demonstrated that the trace addition of micro-alloying element La shows a further grain refinement effect on Al-Mg alloy and reduces the nucleation undercooling of α-Al. A model is proposed for the segregation behavior of micro-alloying element La at the interface between the Al alloy melt and TiB2. The mechanism of the enhancement in the efficiency of TiB2 particles to nucleate α-Al by micro-alloying element La is clarified. The calculation results indicate that La shows a strong segregation tendency toward the interface between the Al melt and TiB2 particles, thus reducing the interfacial energy and contact angle between TiB2 and α-Al, enhancing the efficiency of TiB2 to nucleate α-Al, and further refining α-Al grains.
  • 图 1  Al-2.5Mg合金OM图像 (a) 未添加Al-5Ti-1B和La; (b) 添加0.4% Al-5Ti-1B; (c) 添加0.4% Al-5Ti-1B+0.02% La; (d)添加0.4% Al-5Ti-1B+0.04% La; (e)添加0.4% Al-5Ti-1B+0.06%La

    Fig. 1.  OM images of Al-2.5Mg alloys: (a) Without any inoculation and inoculated; (b) with 0.4% Al-5Ti-1B; (c) with 0.4% Al-5Ti-1B+0.02% La; (d) with 0.4% Al-5Ti-1B+0.04% La; (e) with 0.4% Al-5Ti-1B+0.06%La.

    图 2  经0.4% Al-5Ti-1B细化处理的Al-2.5Mg合金的平均晶粒尺寸随La添加量的变化

    Fig. 2.  Average size of α-Al grains in Al-2.5Mg alloys inoculated with 0.4% Al-5Ti-1B master alloy varied with La addition level.

    图 3  (a) Al-2.5Mg合金的DTA熔化和冷却曲线; (b) $ \left({T}_{\text{L}}- $$ {T}_{\text{N}}\right) $和$ \left({T}_{\text{N}}-{T}_{\text{P}}\right) $随La添加量($ {c}_{\text{0La}} $)的变化

    Fig. 3.  (a) DTA heating and cooling curves for the Al-2.5Mg alloy without any inoculation; (b) $ \left({T}_{\text{L}}-{T}_{\text{N}}\right) $ and $ \left({T}_{\text{N}}-{T}_{\text{P}}\right) $ for Al-2.5Mg alloys inoculated with 0.4% Al-5Ti-1B master alloy varied with the La addition level $ {c}_{\text{0La}} $ $ {\left({T}_{\text{L}}-{T}_{\text{N}}\right)}_{0} $ and $ {\left({T}_{\text{N}}-{T}_{\text{P}}\right)}_{0} $ are respectively for the Al-2.5Mg alloys without any inoculation.

    图 4  添加0.06% La的经0.4% Al-5Ti-1B处理的Al-2.5Mg合金 (a) SEM图, 插图为白色相的成分; (b) 元素Al, (c) 元素Mg, (d) La的X射线能量散谱图

    Fig. 4.  Al-2.5Mg alloy inoculated with 0.4% Al-5Ti-1B+0.06% La: (a) SEM image, inset shows the compositions of the white phase; (b)–(d) energy dispersive X-ray spectroscopy maps of Al (b), Mg (c), La (d).

    图 5  (a) $ f\left(\theta \right) $随θ 的变化; (b) θ 随$ {c}_{\text{0La}} $的变化

    Fig. 5.  (a) $ f\left(\theta \right) $ as a function of θ; (b) θ as a function of $ {c}_{\text{0La}} $.

    图 6  TL = 920 K时, $ x_{i}^{\text{In}} $和$ \Delta {\gamma }_{{{\text{Al(L)/TiB}}_{2}}\text{(S)}} $随$ x_{i}^{\text{Mat}} $的变化

    Fig. 6.  $ x_{i}^{\text{In}} $ and $ \Delta {\gamma }_{{{\text{Al(L)/TiB}}_{2}}\text{(S)}} $ varied with $ x_{i}^{\text{Mat}} $ at TL = 920 K.

    图 7  QLa随$ {c}_{\text{0La}} $的变化

    Fig. 7.  QLa varied with $ {c}_{\text{0La}} $.

    表 1  计算生长限制因子所需参数及Qi

    Table 1.  Data required for the calculation of growth restriction factor and the calculated Qi under the present experimental conditions.

    Element $ {k}_{i} $ $ {m}_{\text{L}i}{/}\left(\text{K}\cdot{\text{%}}^{-1}\right) $ $ {c}^{\prime}_{\text{S}i}/{\text{%}} $ $ {c}^{\prime}_{\text{L}i}{\text{%}} $ Qi/K Reference
    La 0.004 –1.71 0.05 11.7 $\leqslant 0.09 $ [22]
    Mg 0.54 –7.35 15.2 28.3 8.45 [32]
    Ti 7.8 33.3 2.54 [33]
    下载: 导出CSV
    Baidu
  • [1]

    Kramer L, Phillippi M, Tack W T, Wong C 2012 J. Mater. Eng. Perform. 21 1025Google Scholar

    [2]

    Vrsalović L, Kliškić M, Radošević J, Gudić S 2005 J. Appl. Electrochem. 35 1059Google Scholar

    [3]

    Popović M, Romhanji E 2002 J. Mater. Process. Technol. 125–126 275

    [4]

    Estrin Y, Vinogradov A 2013 Acta Mater. 61 782Google Scholar

    [5]

    Kuzmina M, Ponge D, Raabe D 2015 Acta Mater. 86 182Google Scholar

    [6]

    Huang C Q, Liu J X, Jia X D 2019 Int. J. Miner. Metall. Mater. 26 1140Google Scholar

    [7]

    Lu R Q, Zhang L, Zheng S W, Fu D F, Teng J, Chen J C, Zhao G D, Jiang F L, Zhang H 2022 Int. J. Miner. Metall. Mater. 29 108Google Scholar

    [8]

    Fan Z, Wang Y, Zhang Y, Qin T, Zhou X R Thompson G E, Pennycook T, Hashimoto T 2015 Acta Mater. 84 292Google Scholar

    [9]

    Li J H, Hage F S, Ramasse Q M, Schumacher P 2021 Acta Mater. 206 116652Google Scholar

    [10]

    吴俊子, 贾锦玉, 姜佳鑫 2018 稀土信息 2 30

    Wu J Z, Jia J Y, Jiang J X 2018 Rare Earth Inform. 2 30

    [11]

    Zheng Q J, Jiang H X, He J, Zhang L L, Zhao J Z 2021 Sci. China Technol. Sc. 64 2012Google Scholar

    [12]

    郑秋菊, 叶中飞, 江鸿翔, 卢明, 张丽丽, 赵九洲 2021 金属学报 57 103

    Zheng Q J, Ye Z F, Jiang H X, Lu M, Zhang L L, Zhao J Z, 2021 Acta Metall. Sin. 57 103

    [13]

    杨林洁, 张丽丽, 江鸿翔, 何杰, 赵九洲 2023 72 086401Google Scholar

    Yang L J, Zhang L L, Jiang H X, He J, Zhao J Z 2023 Acta Phys. Sin. 72 086401Google Scholar

    [14]

    Zhang L L, Jiang H X, Zhao J Z, He J 2017 J. Mater. Process. Technol. 246 205Google Scholar

    [15]

    Han Y F, Shu D, Wang J, Sun B D 2006 Mater. Sci. Eng. A 430 326Google Scholar

    [16]

    Kori S A, Murty B S, Chakraborty M 1999 Mater. Sci. Eng. 15 986

    [17]

    丁旭, 孟令刚, 姜立, 房灿峰, 周秉文, 亚斌, 赵丰, 张兴国 2018 特种铸造及有色合金 38 772

    Ding X, Meng L G, Jiang L, Fang C F, Zhou B W, Ya B, Zhao F, Zhang X G 2018 Spec. Cast. Nonferrous Alloys 38 772

    [18]

    李敏敏, 张恒华, 邵光杰, 许珞萍, 马竹青, 张先念 2005 特种铸造及有色合金 25 61

    Li M M, Zhang H H, Shao G J, Xu L P, Ma Z Q, Zhang X N 2005 Spec. Cast. Nonferrous Alloys 25 61

    [19]

    Li J H, Hage F S, Ramasse Q M, Schumacher P 2021 Acta Mater. 206 1359

    [20]

    Cheng X H, Mao J 2017 Hot Working Technol. 46 95

    [21]

    Zhang L L, Zheng Q J, Jiang H X, He J, Zhao J Z 2020 J. Mater. Sci. 55 7546Google Scholar

    [22]

    Elliott R P, Shunk F A 1981 Bull. Alloy Phase Diagrams 2 219Google Scholar

    [23]

    Jones G P, Pearson J 1976 Metall. Trans. 7 223Google Scholar

    [24]

    Liu D M, Zhao J Z, Ye H Q 2004 Mater. Sci. Eng. A 372 229Google Scholar

    [25]

    李淑波, 杜文博, 王旭东, 刘轲, 王朝辉 2018 金属学报 54 911

    Li S B, Du W B, Wang X D, Liu K, Wang C H 2018 Acta Metall. Sin. 54 911

    [26]

    Zhang L L, Zheng Q J, Jiang H X, Zhao J Z 2019 Scr. Mater. 160 25Google Scholar

    [27]

    Wynblatt P 2008 Annu. Rev. Mater. Res. 38 173Google Scholar

    [28]

    Men H, Fan Z Y 2014 Metall. Mater. Trans. A 45 5508Google Scholar

    [29]

    Wynblatt P, Chatain D 2006 Metall. Mater. Trans. A 37 2595Google Scholar

    [30]

    张丽丽, 吉宗威, 赵九洲, 何杰, 江鸿翔 2023 金属学报 59 1541

    Zhang L L, Ji Z W, Zhao J Z, He J, Jiang H X 2023 Acta Metall. Sin. 59 1541

    [31]

    Zhang L L, Jiang H X, He J, Zhao J Z 2020 Scr. Mater. 179 99Google Scholar

    [32]

    Zhong Y, Yang M, Liu Z K 2005 Calphad 29 303Google Scholar

    [33]

    Mohanty P S, Gruzleski J E 1995 Acta Metall. Mater. 43 2001Google Scholar

  • [1] 王博, 江鸿翔, 张丽丽, 何杰. 微量Mg及热处理对Al-7Si合金组织和性能的影响.  , doi: 10.7498/aps.74.20250776
    [2] 杨林洁, 张丽丽, 江鸿翔, 何杰, 赵九洲. 微量元素La和Al-5Ti-1B复合细化Al-Cu机理.  , doi: 10.7498/aps.72.20222334
    [3] 姚建刚, 宫裕祥, 江勇. 微合金化元素Cu/Ti在L12-Al3Sc/Al界面的偏析行为.  , doi: 10.7498/aps.71.20212156
    [4] 宋岩, 江鸿翔, 赵九洲, 何杰, 张丽丽, 李世欣. Al-Ti-B细化工业纯铝凝固组织演变过程数值模拟.  , doi: 10.7498/aps.70.20201431
    [5] 钱圣男, 董闯. Mg-Al系工业合金牌号的成分式解析.  , doi: 10.7498/aps.66.136103
    [6] 郭志超, 李平林. 晶粒细化对MgB2超导临界电流密度的作用.  , doi: 10.7498/aps.63.067401
    [7] 薛丽, 易林. Al掺杂对合金Mg1-xTix及其氢化物稳定性的影响.  , doi: 10.7498/aps.62.138801
    [8] 段永华, 孙勇, 何建洪, 彭明军, 郭中正. Pb-Mg-Al合金腐蚀机理的电子理论研究.  , doi: 10.7498/aps.61.046101
    [9] 赵荣达, 朱景川, 刘勇, 来忠红. FeAl(B2) 合金La, Ac, Sc 和 Y 元素微合金化的第一性原理研究.  , doi: 10.7498/aps.61.137102
    [10] 管仁国, 赵占勇, 黄红乾, 连超, 钞润泽, 刘春明. 冷却倾斜板熔体处理过程边界层分布及流动传热的理论研究.  , doi: 10.7498/aps.61.206602
    [11] 曹鹏涛, 张青川, 符师桦, 胡琦, 高云. Al-Mg合金中锯齿形屈服现象的热分析.  , doi: 10.7498/aps.59.458
    [12] 侯兆阳, 刘丽霞, 刘让苏, 田泽安. Al-Mg合金熔体快速凝固过程中微观结构演化机理的模拟研究.  , doi: 10.7498/aps.58.4817
    [13] 刘贵立. Mg合金晶粒细化机理的电子理论研究.  , doi: 10.7498/aps.58.3319
    [14] 曹鹏涛, 张青川, 肖锐, 熊少敏. 红外测温法研究Al-Mg合金中的Portevin-Le Chatelier效应.  , doi: 10.7498/aps.58.5591
    [15] 任 榕, 吴玉程, 汤文明, 汪峰涛, 郑治祥. 退火诱导机械合金化Fe42.5Al42.5Ti5B10合金的结构演变与晶粒生长动力学.  , doi: 10.7498/aps.57.5774
    [16] 刘贵立. Mg-Zr合金微观组织电子结构研究.  , doi: 10.7498/aps.57.1043
    [17] 张国英, 张 辉, 刘春明, 周永军. 微合金化元素晶界偏聚与钢的超细化理论研究.  , doi: 10.7498/aps.55.1369
    [18] 郭建亭, 李玉芳, 熊良钺, 叶恒强. 合金元素Zr韧化不同计量比Ni3Al合金的微观机制.  , doi: 10.7498/aps.54.1868
    [19] 张国英, 张 辉, 刘春明, 周永军. 钢铁材料中形变诱导相变超细化机理研究.  , doi: 10.7498/aps.54.1771
    [20] 杜志伟, 周铁涛, 赵 辉, 冯林平, 董宝中, 陈昌麒. Al-Zn-Mg-Cu合金时效过程的小角度x射线散射研究.  , doi: 10.7498/aps.53.3601
计量
  • 文章访问数:  391
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-08-20
  • 修回日期:  2025-09-17
  • 上网日期:  2025-10-22

/

返回文章
返回
Baidu
map