搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电子束注入对于偶极磁场约束等离子体的影响

潘宇浩 王志斌 陈坚 叶卓晖 易祖宁 肖青梅 毛傲华 张仲麟 聂秋月

引用本文:
Citation:

电子束注入对于偶极磁场约束等离子体的影响

潘宇浩, 王志斌, 陈坚, 叶卓晖, 易祖宁, 肖青梅, 毛傲华, 张仲麟, 聂秋月

Simulations of effect of electron beam injection on dipole magnetic field confined plasma

PAN Yuhao, WANG Zhibin, YE Zhuohui, YI Zuning, CHEN Jian, XIAO Qingmei, MAO Aohua, ZHANG Zhonglin, NIE Qiuyue
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 偶极磁场约束等离子体特性及其与带电粒子束的相互作用研究是近地空间磁层等离子体研究领域关心的一类重要问题. 本研究采用PIC(particle in cell)方法, 通过开源的Smilei程序, 研究了电子束注入偶极磁场约束等离子体的三维动力学演化行为. 模拟了不同注入角度电子束对等离子体的影响, 给出了电子束及等离子体的时空演化过程和行为解释. 结果显示, 偶极磁场中的等离子体沿磁场线形成“新月形”壳结构分布, 壳中形成内外相反方向的环形电流. 当电子束的注入角度与磁场方向的夹角过大(超过20°), 且漂移速度未对准偶极场中心时. 大多数电子束粒子将在偶极磁场中漂移, 散射并弹出模拟区域, 无法与偶极磁场约束的等离子体发生相互作用. 未来我国的偶极磁场约束等离子体研究装置在开展电子束与等离子体相互作用的实验时, 有必要选择适当的电子束入射方向, 以确保电子束能够进入偶极磁场的核心区域并与原来约束的等离子体进行相互作用. 同时模拟结果显示电子束注入会使得等离子体环形电流在环向上变得不均匀. 本研究有助于深入了解偶极磁场中的等离子体动力学行为特性, 对于保障我国空间等离子体研究装置完成预期科学目标具有实际价值.
    Research into the characteristics of dipole magnetic field-confined plasmas and their interaction with charged particle beams is critical for understanding near-Earth magnetospheric plasma. In this paper, a fully relativistic electromagnetic particle-in-cell (PIC) method, implemented with the open-source code Smilei, is used to perform three-dimensional kinetic simulations of the evolution of electron beams injected into the dipole magnetic field confined plasmas. The simulation adopts a uniform grid with 256 cells in each spatial direction, neglects collisional effects, and considers a plasma consisting only of electrons and ions. The initial plasma with a number density of 1×1012 m–3 is configured as a rectangular toroidal structure with a square cross-section. An externally prescribed dipole magnetic field is applied to the simulation domain. This field is generated by an ideal current loop centered in the grid’s x-y plane, with a loop radius of 1/8 the grid length a current magnitude of 4000 A, and a maximum magnetic field strength of 6000 G. Under these conditions, the ratio of electron plasma frequency to gyrofrequency ranges from 5.3×10–4 to 3.2, and the plasma beta varies from 2.24×10–10 to 8×10–3. The grid cell size is set to 0.05 times the electron Debye length, and the time step is 0.95 times the CFL time step. The simulation runs for a total of 20000 steps to achieve a quasi-steady state. The electron beams with a temperature of 10 eV and a drift velocity of 1×107 m/s are injected from the x-min boundary of the grid at angles of 0°, 30°, and 60° relative to the positive x-axis, to explore the influence of electron beams with varying injection angles on the dipole magnetic field confined plasma.The simulation results demonstrate the spatiotemporal evolution and behavior of the electron beam and plasma. Specifically, the plasma confined by a dipole magnetic field forms a crescent-shaped shell structure that aligns with magnetic field lines, with toroidal currents of opposite directions generated inside and outside the shell. When the electron beam is injected at incident angles of 0° and 30°, drift effects cause most of beam particles to concentrate along a specific magnetic field line on the x = y plane. Additionally, the drift current induced by electron beam injection changes the distribution of the central toroidal current in the main plasma, resulting in localized enhancement and attenuation of the toroidal current. In contrast, at an injection angle of 60°, the vast majority of beam particles are scattered by the dipole magnetic field, and fail to reach the central region to interact with the main plasma. Simulation findings further indicate that when the electron beam’s injection angle relative to the magnetic field direction exceeds 20° and its drift velocity is misaligned with the dipole field center, most of beam particles scatter and are ejected from the simulation domain, precluding interaction with the dipole-confined plasma. For future experimental devices studying the interactions between electron beam and plasma in dipole magnetic field confinement systems, choosing an appropriate beam injection direction is critical to ensure that the electrons can reach the core region of the dipole field and interact with the confined plasma. This study offers valuable insights into the dynamic behavior of plasma in dipole magnetic fields, aiding space plasma research facilities in achieving their designed scientific objectives.
  • 图 1  计算域示意图

    Fig. 1.  Schematic diagram of the simulation domain.

    图 2  注入角为0°的电子束作用下等离子体的电荷密度分布 (a), (c), (e)分别为1000步、8000步和20000步时刻的二维分布; (b), (d), (f)分别为1000步、8000步和20000步时刻的三维分布

    Fig. 2.  Charge number density distribution of the plasma under beam injection with an injection angle of 0°: (a), (c), (e) Two-dimensional distributions at 1000 steps, 8000 steps, and 20000 steps, respectively; (b), (d), (f) three-dimensional distributions at 1000 steps, 8000 steps, and 20000 steps, respectively.

    图 3  注入角度为0°的电子束作用下不同时刻的三维电荷密度分布俯视图 (a) t = 8000Δt; (b) t = 10000Δt; (c) t = 15000Δt; (d) t = 20000Δt

    Fig. 3.  Top view of the three-dimensional charge number density distribution at different moments under beam injection with an injection angle of 0°: (a)t = 8000Δt; (b) t = 10000Δt; (c) t = 15000Δt; (d) t = 20000Δt.

    图 4  注入角度为0°的电子束作用下不同时间步长网格对角线平面(x = y平面)处扰动磁场的流线和分布 (a) t = 1000Δt; (b) t = 5000Δt; (c) t = 8000Δt; (d) t = 20000Δt

    Fig. 4.  Streamlines and distributions of the disturbed magnetic field on the grid diagonal plane (x = y plane) with 0° injection angle at different time steps: (a) t = 1000Δt; (b) t = 5000Δt; (c) t = 8000Δt; (d) t = 20000Δt.

    图 5  无电子束注入时网格对角线平面(x-z平面)处扰动磁场的流线和分布 (a) t = 1000Δt; (b) t = 5000Δt

    Fig. 5.  Streamline and distribution of the disturbed magnetic field in the diagonal plane (x-z plane) of the grid when injected without electron beam: (a) t = 1000Δt; (b) t = 5000Δt.

    图 6  无电子束注入时不同时间步长的电流密度分量剖面图 (a) Jx沿穿过赤道平面中心的y方向线; (b) Jy沿着穿过赤道平面中心的x方向线

    Fig. 6.  Profiles of the current density components at different time steps in the case without beam injection: (a) Jx along the y-direction line through the center of the equatorial plane; (b) Jy follows the line of x through the center of the equatorial plane.

    图 7  注入角为0°的电子束作用下不同时间步长网格对角线平面(x = y平面)电场的流线和分布 (a) t = 1000Δt; (b) t = 5000Δt; (c) t = 8000Δt; (d) t = 20000Δt

    Fig. 7.  Streamlines and distributions of the electric field on the grid diagonal plane (x = y plane) with 0° injection angle at different time steps: (a) t = 1000Δt; (b) t = 5000Δt; (c) t = 8000Δt; (d) t = 20000Δt.

    图 8  注入角度为0°的电子束作用下, 穿过网格中心的x-y平面上的Jx分布 (a) t = 1000Δt; (b) t = 5000Δt; (c) t = 10000Δt; (d) t = 20000Δt

    Fig. 8.  Jx distribution on the x-y plane through the center of the grid with 0° injection angle at different time steps: (a) t = 1000Δt; (b) t = 5000Δt; (c) t = 10000Δt; (d) t = 20000Δt.

    图 9  注入角度为0°的电子束作用下通过网格中心的x-y平面上的Jy分布 (a) t = 1000Δt; (b) t = 5000Δt; (c) t = 10000Δt; (d) t = 20000Δt

    Fig. 9.  Jy distribution on the x-y plane through the center of the grid with 0° injection angle at different time steps: (a) t = 1000Δt; (b) t = 5000Δt; (c) t = 10000Δt; (d) t = 20000Δt.

    图 10  注入角为0°的电子束作用下不同时间步长的电流密度分量剖面图 (a) Jx沿穿过赤道平面中心的y方向线; (b) Jy沿着穿过赤道平面中心的x方向线

    Fig. 10.  Profiles of current density components at different time steps under beam injection with an injection angle of 0°: (a) Jx along the y-direction line through the center of the equatorial plane; (b) Jy along the x-direction line through the center of the equatorial plane

    图 11  注入角为30°的电子束作用下等离子体的电荷密度分布 (a), (c), (e)分别为t = 1000Δt, t = 8000Δtt = 20000Δt时的二维空间分布; (b), (d), (f)分别为t = 1000Δt, t = 8000Δtt = 20000Δt时的三维空间分布

    Fig. 11.  The charge number density distribution of plasma under electron beam injection with an injection angle of 30°: (a), (c), (e) The two-dimensional spatial distribution of t = 1000Δt; t = 8000Δt and t = 20000Δt; respectively; (b), (d), (f) the three-dimensional spatial distributions at t = 1000Δt, t = 8000Δt and t = 20000Δt, respectively.

    图 12  注入角度为30°的电子束作用下不同时刻网格对角线平面(x = y平面)处扰动磁场的流线和分布 (a) t = 1000Δt; (b) t = 5000Δt; (c) t = 8000Δt; (d) t = 20000Δt

    Fig. 12.  Streamlines and distributions of the disturbed magnetic field on the diagonal plane (x = y plane) with 30° injection angle at different time steps: (a) t = 1000Δt; (b) t = 5000Δt; (c) t = 8000Δt; (d) t = 20000Δt.

    图 13  注入角度为30°的电子束作用下不同时刻网格对角线平面(x = y平面)上的电场流线和分布 (a) t = 1000Δt; (b) t = 5000Δt; (c) t = 8000Δt; (d) t = 20000Δt

    Fig. 13.  Streamlines and distributions of the electric field on the diagonal plane (x = y plane) with 30° injection angle at different time steps: (a) t = 1000Δt; (b) t = 5000Δt; (c) t = 8000Δt; (d) t = 20000Δt.

    图 14  注入角度为30°的电子束作用下不同时刻电流密度分量剖面图 (a) Jx沿穿过赤道平面中心的y方向线; (b) Jy沿着穿过赤道平面中心的x方向线

    Fig. 14.  Profiles of current density components at different time steps under beam injection with an injection angle of 30°: (a) Jx along the y-direction line through the center of the equatorial plane; (b) Jy along the x-direction line through the center of the equatorial plane.

    图 15  注入角为60°的电子束作用下等离子体的电荷密度分布 (a), (c), (e)分别为t = 1000Δt, t = 8000Δtt = 20000Δt时的二维空间分布; (b), (d), (f)分别为t = 1000Δt, t = 8000Δtt = 20000Δt时的三维空间分布

    Fig. 15.  The charge number density distribution of plasma under electron beam injection with an injection angle of 60°: (a), (c), (e) The two-dimensional spatial distribution of t = 1000Δt, t = 8000Δt and t = 20000Δt, respectively; (b), (d), (f) the three-dimensional spatial distributions at t = 1000Δt, t = 8000Δt and t = 20000Δt, respectively.

    图 16  不同电子束注入情形下, 赤道面处主等离子体形成的环形电流分布 (a) 无电子束注入; (b) 以0°入射角入射; (c) 以30°入射角入射; (d) 以60°入射角入射

    Fig. 16.  The annular current distribution formed by the main plasma at the equatorial plane under different electron beam injection conditions: (a) Without electron beam injection; (b) incident at an angle of 0°; (c) incident at an angle of 30°; (d) incident at an angle of 60°.

    Baidu
  • [1]

    Levitt B, Maslovsky D, Mauel M E 2005 Phys. Rev. Lett. 94 175002Google Scholar

    [2]

    Baitha A R, Kumar A, Bhattacharjee S 2018 Rev. Sci. Instrum. 89 23503Google Scholar

    [3]

    Saitoh H, Yoshida Z, Morikawa J, Yano Y, Hayashi H, Mizushima T, Kawai Y, Kobayashi M, Mikami H 2010 Phys. Plasmas 17 112111Google Scholar

    [4]

    王敬之, 马新, 项正, 顾旭东, 焦鹿怀, 雷良建, 倪彬彬 2022 71 229401Google Scholar

    Wang Z J, Ma X, Xiang Z, Gu X D, Jiao L H, Lei L J, Ni B B 2022 Acta Phys. Sin. 71 229401Google Scholar

    [5]

    朱琪, 马新, 曹兴, 倪彬彬, 项正, 付松, 顾旭东, 张援农 2022 71 051101Google Scholar

    Zhu Q, Ma X, Cao X, Ni B B, Xiang Z, Fu S, Gu X D, Zhang Y N 2022 Acta Phys. Sin. 71 051101Google Scholar

    [6]

    常珊珊, 倪彬彬, 赵正予, 汪枫, 李金星, 赵晶晶, 顾旭东, 周晨 2014 63 069401Google Scholar

    Chang S S, Ni B B, Zhao Z Y, Wang F, Li J X, Zhao J J, Gu X D, Zhou C 2014 Acta Phys. Sin. 63 069401Google Scholar

    [7]

    倪彬彬, 赵正予, 顾旭东, 汪枫 2008 57 7937Google Scholar

    Ni B B, Zhao Z Y, Gu X D, Wang F 2008 Acta Phys. Sin. 57 7937Google Scholar

    [8]

    顾旭东, 赵正予, 倪彬彬, 王翔, 邓峰 2008 57 6673Google Scholar

    Gu X D, Zhao Z Y, Ni B B, Wang X, Deng F 2008 Acta Phys. Sin. 57 6673Google Scholar

    [9]

    Korotova G I, Sibeck D G, Tahakashi K, Dai L, Spence H E, Kletzing C A, Wygant J R, Manweiler J W, Moya P S, Hwang K J, Redmon R J 2015 Ann. Geophys. 33 955Google Scholar

    [10]

    Zong Q G, Hao Y Q, Wang Y F 2009 Sci. China Ser. E-Technol. Sci. 52 3698Google Scholar

    [11]

    Zong Q G, Wang Y F, Yang B, Fu S Y, Pu Z Y, Xie L, Fritz T A 2008 Sci. China Ser. E-Technol. Sci. 51 1620Google Scholar

    [12]

    Van Compernolle B, An X, Bortnik J, Thorne R M, Pribyl P, Gekelman W 2015 Phys. Rev. Lett. 114 245002Google Scholar

    [13]

    Chen J, Powis A T, Kaganovich I D, Wang Z B, Yu Y 2025 Phys. Rev. Lett. 135 45301Google Scholar

    [14]

    Nishio K, Mori K, Alpert H S 2025 AIAA Scitech Forum AIAA 2025

    [15]

    Huang H, Wang Z B, Wang X G, Tao X 2018 Chin. Phys. B 27 015201Google Scholar

    [16]

    Huang H, Wang Z B, Wang X G, Tao X. 2019 Phys. Plasmas 26 022106Google Scholar

    [17]

    Xiao Q M, Wang Z B, Wang X G, Xiao C J, Yang X Y, Zheng J X 2017 Plasma Sci. Technol. 19 35301Google Scholar

    [18]

    刘腾, 张国书, 杜俊杰, 杨庆喜, 黄淑龙, 刘云辉 2022 核聚变与等离子体物理 42 271

    Liu T, Zhang G S, Du J J, Yang Q X, Huang S L, Liu Y H 2022 Nucl. Fusion Plasma Phys. 42 271

    [19]

    孙玄, 刘明, 谢锦林, 余羿, 林木楠, 张情 2014 中国科学技术大学学报 44 374

    Sun X, Liu M, Xie J L, Yu Y, Lin M N, Zhang Q 2014 J. Univ. Sci. Technol. China 44 374

    [20]

    Xiao C J, Chen Y H, Yang X Y, Xu T C, Wang L, Xu M, Guo D, Yu Y, Lin C 2016 Rev. Sci. Instrum. 87 11D610Google Scholar

    [21]

    Sun C J, Sang C F, Ye H, Wang Q, Liu H, Wang Z H, Wang H J, Ke R, Wang Y, Zhang Y J, Wang D Z 2021 Fusion Eng. Des. 162 112074Google Scholar

    [22]

    王志斌, 沈炀, 余羿, 陈坚 2024 南方能源建设 11 1

    Wang Z B, Shen Y, Yu Y, Chen J 2024 Southern Energy Construction 11 1

    [23]

    Zhukovsky A, Michael P C, Schultz J H, Smith B A, Minervini J V, Kesner J, Radovinsky A, Garnier D, Mauel M 2005 Fusion Eng. Des. 75–79 29

    [24]

    Saitoh H, Yoshida Z, Morikawa J, Furukawa M, Yano Y, Kawai Y, Kobayashi M, Vogel G, Mikami H 2011 Phys. Plasmas 18 056102Google Scholar

    [25]

    Barnes C W, Jarboe T R, Henins I, Sherwood A R, Knox S O, Gribble R, Hoida H W, Klingner P L, Lilliequist C G, Linford R K, Platts D A, Spencer R L, Tuszewski M 1984 Nucl. Fusion 24 267Google Scholar

    [26]

    Yoshida Z, Ogawa Y, Morikawa J, Watanabe S, Yano Y, Mizumaki S, Tosaka T, Ohtani Y, Hayakawa A, Shibui M 2006 Plasma Fusion Res. 1 8Google Scholar

    [27]

    von der Linden J, Nissl S, Deller A, Singer M, Belmore N, Hugenschmidt C P, Pedersen T S, Saitoh H, Stenson E V 2024 Eur. Phys. J. D 78 146Google Scholar

    [28]

    Deller A, von der Linden J, Ni Ss L S, Michishio K, Oshima N, Higaki H, Stenson E V 2024 Phys. Rev. E 110 L23201

    [29]

    Derouillat J, Beck A, Pérez F, Vinci T, Chiaramello M, Grassi A, Flé M, Bouchard G, Plotnikov I, Aunai N, Dargent J, Riconda C, Grech M 2018 Comput. Phys. Commun. 222 351Google Scholar

    [30]

    Sun J, Gao X, Chen L, Lu Q, Tao X, Wang S 2016 Phys. Plasmas 23 22901Google Scholar

    [31]

    Ortner M, Bandeira L G C 2020 SoftwareX 11 100466Google Scholar

  • [1] 丁明松, 刘庆宗, 江涛, 傅杨奥骁, 李鹏, 梅杰. 表面烧蚀对等离子体的影响及其与电磁场相互作用.  , doi: 10.7498/aps.73.20231733
    [2] 颜劭祺, 高继昆, 陈越, 马尧, 朱晓东. 电子束透射氮化硅薄膜窗产生低密度等离子体.  , doi: 10.7498/aps.73.20240302
    [3] 李向富, 朱晓禄, 蒋刚. 等离子体对电子间相互作用的屏蔽效应研究.  , doi: 10.7498/aps.72.20222339
    [4] 邹秀, 刘惠平, 张小楠, 邱明辉. 具有非广延分布电子的碰撞等离子体磁鞘的结构.  , doi: 10.7498/aps.70.20200794
    [5] 赵晓云, 张丙开, 王春晓, 唐义甲. 电子的非广延分布对等离子体鞘层中二次电子发射的影响.  , doi: 10.7498/aps.68.20190225
    [6] 梁文龙, 王亦曼, 刘伟, 李洪义, 王金淑. 用于真空电子太赫兹器件的微型热阴极电子束源研究.  , doi: 10.7498/aps.63.057901
    [7] 成玉国, 程谋森, 王墨戈, 李小康. 磁场对螺旋波等离子体波和能量吸收影响的数值研究.  , doi: 10.7498/aps.63.035203
    [8] 邱明辉, 刘惠平, 邹秀. 斜磁场作用下碰撞电负性等离子体鞘层的玻姆判据.  , doi: 10.7498/aps.61.155204
    [9] 邹秀, 籍延坤, 邹滨雁. 斜磁场中碰撞等离子体鞘层的玻姆判据.  , doi: 10.7498/aps.59.1902
    [10] 吴 迪, 宫 野, 刘金远, 王晓钢, 刘 悦, 马腾才. 强流脉冲离子束烧蚀等离子体向背景气体中喷发的数值研究.  , doi: 10.7498/aps.56.333
    [11] 张永辉, 常安碧, 向 飞, 宋法伦, 康 强, 罗 敏, 李名加, 龚胜刚. 电功率20 GW重复频率强流电子束二极管研究.  , doi: 10.7498/aps.56.5754
    [12] 巩华荣, 宫玉彬, 魏彦玉, 唐昌建, 薛东海, 王文祥. 考虑到束-波相互作用的速调管离子噪声二维模拟.  , doi: 10.7498/aps.55.5368
    [13] 李 弘, 苏 铁, 欧阳亮, 王慧慧, 白小燕, 陈志鹏, 刘万东. 电子束产生大尺度等离子体过程的数值模拟研究.  , doi: 10.7498/aps.55.3506
    [14] 张永辉, 马乔生, 向 飞, 甘延青, 常安碧, 刘 忠, 周传明. 重复脉冲强流电子束传输技术研究.  , doi: 10.7498/aps.54.3111
    [15] 邹 秀, 刘金远, 王正汹, 宫 野, 刘 悦, 王晓钢. 磁场中等离子体鞘层的结构.  , doi: 10.7498/aps.53.3409
    [16] 张永辉, 江金生, 常安碧. 空心阴极等离子体电子枪研究.  , doi: 10.7498/aps.52.1676
    [17] 张军, 张杰, 陈清, 彭练矛, 苍宇, 王怀斌, 仲佳勇. 利用飞秒激光等离子体产生的超热电子进行衍射实验的可行性研究.  , doi: 10.7498/aps.51.1764
    [18] 傅喜泉, 刘承宜, 郭弘. 等离子体中X射线激光传输与电子密度诊断的理论及数值比较.  , doi: 10.7498/aps.51.1326
    [19] 董贾福, 唐年益, 李伟, 罗俊林, 郭干诚, 钟云泽, 刘仪, 傅炳忠, 姚良骅, 冯北滨, 秦运文. HL-1M装置超声分子束注入等离子体穿透特性的诊断.  , doi: 10.7498/aps.51.2074
    [20] 何斌, 常铁强, 张家泰, 许林宝. 超强激光场等离子体中电子纵向运动的研究.  , doi: 10.7498/aps.50.1939
计量
  • 文章访问数:  39
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-09-28
  • 修回日期:  2025-12-01
  • 上网日期:  2025-12-03

/

返回文章
返回
Baidu
map