-
本文基于二维流体模型,以平行板结构为基础,对高压电极介质表面具有微结构的大气压氧气脉冲放电进行了研究,重点分析了微结构诱导的混合放电及其增强机制。微结构的存在导致放电过程中电场畸变,电子在横向电场的作用下被局域束缚在微结构下方区域,放电呈现出电晕模式;同时由于凸起微结构的存在,该处放电间隙减小,纵向电场显著增强,从而引起微结构下方电晕放电与两侧平板放电产生放电时间上的不一致性。随着表面凸起微结构几何参数的增大,可进一步诱发二次放电。仿真结果表明,电晕放电的存在有效提高了电子密度、电子温度及高能电子的数量占比,增强了放电;高凸起条件电晕放电受到抑制的情况下,二次放电的产生,有效提高了高能电子的数量占比及空间内活性氧原子的平均数密度。这些发现为微结构引发的放电增强微观机制提供了深刻的见解,为设计高效的等离子体装置提供了方法指导。To investigate the enhancement mechanism of atmospheric-pressure oxygen pulsed discharge in a parallel-plate dielectric barrier discharge (DBD) with microstructures fabricated on the dielectric surface of the highvoltage electrode, this paper systematically analyzes the electron transport processes, the formation and evolution of electric fields, and the spatial distribution of particles using a two-dimensional fluid model. The introduction of microstructures induces significant electric field distortion, generating a strong transverse electric field that locally confines and focuses electrons beneath the micro-structured region, leading to the formation of a stable corona-mode discharge. Simultaneously, the reduced local discharge gap near the microstructure enhances the longitudinal electric field, resulting in a temporal asynchrony between the corona discharge under the microstructure and the parallel-plate discharge in the adjacent flat regions. As the geometric dimensions of the microstructures increase, a secondary discharge is triggered, further modulating the overall discharge behavior. Under conditions where the corona discharge is suppressed due to higher protrusions, the secondary discharge effectively compensates by increasing both the high-energy electron fraction and the spatially averaged density of reactive oxygen atoms. Simulation results reveal that the corona discharge and the secondary discharge significantly elevate electron density, electron temperature, and the proportion of highenergy electrons, thereby intensifying the discharge activity. These findings provide deep insight into the micro-mechanisms of microstructure-induced discharge enhancement and offer valuable guidance for the design of highly efficient plasma devices with tailored geometric features.
-
Keywords:
- Two-dimensional fluid model /
- Surface microstructure /
- Hybrid discharge /
- Corona discharge
-
[1] He S J, Zhao L F, Ha J, Fan W L, Li Q 2023 Phys. Scr. 98 015615
[2] Zhao L F, Ha J, Wang F F, Li Q, He S J 2022 Acta Phys. Sin. 71 025201 (in Chinese) [赵立芬,哈静,王非凡,李庆,何寿杰 2022 71 025201]
[3] Torbin A P, Demyanov A V, Kochetov I V, Mikheyev P A, Mebel A M 2022 Plasma Sources Sci. Technol. 31 035017
[4] Dai F B, Yuan J M, Xu K Y, Guo Z, Zhao H Q, Mao Y L 2021 Acta Phys. Sin. 70 178502 (in Chinese) [戴芳博,袁健美,许凯燕,郭政,赵洪泉,毛宇亮 2021 70 178502]
[5] Zhang H Y 2018 Plasma Etching And Its Application In Large Scale Integrated Circuit Manufacturing ((Beijing: Tsinghua University Press) pp100-110 (in Chinese) [张海洋 2018 等离子体蚀刻及其在大规模集成电路制造中的应用(北京:清华大学出版社)第100-110页]
[6] Benyamina M, Belasri A, Khodja K 2014 Ozone: Science & Engineering 36 253
[7] Vass M, Wilczek S, Lafleur T, Brinkmann R P, Donkó Z, Schulze J 2020 Plasma Sources Sci. Technol. 29 025019
[8] Komuro A, Yoshino A, Wei Z, Ono R 2023 J. Phys. D: Appl. Phys. 56 185201
[9] Zhang X X, Xiao H Y, Hu X X, Zhang Y 2018 IEEE Trans. Plasma Sci. 46 563
[10] Mao X Q, Zhong H T, Zhang T H, Starikovskiy A, Ju Y G 2022 Combust. Flame 240 112046
[11] Fang J L, Zhang Y Y, Lu C Z, Gu L L, Xu S F, Guo Y, Shi J J 2024 Chinese Phys. B 33 015201
[12] Liu K, Fang Z, Dai D 2023 Acta Phys. Sin. 72 135201 (in Chinese) [刘凯,方泽,戴栋 2023 72 135201]
[13] Li M, Zhu B, Yan Y, Li T, Zhu Y M 2018 Plasma Chem Plasma Process 38 1063
[14] Liu S, Li J M, Zeng Y Y, Chi F T, Xiao C J 2022 Curr. Appl. Phys. 44 12
[15] Zhou J C, Liao J, Huang J, Chen T Z, Lv B W, Peng Y C 2022 Vacuum 195 110678
[16] Wang X P, Shao T Q, Qin J Y, Li Y L, Long X, Jiang D B, Ding J G 2024 Ozone: Sci. Eng. 46 345
[17] Gu L L, Zhang Y Y, Fang J L, Xu S F, Guo Y, Shi J J 2023 Phys. Plasmas 30 103503
[18] Pokrovskii V S, Repin P B, Trushkina A N 2020 Tech. Phys. 65 182
[19] Zhu M, Hu S Y, Zhang Y H, Wu S Q, Zhang C H 2022 Plasma Sci. Technol. 24 065401
[20] Mujahid Z ul I, Kruszelnicki J, Hala A, Kushner M J 2020 Chem. Eng. J 382 123038
[21] Mujahid Z ul I, Korolov I, Liu Y, Mussenbrock T, Schulze J 2022 J. Phys. D: Appl. Phys. 55 495201
[22] Jodpimai S, Boonduang S, Limsuwan P 2015 J Electrostat 74 108
[23] Berger B, Mujahid Z, Neuroth C, Azhar M, Wang L, Zhang Q Z, Mussenbrock T, Korolov I, Schulze J 2024 Plasma Sources Sci. Technol. 33 125011
[24] Fang J J, Gu B B, Xu S F, Mei Y F, Guo Y, Shi J J 2025 Appl. Phys. Lett. 127 074101
[25] Polonskyi O, Hartig T, Uzarski J R, Gordon M J 2021 Appl. Phys. Lett. 119 211601
[26] Walsh J L, Iza F, Janson N B, Law V J, Kong M G 2010 J. Phys. D: Appl. Phys. 43 075201
[27] Liu Y, Korolov I, Trieschmann J, Steuer D, Schulz-von Der Gathen V, Böke M, Bischoff L, Hübner G, Schulze J, Mussenbrock T 2021 Plasma Sources Sci. Technol. 30 064001
[28] Park G, Lee H, Kim G, Lee J K 2008 Plasma Processes Polym. 5 569
[29] Lazzaroni C, Chabert P 2016 Plasma Sources Sci. Technol. 25 065015
[30] Hsu C C, Nierode M A, Coburn J W, Graves D B 2006 J. Phys. D: Appl. Phys. 39 3272
[31] Mennad B, Harrache Z, Amir Aid D, Belasri A 2010 Curr. Appl. Phys. 10 1391
[32] Stafford D S, Kushner M J 2004 J. Appl. Phys. 96 2451
[33] Sakiyama Y, Graves D B, Chang H W, Shimizu T, Morfill G E 2012 J. Phys. D: Appl. Phys. 45 425201
[34] He J, Zhang Y T 2012 Plasma Processes Polym. 9 919
[35] Jeong S Y, Nam W J, Lee J K, Yun G S 2018 J. Phys. D: Appl. Phys. 51 454001
[36] Yanallah K, Pontiga F, Fernández-Rueda A, Castellanos A, Belasri A 2008 J. Phys. D: Appl. Phys. 41 195206
[37] Bogdanov E A, Kudryavtsev A A, Tsendin L D, Arslanbekov R R, Kolobov V I, Kudryavtsev V V 2003 Tech. Phys. 48 983
[38] Gaens W V, Bogaerts A 2013 J. Phys. D: Appl. Phys. 46 275201
计量
- 文章访问数: 32
- PDF下载量: 1
- 被引次数: 0








下载: