搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微结构诱导电场畸变下混合放电的特性与增强机理

顾冰冰 方骏林 徐少锋 郭颖 石建军

引用本文:
Citation:

微结构诱导电场畸变下混合放电的特性与增强机理

顾冰冰, 方骏林, 徐少锋, 郭颖, 石建军

Characteristics and enhancement mechanism of hybrid discharge under microstructure-induced electric field distortion

GU Bingbing, FANG Junlin, XU Shaofeng, GUO Ying, SHI Jianjun
cstr: 32037.14.aps.74.20251303
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 本文基于二维流体模型, 以平行板结构为基础, 对高压电极介质表面具有微结构的大气压氧气脉冲放电进行了研究, 重点分析了微结构诱导的混合放电及其增强机制. 微结构的存在导致放电过程中电场畸变, 电子在横向电场的作用下被局域束缚在微结构下方区域, 放电呈现出电晕模式; 同时由于凸起微结构的存在, 该处放电间隙减小, 纵向电场显著增强, 从而引起微结构下方电晕放电与两侧平板放电产生放电时间上的不一致性. 随着表面凸起微结构几何参数的增大, 可进一步诱发二次放电. 仿真结果表明, 电晕放电的存在有效提高了电子密度、电子温度及高能电子的数量占比, 增强了放电; 高凸起条件电晕放电受到抑制的情况下, 二次放电的产生, 有效提高了高能电子的数量占比及空间内活性氧原子的平均数密度. 这些发现为微结构引发的放电增强微观机制提供了深刻见解, 为设计高效的等离子体装置提供理论基础.
    In order to investigate the enhancement mechanism of atmospheric-pressure oxygen pulsed discharge in a parallel-plate dielectric barrier discharge (DBD) with microstructures fabricated on the dielectric surface of the high-voltage electrode, this work systematically analyzes the electron transport processes, the formation and evolution of electric fields, and the spatial distribution of particles by using a two-dimensional fluid model. The introduction of microstructures can cause significant electric field distortion, generating a strong transverse electric field that locally confines and focuses electrons beneath the micro-structured region, leading to the formation of a stable corona-mode discharge. At the same time, the reduced local discharge gap near the microstructure enhances the longitudinal electric field, resulting in a temporal asynchrony between the corona discharge under the microstructure and the parallel-plate discharge in the adjacent flat regions. As the geometric dimensions of the microstructures increase, a secondary discharge is triggered, further modulating the overall discharge behavior. Under conditions where the corona discharge is suppressed by higher protrusions, the occurrence of secondary discharge effectively increases the proportion of high-energy electrons and the spatially averaged density of reactive oxygen atoms. Simulation results reveal that the corona discharge and the secondary discharge significantly raise electron density, electron temperature, and the proportion of high-energy electrons, thereby intensifying the discharge activity. These findings offer deep insight into the micro-mechanisms of microstructure-induced discharge enhancement and provide valuable guidance for designing highly efficient plasma devices with tailored geometric features.
      通信作者: 郭颖, guoying@dhu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12175036, 12475259)资助的课题.
      Corresponding author: GUO Ying, guoying@dhu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12175036, 12475259).
    [1]

    He S J, Zhao L F, Ha J, Fan W L, Li Q 2023 Phys. Scr. 98 015615Google Scholar

    [2]

    赵立芬, 哈静, 王非凡, 李庆, 何寿杰 2022 71 025201Google Scholar

    Zhao L F, Ha J, Wang F F, Li Q, He S J 2022 Acta Phys. Sin. 71 025201Google Scholar

    [3]

    Torbin A P, Demyanov A V, Kochetov I V, Mikheyev P A, Mebel A M 2022 Plasma Sources Sci. Technol. 31 035017Google Scholar

    [4]

    戴芳博, 袁健美, 许凯燕, 郭政, 赵洪泉, 毛宇亮 2021 70 178502Google Scholar

    Dai F B, Yuan J M, Xu K Y, Guo Z, Zhao H Q, Mao Y L 2021 Acta Phys. Sin. 70 178502Google Scholar

    [5]

    张海洋 2018 等离子体蚀刻及其在大规模集成电路制造中的应用(北京: 清华大学出版社)第100—110页

    Zhang H Y 2018 Plasma Etching and Its Application in Large Scale Integrated Circuit Manufacturing ((Beijing: Tsinghua University Press) pp100–110

    [6]

    Benyamina M, Belasri A, Khodja K 2014 Ozone: Science & Engineering 36 253

    [7]

    Vass M, Wilczek S, Lafleur T, Brinkmann R P, Donkó Z, Schulze J 2020 Plasma Sources Sci. Technol. 29 025019Google Scholar

    [8]

    Komuro A, Yoshino A, Wei Z, Ono R 2023 J. Phys. D: Appl. Phys. 56 185201Google Scholar

    [9]

    Zhang X X, Xiao H Y, Hu X X, Zhang Y 2018 IEEE Trans. Plasma Sci. 46 563Google Scholar

    [10]

    Mao X Q, Zhong H T, Zhang T H, Starikovskiy A, Ju Y G 2022 Combust. Flame 240 112046Google Scholar

    [11]

    Fang J L, Zhang Y Y, Lu C Z, Gu L L, Xu S F, Guo Y, Shi J J 2024 Chin. Phys. B 33 015201Google Scholar

    [12]

    刘凯, 方泽, 戴栋 2023 72 135201Google Scholar

    Liu K, Fang Z, Dai D 2023 Acta Phys. Sin. 72 135201Google Scholar

    [13]

    Li M, Zhu B, Yan Y, Li T, Zhu Y M 2018 Plasma Chem. Plasma Process. 38 1063Google Scholar

    [14]

    Liu S, Li J M, Zeng Y Y, Chi F T, Xiao C J 2022 Curr. Appl. Phys. 44 12Google Scholar

    [15]

    Zhou J C, Liao J, Huang J, Chen T Z, Lv B W, Peng Y C 2022 Vacuum 195 110678Google Scholar

    [16]

    Wang X P, Shao T Q, Qin J Y, Li Y L, Long X, Jiang D B, Ding J G 2024 Ozone: Sci. Eng. 46 345Google Scholar

    [17]

    Gu L L, Zhang Y Y, Fang J L, Xu S F, Guo Y, Shi J J 2023 Phys. Plasmas 30 103503Google Scholar

    [18]

    Pokrovskii V S, Repin P B, Trushkina A N 2020 Tech. Phys. 65 182Google Scholar

    [19]

    Zhu M, Hu S Y, Zhang Y H, Wu S Q, Zhang C H 2022 Plasma Sci. Technol. 24 065401Google Scholar

    [20]

    Mujahid Z ul I, Kruszelnicki J, Hala A, Kushner M J 2020 Chem. Eng. J 382 123038Google Scholar

    [21]

    Mujahid Z ul I, Korolov I, Liu Y, Mussenbrock T, Schulze J 2022 J. Phys. D: Appl. Phys. 55 495201Google Scholar

    [22]

    Jodpimai S, Boonduang S, Limsuwan P 2015 J. Electrostat. 74 108Google Scholar

    [23]

    Berger B, Mujahid Z, Neuroth C, Azhar M, Wang L, Zhang Q Z, Mussenbrock T, Korolov I, Schulze J 2024 Plasma Sources Sci. Technol. 33 125011Google Scholar

    [24]

    Fang J J, Gu B B, Xu S F, Mei Y F, Guo Y, Shi J J 2025 Appl. Phys. Lett. 127 074101Google Scholar

    [25]

    Polonskyi O, Hartig T, Uzarski J R, Gordon M J 2021 Appl. Phys. Lett. 119 211601Google Scholar

    [26]

    Walsh J L, Iza F, Janson N B, Law V J, Kong M G 2010 J. Phys. D: Appl. Phys. 43 075201Google Scholar

    [27]

    Liu Y, Korolov I, Trieschmann J, et al. 2021 Plasma Sources Sci. Technol. 30 064001Google Scholar

    [28]

    Park G, Lee H, Kim G, Lee J K 2008 Plasma Processes Polym. 5 569Google Scholar

    [29]

    Lazzaroni C, Chabert P 2016 Plasma Sources Sci. Technol. 25 065015Google Scholar

    [30]

    Hsu C C, Nierode M A, Coburn J W, Graves D B 2006 J. Phys. D: Appl. Phys. 39 3272Google Scholar

    [31]

    Mennad B, Harrache Z, Amir Aid D, Belasri A 2010 Curr. Appl. Phys. 10 1391Google Scholar

    [32]

    Stafford D S, Kushner M J 2004 J. Appl. Phys. 96 2451Google Scholar

    [33]

    Sakiyama Y, Graves D B, Chang H W, Shimizu T, Morfill G E 2012 J. Phys. D: Appl. Phys. 45 425201Google Scholar

    [34]

    He J, Zhang Y T 2012 Plasma Processes Polym. 9 919Google Scholar

    [35]

    Jeong S Y, Nam W J, Lee J K, Yun G S 2018 J. Phys. D: Appl. Phys. 51 454001Google Scholar

    [36]

    Yanallah K, Pontiga F, Fernández-Rueda A, Castellanos A, Belasri A 2008 J. Phys. D: Appl. Phys. 41 195206Google Scholar

    [37]

    Bogdanov E A, Kudryavtsev A A, Tsendin L D, Arslanbekov R R, Kolobov V I, Kudryavtsev V V 2003 Tech. Phys. 48 983Google Scholar

    [38]

    Gaens W V, Bogaerts A 2013 J. Phys. D: Appl. Phys. 46 275201Google Scholar

  • 图 1  (a) 平行板模型; (b) 表面凸起微结构模型; (c) h = 0 mm, h = 0.04 mm电压电流密度

    Fig. 1.  (a) Parallel plate model; (b) surface protruding microstructure model; (c) voltage current density when h = 0 mm and 0.04 mm.

    图 2  (a1)—(a3) 电晕空间0.131, 0.135, 0.140 μs电子密度空间演化; (b) 0.140 μs“类电晕空间”电子温度空间分布; (c) y = 0.006 mm, 0.135 μs的纵向电场(Ey)分布; (d) y = 0.006 mm, 0.135 μs的纵向通量及正负粒子的空间分布; (e1), (e2) 放电过程中的横向电场(Ex)及横向迁移

    Fig. 2.  (a1)–(a3) Evolution of spatial electron distribution in corona space at 0.131, 0.135, 0.140 μs; (b) electron energy in corona space at 0.140 μs; (c) the Ey along y = 0.006 mm at 0.135 μs; (d) longitudinal flux and the spatial distribution of positive and negative particles; (e1), (e2) the Ex and transverse flux during the discharge process.

    图 3  (a), (b) 平板空间0.135, 0.140 μs电子密度空间演化; (c) 0.140 μs平板空间电子温度空间分布; (c) y = 0.006 mm, 0.135 μs电子能量的空间分布

    Fig. 3.  (a), (b) Evolution of spatial electron distribution in parallel plate space at 0.135, 0.140 μs; (c) electron energy along y = 0.006 mm at 0.135 μs.

    图 4  (a) 平行板结构及表面微结构凸起高度h = 0.04 mm的空间平均氧原子数密度; (b) 产生氧原子反应的反应速率和电子温度变化; (c) 与平行板结构相比表面凸起微结构h = 0.04 mm时氧原子的增强与减弱区

    Fig. 4.  (a) The spatial average oxygen density of the parallel plate structure and the surface micro-structure protrusions with a height of h = 0.04 mm; (b) reaction rate and electron temperature dependence in oxygen atom production; (c) enhanced and weakened regions of oxygen compared with parallel plate discharge.

    图 5  (a) 电子密度和电流密度幅值随凸起高度的变化; (b) y = 0.02 mm横向电场随高度的变化; (c) 空间平均氧原子数密度及高能电子数量占比随h的变化; (d) h = 0 mm, h = 0.11 mm上升沿电压电流密度

    Fig. 5.  (a) The variation of peak electron and current densities with h; (b) the variation of Ex with h along y = 0.02 mm; (c) the variation of spatial average oxygen density and the proportion of high-energy electrons with h; (d) the rising edge of voltage and current density at h = 0 mm and h = 0.11 mm.

    图 6  (a1), (a2) h = 0.08 mm, 0.157 μs二次放电的电子密度空间分布; (b1), (b2) h = 0.11 mm, 0.151 μs二次放电的电子密度空间分布; (c), (d) 空间电场分布

    Fig. 6.  (a1), (a2) Spatial electron density distribution when h = 0.08 mm and 0.157 μs; (b1), (b2) spatial electron density distribution when h = 0.11 mm and 0.151 μs; (c), (d) spatial electric field distribution.

    表 A1  反应方程和速率[26-38]

    Table A1.  Elementary reaction and rates[26-38].

    反应 反应速率 反应 反应速率
    e + O2 → O + O f(Te) e + O2 → O2(a1Δg) + e $ 1.7 \times {10}^{-15}\exp \left(-{3.1}/{{T}_{\rm e}}\right) $
    e + O2(a1Δg) → O2 + e $ 5.6 \times {10}^{-15}\exp \left(-{2.2}/{{T}_{\rm e}}\right) $ e + O2 → O + O(1D) + e $ 5.0 \times {10}^{-14}\exp \left(-{8.4}/{{T}_{\rm e}}\right) $
    e + O → O(1D) + e $ 4.2 \times {10}^{-15}\exp \left(-{2.25}/{{T}_{\rm e}}\right) $ $\rm e + O_2 → O_2^ + + 2e $ f(Te)
    e + O2 → 2O + e $ 4.2 \times {10}^{-14}\exp \left(-{5.6}/{{T}_{\rm e}}\right) $ e + O(1D) → O + e $ 8.17 \times {10}^{-15}\exp \left(-{0.4}/{{T}_{\rm e}}\right) $
    e + O2 → O + O + + e $ 7.1 \times {10}^{-17}{T}_{\mathrm{e}}^{0.5}\exp \left(-{17}/{{T}_{\rm e}}\right) $ e + O → O + + 2e f(Te)
    e + O2 → O + + O + 2e $ 1.0 \times {10}^{-16}{T}_{\mathrm{e}}^{0.9}\exp \left(-{20}/{{T}_{\rm e}}\right) $ e + O2 → O2 + e f(Te)
    e + O(1D) → O + + 2e $ 9.0 \times {10}^{-16}{T}_{\mathrm{e}}^{0.7}\exp \left(-{11.6}/{{T}_{\rm e}}\right) $ e + O2(a1Δg) → O + O $ 2.3 \times {10}^{-16}{T}_{\mathrm{e}}^{2}\exp \left(-{2.29}/{{T}_{\rm e}}\right) $
    $ {\mathrm{e}} + {\mathrm{O}}_2({\mathrm{a}}^1\Delta_{\mathrm{g}})\to{\mathrm{O}}_2^ + + 2{\mathrm{e}} $ $ 2.3 \times {10}^{-16}{T}_{\mathrm{e}}^{1.03}\exp \left(-{11.31}/{{T}_{\rm e}}\right) $ e + O2(a1Δg) → 2O + e $ 4.2 \times {10}^{-16}\exp \left(-{4.6}/{{T}_{\rm e}}\right) $
    e+O2(a1Δg) → O+O+ +2e $ 1.0 \times {10}^{-16}{T}_{\mathrm{e}}^{1}\exp \left(-{15.83}/{{T}_{\rm e}}\right) $ e + O → O + 2e f(Te)
    $\rm e + O_2^ + \to O + O(^1D) $ $ 2.2 \times {10}^{-14}{T}_{\mathrm{e}}^{-0.5} $ $\rm e + O_2^ + \to 2O $ $ 1.2 \times {10}^{-14}{T}_{\mathrm{e}}^{-0.7} $
    $\rm e + O_3\to O_2^- + O $ $ 9.76 \times {10}^{-16}{T}_{\mathrm{e}}^{-1.26}\exp \left(-{0.95}/{{T}_{\rm e}}\right) $ e + O3 → O2 + O + e $ 1.42 \times {10}^{-14}{T}_{\mathrm{e}}^{-0.68}\exp \left(-{2.6}/{{T}_{\rm e}}\right) $
    O + O → O2 + e $ 2.3 \times {10}^{-16}{\left({{T}_{{\rm g}}}/{300}\right)}^{-1.3} $ O + O2 → O3 + e 5.0×10–21
    O + O2(a1Δg) → O3 + e 6.1×10–17 ${\mathrm{O}}_2^- + {\mathrm{O}}_2({\mathrm{a}}^1\Delta_{\mathrm{g}})\to 2{\mathrm{O}}_2 + {\mathrm{e}} $ $ 2.0 \times {10}^{-16}{\left({{T}_{{\rm g}}}/{300}\right)}^{0.5} $
    $\rm O + O_2^-\to O_3 + e $ $ 8.5 \times {10}^{-17}{\left({{T}_{{\rm g}}}/{300}\right)}^{-1.8} $ $\rm O_2 + O^ + \to O_2^ + + O $ $ 2.1 \times {10}^{-17}{\left({{T}_{{\rm g}}}/{300}\right)}^{-0.4} $
    O2 + O → O + O2 3.3×10–16 ${\mathrm{O}}^- + {\mathrm{O}}_2({\mathrm{a}}^1\Delta_{\mathrm{g}})\to {\mathrm{O}}_2^- + {\mathrm{O}} $ 1.0×10–16
    $\rm O^- + O_2^ + \to O_2 + O $ $ 1.61 \times {10}^{-14}{\left({{T}_{{\rm g}}}/{300}\right)}^{-1.1} $ $\rm O^- + O_2^ + \to 3O $ $ 1.61 \times {10}^{-14}{\left({{T}_{{\rm g}}}/{300}\right)}^{-1.1} $
    O + O + → 2O $ 2.0 \times {10}^{-13}{\left({{T}_{{\rm g}}}/{300}\right)}^{-1} $ O + O3 → e + 2O2 3.0×10–16
    $\rm O^- + O_3\to O_2 + O_2^- $ 1.0×10–17 $\rm O_2^ + + O^- + O_2\to O + 2O_2 $ $ 1.0 \times {10}^{-37}{\left({{T}_{{\rm g}}}/{300}\right)}^{-2.5} $
    $\rm O_2^ + + O^- + O_2\to O_3 + O_2 $ $ 1.0 \times {10}^{-37}{\left({{T}_{{\rm g}}}/{300}\right)}^{-2.5} $ $\rm O_2^ + + O_2^- + O_2 → 3O_2 $ $ 1.0 \times {10}^{-37}{\left({{T}_{{\rm g}}}/{300}\right)}^{-2.5} $
    $\rm O_2^- + O_2^ + \to 2O_2 $ $ 1.6 \times {10}^{-14}{\left({{T}_{{\rm g}}}/{300}\right)}^{-1.1} $ $\rm O_2^- + O_2^ + \to 2O + O_2 $ $ 1.6 \times {10}^{-14}{\left({{T}_{{\rm g}}}/{300}\right)}^{-1.1} $
    $\rm O_2^- + O^ + \to O + O_2 $ $ 2.0 \times {10}^{-13}{\left({{T}_{{\rm g}}}/{300}\right)}^{-0.5} $ O + O2 + O2 → O3 + O2 $ 1.8 \times {10}^{-46}{\left({{T}_{{\rm g}}}/{300}\right)}^{-2.6} $
    O2(a1Δg) + O → O2 + O 1.3×10–22 O + O + O → O + O2 $ 3.8 \times {10}^{-44}\left({{T}_{{\rm g}}}/{300}\right)\exp \left({-170}/{{T}_{{\rm g}}}\right) $
    O + O + O2 → O3 + O $ 4.2 \times {10}^{-47}\left({1050}/{{T}_{{\rm g}}}\right) $ O(1D) + O2 → O + O2 $ 7.0 \times {10}^{-18}\left(-{67}/{{T}_{{\rm g}}}\right) $
    O(1D) + O3 → 2O2 1.2×10–16 O(1D) + O3 → 2O2(a1Δg) 2.5×10–16
    O(1D) + O3 → O2 + O2(a1Δg) 2.5×10–16 O(1D) + O3 → 2O + O2 2.5×10–16
    O2 + O2(a1Δg) → 2O2 $ 3.6 \times {10}^{-24}\exp \left(-{220}/{{T}_{{\rm g}}}\right) $ O2(a1Δg) + O3 → 2O2 + O $ 5.2 \times {10}^{-17}\exp \left(-{2840}/{{T}_{{\rm g}}}\right) $
    O2(a1Δg) + O3 → O2 + O3 $ 4.55 \times {10}^{-17}\exp \left(-{2810}/{{T}_{{\rm g}}}\right) $ O3 + O3 → O2 + O + O3 $ 1.65 \times {10}^{-15}\exp \left(-{11435}/{{T}_{{\rm g}}}\right) $
    O3 + O3 → 3O2 $ 7.47 \times {10}^{-18}\exp \left(-{9310}/{{T}_{{\rm g}}}\right) $ O3 + O2 → 2O2 + O $ 1.56 \times {10}^{-15}\exp \left(-{11490}/{{T}_{{\rm g}}}\right) $
    O3 + O → 2O2 $ 1.80 \times {10}^{-17}\exp \left(-{2300}/{{T}_{{\rm g}}}\right) $ $\rm O_3 + O^-\to O_3^- + O $ $ 1.99 \times {10}^{-16}{\left({300}/{{T}_{{\rm g}}}\right)}^{-0.5} $
    $\rm O_3 + O_2^-\to O_2 + O_3^- $ $ 6.0 \times {10}^{-16}{\left({300}/{{T}_{{\rm g}}}\right)}^{-0.5} $ $\rm O_3^- + O_2^ + \to O_2 + O_3 $ $ 2.0 \times {10}^{-13}{\left({{T}_{{\rm g}}}/{300}\right)}^{-1} $
    $\rm O_3^- + O_2^ + \to 2O + O_3 $ 1.0×10–13 $\rm O_3^- + O^ + \to O + O_3 $ $ 2.0 \times {10}^{-13}{\left({{T}_{{\rm g}}}/{300}\right)}^{-1} $
    $\rm O_3^- + O\to O_2^- + O_2 $ $ 2.5 \times {10}^{-16}{\left({300}/{{T}_{{\rm g}}}\right)}^{-0.5} $ $\rm O_3^- + O\to 2O_2 + e $ 3×10–16
    注: f(Te)表示该截面适用于相关反应; 二体反应的反应速率常数单位为m3/s, 三体反应的反应速率常数单位为m6/s; Te是电子温度单位为eV, Tg温度单位为K
    下载: 导出CSV
    Baidu
  • [1]

    He S J, Zhao L F, Ha J, Fan W L, Li Q 2023 Phys. Scr. 98 015615Google Scholar

    [2]

    赵立芬, 哈静, 王非凡, 李庆, 何寿杰 2022 71 025201Google Scholar

    Zhao L F, Ha J, Wang F F, Li Q, He S J 2022 Acta Phys. Sin. 71 025201Google Scholar

    [3]

    Torbin A P, Demyanov A V, Kochetov I V, Mikheyev P A, Mebel A M 2022 Plasma Sources Sci. Technol. 31 035017Google Scholar

    [4]

    戴芳博, 袁健美, 许凯燕, 郭政, 赵洪泉, 毛宇亮 2021 70 178502Google Scholar

    Dai F B, Yuan J M, Xu K Y, Guo Z, Zhao H Q, Mao Y L 2021 Acta Phys. Sin. 70 178502Google Scholar

    [5]

    张海洋 2018 等离子体蚀刻及其在大规模集成电路制造中的应用(北京: 清华大学出版社)第100—110页

    Zhang H Y 2018 Plasma Etching and Its Application in Large Scale Integrated Circuit Manufacturing ((Beijing: Tsinghua University Press) pp100–110

    [6]

    Benyamina M, Belasri A, Khodja K 2014 Ozone: Science & Engineering 36 253

    [7]

    Vass M, Wilczek S, Lafleur T, Brinkmann R P, Donkó Z, Schulze J 2020 Plasma Sources Sci. Technol. 29 025019Google Scholar

    [8]

    Komuro A, Yoshino A, Wei Z, Ono R 2023 J. Phys. D: Appl. Phys. 56 185201Google Scholar

    [9]

    Zhang X X, Xiao H Y, Hu X X, Zhang Y 2018 IEEE Trans. Plasma Sci. 46 563Google Scholar

    [10]

    Mao X Q, Zhong H T, Zhang T H, Starikovskiy A, Ju Y G 2022 Combust. Flame 240 112046Google Scholar

    [11]

    Fang J L, Zhang Y Y, Lu C Z, Gu L L, Xu S F, Guo Y, Shi J J 2024 Chin. Phys. B 33 015201Google Scholar

    [12]

    刘凯, 方泽, 戴栋 2023 72 135201Google Scholar

    Liu K, Fang Z, Dai D 2023 Acta Phys. Sin. 72 135201Google Scholar

    [13]

    Li M, Zhu B, Yan Y, Li T, Zhu Y M 2018 Plasma Chem. Plasma Process. 38 1063Google Scholar

    [14]

    Liu S, Li J M, Zeng Y Y, Chi F T, Xiao C J 2022 Curr. Appl. Phys. 44 12Google Scholar

    [15]

    Zhou J C, Liao J, Huang J, Chen T Z, Lv B W, Peng Y C 2022 Vacuum 195 110678Google Scholar

    [16]

    Wang X P, Shao T Q, Qin J Y, Li Y L, Long X, Jiang D B, Ding J G 2024 Ozone: Sci. Eng. 46 345Google Scholar

    [17]

    Gu L L, Zhang Y Y, Fang J L, Xu S F, Guo Y, Shi J J 2023 Phys. Plasmas 30 103503Google Scholar

    [18]

    Pokrovskii V S, Repin P B, Trushkina A N 2020 Tech. Phys. 65 182Google Scholar

    [19]

    Zhu M, Hu S Y, Zhang Y H, Wu S Q, Zhang C H 2022 Plasma Sci. Technol. 24 065401Google Scholar

    [20]

    Mujahid Z ul I, Kruszelnicki J, Hala A, Kushner M J 2020 Chem. Eng. J 382 123038Google Scholar

    [21]

    Mujahid Z ul I, Korolov I, Liu Y, Mussenbrock T, Schulze J 2022 J. Phys. D: Appl. Phys. 55 495201Google Scholar

    [22]

    Jodpimai S, Boonduang S, Limsuwan P 2015 J. Electrostat. 74 108Google Scholar

    [23]

    Berger B, Mujahid Z, Neuroth C, Azhar M, Wang L, Zhang Q Z, Mussenbrock T, Korolov I, Schulze J 2024 Plasma Sources Sci. Technol. 33 125011Google Scholar

    [24]

    Fang J J, Gu B B, Xu S F, Mei Y F, Guo Y, Shi J J 2025 Appl. Phys. Lett. 127 074101Google Scholar

    [25]

    Polonskyi O, Hartig T, Uzarski J R, Gordon M J 2021 Appl. Phys. Lett. 119 211601Google Scholar

    [26]

    Walsh J L, Iza F, Janson N B, Law V J, Kong M G 2010 J. Phys. D: Appl. Phys. 43 075201Google Scholar

    [27]

    Liu Y, Korolov I, Trieschmann J, et al. 2021 Plasma Sources Sci. Technol. 30 064001Google Scholar

    [28]

    Park G, Lee H, Kim G, Lee J K 2008 Plasma Processes Polym. 5 569Google Scholar

    [29]

    Lazzaroni C, Chabert P 2016 Plasma Sources Sci. Technol. 25 065015Google Scholar

    [30]

    Hsu C C, Nierode M A, Coburn J W, Graves D B 2006 J. Phys. D: Appl. Phys. 39 3272Google Scholar

    [31]

    Mennad B, Harrache Z, Amir Aid D, Belasri A 2010 Curr. Appl. Phys. 10 1391Google Scholar

    [32]

    Stafford D S, Kushner M J 2004 J. Appl. Phys. 96 2451Google Scholar

    [33]

    Sakiyama Y, Graves D B, Chang H W, Shimizu T, Morfill G E 2012 J. Phys. D: Appl. Phys. 45 425201Google Scholar

    [34]

    He J, Zhang Y T 2012 Plasma Processes Polym. 9 919Google Scholar

    [35]

    Jeong S Y, Nam W J, Lee J K, Yun G S 2018 J. Phys. D: Appl. Phys. 51 454001Google Scholar

    [36]

    Yanallah K, Pontiga F, Fernández-Rueda A, Castellanos A, Belasri A 2008 J. Phys. D: Appl. Phys. 41 195206Google Scholar

    [37]

    Bogdanov E A, Kudryavtsev A A, Tsendin L D, Arslanbekov R R, Kolobov V I, Kudryavtsev V V 2003 Tech. Phys. 48 983Google Scholar

    [38]

    Gaens W V, Bogaerts A 2013 J. Phys. D: Appl. Phys. 46 275201Google Scholar

  • [1] 段蒙悦, 贾文柱, 张莹莹, 张逸凡, 宋远红. 容性耦合硅烷等离子体尘埃颗粒空间分布的二维流体模拟.  , 2023, 72(16): 165202. doi: 10.7498/aps.72.20230686
    [2] 孔得霖, 杨冰彦, 何锋, 韩若愚, 缪劲松, 宋廷鲁, 欧阳吉庭. 大气压电晕等离子体射流制备氧化钛薄膜.  , 2021, 70(9): 095205. doi: 10.7498/aps.70.20202181
    [3] 柴钰, 张妮, 刘杰, 殷宁, 刘树林, 张晶园. 微尺度下N2–O2电晕放电的动态特性二维仿真.  , 2020, 69(16): 165202. doi: 10.7498/aps.69.20200095
    [4] 陆乃彦, 余雪健, 万佳伟, 翁雨燕, 郭俊宏, 刘宇. 微图案化金衬底表面等离子体共振光学特性.  , 2016, 65(20): 208102. doi: 10.7498/aps.65.208102
    [5] 华叶, 万红, 陈兴宇, 吴平, 白书欣. 表面微结构对碳化硅晶须掺杂石墨阴极爆炸电子发射性能的影响.  , 2016, 65(16): 168102. doi: 10.7498/aps.65.168102
    [6] 王超, 郝智彪, 王磊, 康健彬, 谢莉莉, 罗毅, 汪莱, 王健, 熊兵, 孙长征, 韩彦军, 李洪涛, 王禄, 王文新, 陈弘. 利用表面微结构提高波长上转换红外探测器效率.  , 2016, 65(10): 108501. doi: 10.7498/aps.65.108501
    [7] 司马文霞, 范硕超, 杨庆, 王琦. 雷云电场作用下长地线表面正极性辉光电晕放电的仿真研究.  , 2015, 64(10): 105205. doi: 10.7498/aps.64.105205
    [8] 王瑜英, 阎大伟, 谭秀兰, 王雪敏, 高扬, 彭丽萍, 易有根, 吴卫东. 球壳结构金阴极及其X射线光电发射特性.  , 2015, 64(9): 094103. doi: 10.7498/aps.64.094103
    [9] 张凯, 陆勇俊, 王峰会. 表面能梯度驱动下纳米水滴在不同微结构表面上的运动.  , 2015, 64(6): 064703. doi: 10.7498/aps.64.064703
    [10] 王维, 杨兰均, 刘帅, 黄易之, 黄东, 吴锴. 线-铝箔电极电晕放电激励器的推力理论与实验研究.  , 2015, 64(10): 105204. doi: 10.7498/aps.64.105204
    [11] 伍飞飞, 廖瑞金, 杨丽君, 刘兴华, 汪可, 周之. 棒-板电极直流负电晕放电特里切尔脉冲的微观过程分析.  , 2013, 62(11): 115201. doi: 10.7498/aps.62.115201
    [12] 刘雷, 李永东, 王瑞, 崔万照, 刘纯亮. 微波阶梯阻抗变换器低气压电晕放电粒子模拟.  , 2013, 62(2): 025201. doi: 10.7498/aps.62.025201
    [13] 何寿杰, 哈静, 刘志强, 欧阳吉庭, 何锋. 流体-亚稳态原子传输混合模型模拟空心阴极放电特性.  , 2013, 62(11): 115203. doi: 10.7498/aps.62.115203
    [14] 廖瑞金, 伍飞飞, 刘兴华, 杨帆, 杨丽君, 周之, 翟蕾. 大气压直流正电晕放电暂态空间电荷分布仿真研究.  , 2012, 61(24): 245201. doi: 10.7498/aps.61.245201
    [15] 蒋相站, 刘永新, 毕振华, 陆文琪, 王友年. 双频容性耦合等离子体密度径向均匀性研究.  , 2012, 61(1): 015204. doi: 10.7498/aps.61.015204
    [16] 翟晓东, 丁艳军, 彭志敏, 罗锐. N2第二正带系发射光谱的理论计算及实验研究.  , 2012, 61(12): 123301. doi: 10.7498/aps.61.123301
    [17] 袁春华, 李晓红, 唐多昌, 杨宏道, 李国强. Nd:YAG纳秒激光诱导硅表面微结构的演化.  , 2010, 59(10): 7015-7019. doi: 10.7498/aps.59.7015
    [18] 江南, 曹则贤. 一种大气压放电氦等离子体射流的实验研究.  , 2010, 59(5): 3324-3330. doi: 10.7498/aps.59.3324
    [19] 齐 冰, 任春生, 马腾才, 王友年, 王德真. 多针电晕增强大气压辉光放电稳定性研究.  , 2006, 55(1): 331-336. doi: 10.7498/aps.55.331
    [20] 赖建军, 余建华, 黄建军, 王新兵, 丘军林. 空心阴极直流放电的二维自洽模型描述和阴极溅射分析.  , 2001, 50(8): 1528-1533. doi: 10.7498/aps.50.1528
计量
  • 文章访问数:  227
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-09-22
  • 修回日期:  2025-11-13
  • 上网日期:  2025-11-15

/

返回文章
返回
Baidu
map