-
二维(two-dimensional, 2D)异质结因其能整合不同组分的材料并产生新颖物理现象, 已成为构筑下一代光电子与微电子器件的理想平台. 化学气相沉积(chemical vapor deposition, CVD)技术是实现其大面积、高质量、可控制备的关键途径. 本综述系统梳理了CVD法制备2D异质结的最新进展, 重点阐述了通过前驱体设计、温度场调控、气体诱导及衬底工程四大核心策略, 在精准调控异质结结构(垂直/横向)、界面、组分及结晶质量方面的机理与成果. 目前该技术仍面临较大挑战, 未来通过融合原位表征、多尺度模拟与人工智能优化, 有望实现从“经验试错”到“精准设计”的跨越, 推动2D异质结在量子计算、柔性电子等前沿领域的实际应用.
This review systematically summarizes recent advances in the chemical vapor deposition (CVD)-based synthesis of two-dimensional (2D) heterostructures, which have emerged as an ideal platform for next-generation optoelectronic and microelectronic devices due to their ability to integrate diverse material components and induce novel physical phenomena. The review begins by introducing the classification of 2D heterostructures, such as vertical (VHS), lateral (LHS), and hybrid heterostructures (HHS). We further highlight the unique advantages of CVD as a key route for achieving large-area, high-quality, and controllable preparation, thereby effectively avoiding interface contamination and issues such as interfacial states and Fermi-level pinning caused by lattice mismatch in traditional semiconductor heterostructures. We focus on four core strategies for precise growth control: precursor design, temperature field modulation, vapor composition control, and substrate engineering. In the precursor design, by constructing core-shell structures, introducing auxiliary agents, or modulating precursor proportions and physical forms, the sequential supply and reaction pathways of different components can be precisely regulated to guide oriented growth and suppress alloy formation. In temperature field modulation, utilizing differences in the growth windows between various materials and precisely controlling heating rates, temperature uniformity, and gradients can achieve selective growth modes (lateral or vertical), effective suppression of alloying, and protection of pre-deposited layers. In vapor composition control, by switching carrier gas atmospheres, the nucleation and growth of specific materials can be selectively initiated or halted, providing a one-pot strategy for fabricating multi-junction lateral heterostructures and superlattices with atomically sharp interfaces. In substrate engineering, the surface energy, lattice matching, catalytic activity, and pretreatment processes of different substrates are used to actively guide nucleation sites, growth modes, and crystalline quality. Although significant progress has been made in the CVD synthesis of various 2D heterostructures, such as MX2/MY2, graphene/h-BN, and mixed-dimensional heterojunctions, considerable challenges remain in achieving large-area uniformity, reproducible processes, precise control of complex heterostructures (e.g., multi-interface, moiré superlattices, and patterned growth), and compatibility with current semiconductor technology. Future development should focus on integrating in situ characterization, multi-scale simulations, and artificial intelligence-assisted optimization to facilitate a transition from empirical trial-and-error to precision design. The introduction of novel growth techniques, such as laser-induced or microwave-assisted CVD, roll-to-roll processes, and substrate interface engineering, is expected to accelerate the practical application of 2D heterostructures in cutting-edge fields such as quantum computing and flexible electronics. -
Keywords:
- chemical vapor deposition /
- lateral heterostructures /
- vertical heterostructures /
- precise preparation
[1] Sheng C M, Dong X Q, Zhu Y X, Wang X Y, Chen X Y, Xia Y, Xu Z H, Zhou P, Wan J, Bao W Z 2023 Adv. Funct. Mater. 33 2304778
Google Scholar
[2] Huang X H, Liu C S, Zhou P 2022 npj 2D Mater. Appl. 6 51
Google Scholar
[3] Yin L, Cheng R Q, Ding J H, Jiang J, Hou Y T, Feng X Q, Wen Y, He J 2024 ACS Nano 18 7739
Google Scholar
[4] Ahn S J, Moon P, Kim T H, Kim H W, Shin H C, Kim E H, Cha H W, Kahng S J, Kim P, Koshino M, Son Y W, Yang C W, Ahn J R 2018 Science 361 782
Google Scholar
[5] Malko D, Neiss C, Viñes F, Görling A 2012 Phys. Rev. Lett. 108 086804
Google Scholar
[6] Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H L 2008 Solid State Commun. 146 351
Google Scholar
[7] Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R, Geim A K 2008 Science 320 1308
Google Scholar
[8] Papageorgiou D G, Kinloch I A, Young R J 2017 Prog. Mater. Sci. 90 75
Google Scholar
[9] Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau C N 2008 Nano Lett. 8 902
Google Scholar
[10] Dutta T, Yadav N, Wu Y, Cheng G J, Liang X, Ramakrishna S, Sbai A, Gupta R, Mondal A, Hongyu Z, Yadav A 2024 Nano Mater. Sci. 6 1
Google Scholar
[11] Xie Z X, Zhao T X, Yu X C, Wang J J 2024 Small 20 2311621
Google Scholar
[12] Guo B, Xiao Q L, Wang S H, Zhang H 2019 Laser Photonics Rev. 13 1800327
Google Scholar
[13] Dai C Y, He P, Luo L X, Zhan P X, Guan B, Zheng J 2023 Sci. China Mater. 66 859
Google Scholar
[14] 肖寒, 弭孟娟, 王以林 2021 70 127503
Google Scholar
Xiao H, Mi M J, Wang Y L 2021 Acta Phys. Sin. 70 127503
Google Scholar
[15] Qiao S X, Han Y L, Jiao N, Zheng M M, Lu H Y, Zhang P 2025 Phys. Rev. B 111 L041404
Google Scholar
[16] Lee M H, Wu W 2022 Adv. Mater. Technol. 7 2101623
Google Scholar
[17] Kaul A B 2014 J. Mater. Res. 29 348
Google Scholar
[18] Ma H X, Xing Y H, Cui B Y, Han J, Wang B H, Zeng Z M 2022 Chin. Phys. B 31 108502
Google Scholar
[19] Xia F N, Wang H, Xiao D, Dubey M, Ramasubramaniam A 2014 Nat. Photonics 8 899
Google Scholar
[20] Tan T, Jiang X T, Wang C, Yao B C, Zhang H 2020 Adv. Sci. 7 2000058
Google Scholar
[21] Das S, Kim M, Lee J W, Choi W 2014 Crit. Rev. Solid State Mater. Sci. 39 231
Google Scholar
[22] Liu A H, Zhang X W, Liu Z Y, Li Y N, Peng X Y, Li X, Qin Y, Hu C, Qiu Y Q, Jiang H, Wang Y, Li Y F, Tang J, Liu J, Guo H, Deng T, Peng S G, Tian H, Ren T L 2024 Nano-Micro Lett. 16 119
Google Scholar
[23] Aftab S, Hussain S, Al-Kahtani A A 2023 Adv. Mater. 35 2301280
Google Scholar
[24] Hoang A T, Hu L, Katiyar A K, Ahn J H 2022 Matter 5 4116
Google Scholar
[25] Wang S K, Hung N T, Sun M L 2025 Molecules 30 741
Google Scholar
[26] Arora H, Fekri Z, Vekariya Y N, Chava P, Watanabe K, Taniguchi T, Helm M, Erbe A 2023 Adv. Mater. Technol. 8 2200546
Google Scholar
[27] Xiao Z C, Guo R J, Zhang C M, Liu Y Y 2024 ACS Nano 18 8511
Google Scholar
[28] Chen Y, Lu D L, Kong L G, Tao Q Y, Ma L K, Liu L K, Lu Z Y, Li Z, W Wu R X, Duan X D, Liao L, Liu Y 2023 ACS Nano 17 14954
Google Scholar
[29] Balog R, Jørgensen B, Nilsson L, Andersen M, Rienks E, Bianchi M, Fanetti M, Lægsgaard E, Baraldi A, Lizzit S, Sljivancanin Z, Besenbacher F, Hammer B, Pedersen T G, Hofmann P, Hornekær L 2010 Nat. Mater. 9 315
Google Scholar
[30] Sahu S, Rout G C 2017 Int. Nano Lett. 7 81
Google Scholar
[31] Liu W J, Yu Y Y, Peng M, Zheng Z H, Jian P C, Wang Y, Zou Y C, Zhao Y M, Wang F, Wu F, Chen C Q, Dai J N, Wang P, Hu W D 2023 InfoMat 5 e12470
Google Scholar
[32] Wang J W, Li Z Q, Chen H Y, Deng G W, Niu X B 2019 Nano-Micro Lett. 11 48
Google Scholar
[33] Zhang S H, Liu H, Zhang F, Zheng X M, Zhang X Z, Zhang B H, Zhang T, Ao Z K, Zhang X Y, Lan X, Yang X D, Zhong M Z, Li J, Li B, Ma H F, Duan X D, He J, Zhang Z W 2024 ACS Nano 18 30321
Google Scholar
[34] Chen K, Wan X, Xu J B 2017 Adv. Funct. Mater. 27 1603884
Google Scholar
[35] Hu W, Yang J L 2017 J. Mater. Chem. C 5 12289
Google Scholar
[36] Novoselov K S, Mishchenko A, Carvalho A, Castro Neto A H 2016 Science 353 aac9439
Google Scholar
[37] Zhou X, Hu X Z, Yu J, Liu S Y, Shu Z W, Zhang Q, Li H Q, Ma Y, Xu H, Zhai T Y 2023 Adv. Funct. Mater. 33 2302474
Google Scholar
[38] Yao J D, Yang G W 2022 J. Appl. Phys. 131 161101
Google Scholar
[39] Hao Y L, Zhang S W, Fan C, Liu J, Hao S J, Lu X M, Zhou J, Qiu M C, Li J, Hao G L 2025 Appl. Phys. Lett. 126 031904
Google Scholar
[40] Liang S J, Cheng B, Cui X, Miao F 2020 Adv. Mater. 32 1903800
Google Scholar
[41] Chakraborty S K, Kundu B, Nayak B, Dash S P, Sahoo P K 2022 iScience 25 103942
Google Scholar
[42] Zhu Y T, Wu X L 2023 Prog. Mater. Sci. 131 101019
Google Scholar
[43] Li Z Q, Wang Q B, Xu Q Q, Han Z H, Cheng T, Yin J Z 2024 CrystEngComm 26 3694
Google Scholar
[44] Chen D X, Lian Z, Huang X, Su Y, Rashetnia M, Ma L, Yan L, Blei M, Xiang L, Taniguchi T, Watanabe K, Tongay S, Smirnov D, Wang Z H, Zhang C W, Cui Y T, Shi S F 2022 Nat. Phys. 18 1171
Google Scholar
[45] Fang H, Battaglia C, Carraro C, Nemsak S, Ozdol B, Kang J S, Bechtel H A, Desai S B, Kronast F, Unal A A, Conti G, Conlon C, Palsson G K, Martin M C, Minor A M, Fadley C S, Yablonovitch E, Maboudian R, Javey A 2014 Proc. Natl. Acad. Sci. 111 6198
Google Scholar
[46] Liang Z F, Zhang J S, Hua C Q, Wang Y, Song F 2024 Phys. Rev. B 110 085110
Google Scholar
[47] Guo D L, Fu Q, Zhang G T, Cui Y Y, Liu K Y, Zhang X Y, Yu Y L, Zhao W W, Zheng T, Long H R, Zeng P Y, Han X, Zhou J, Xin K Y, Gu T C, Wang W H, Zhang Q, Hu Z L, Zhang J L, Chen Q, Wei Z M, Zhao B, Lu J P, Ni Z H 2024 Adv. Mater. 36 2400060
Google Scholar
[48] 高琦璇, 钟浩源, 周树云 2022 物理 51 310
Google Scholar
Gao Q X, Zhong H Y, Zhou S Y 2022 Physics 51 310
Google Scholar
[49] Miao S G, Wang T M, Huang X, Chen D X, Lian Z, Wang C, Blei M, Taniguchi T, Watanabe K, Tongay S, Wang Z H, Xiao D, Cui Y T, Shi S F 2021 Nat. Commun. 12 3608
Google Scholar
[50] Ren W J, Lu S, Yu C Q, He J, Zhang Z W, Chen J, Zhang G 2023 Appl. Phys. Rev. 10 041404
Google Scholar
[51] Xiao Y, Liu J L, Fu L 2020 Matter 3 1142
Google Scholar
[52] Meng Z M, Wang L W, Han W, Liu F D, Wen K, Gao C, Wang P J, Chin C, Zhang J 2023 Nature 615 231
Google Scholar
[53] Liu S B, Tian C K, Fang Y Q, Rong H T, Cao L, Wei X J, Cui H, Chen M T, Chen D, Song Y J, Cui J, Li J K, Guan S Y, Jia S, Chen C Y, He W Y, Huang F Q, Jiang Y H, Mao J H, Xie X C, Law K T, Chen J H 2024 Nat. Commun. 15 7569
Google Scholar
[54] Nie J H, Xie T, Chen G, Zhang W H, Fu Y S 2023 Nano Lett. 23 8370
Google Scholar
[55] Kezilebieke S, Huda M N, Vaňo V, Aapro M, Ganguli S C, Silveira O J, Głodzik S, Foster A S, Ojanen T, Liljeroth P 2020 Nature 588 424
Google Scholar
[56] Tilak N, Altvater M, Hung S H, Won C J, Li G, Kaleem T, Cheong S W, Chung C H, Jeng H T, Andrei E Y 2024 Nat. Commun. 15 8056
Google Scholar
[57] Feng R F, Zhang Y, Li J H, Li Q, Bao C H, Zhang H Y, Chen W Y, Tang X, Yaegashi K, Sugawara K, Sato T, Duan W H, Yu P, Zhou S Y 2025 Nat. Commun. 16 2667
Google Scholar
[58] Zhang W L, Wang J, Zhang T T, Shao B, Zuo X 2025 J. Materiomics 11 100986
Google Scholar
[59] Zhang Y L, Zhao W M, Zhang C C, Wang P, Wang T, Li S C, Xing Z W, Xing D Y 2022 Adv. Mater. 34 2107799
Google Scholar
[60] He J D, Ding Y F, Teng B L, Dong P, Li Y F, Zhang Y W, Wu Y S, Wang J H, Zhou X, Wang Z, Li J 2021 Prog. Phys. 41 113
Google Scholar
[61] Xu R H, Song L Y, Li X H, Du Z, Xiao C X, Sun H, Peng Y N, Huang L, Jiang Y L, Li Y N, Li Y H, He J, Shi J P 2025 ACS Nano 19 25870
Google Scholar
[62] Jadwiszczak J, Sherman J, Lynall D, Liu Y, Penkov B, Young E, Keneipp R, Drndić M, Hone J C, Shepard K L 2022 ACS Nano 16 1639
Google Scholar
[63] Liu B L, Ma Y Q, Zhang A Y, Chen L, Abbas A N, Liu Y H, Shen C F, Wan H C, Zhou C W 2016 ACS Nano 10 5153
Google Scholar
[64] Lim D U, Jo S B, Kang J, Cho J H 2021 Adv. Mater. 33 2101243
Google Scholar
[65] Shao Y, Pala M, Tang H, Wang B, Li J, Esseni D, del Alamo J A 2025 Nat. Electron. 8 157
Google Scholar
[66] Li J, Ding Y, Wei Zhang D, Zhou P 2019 Acta Phys. Chim. Sin. 35 1058
Google Scholar
[67] Luo J Y, Selopal G S, Tong X, Wang Z M 2024 Electron 2 e30
Google Scholar
[68] Zhu Y F, Liu R Z, Yi A L, Wang X D, Qin Y H, Zhao Z H, Zhao J Y, Chen B W, Zhang X Q, Song S N, Huo Y H, Ou X, Zhang J X 2025 Light: Sci. Appl. 14 86
Google Scholar
[69] Long M S, Liu E F, Wang P, Gao A Y, Xia H, Luo W, Wang B G, Zeng J W, Fu Y J, Xu K, Zhou W, Lü Y Y, Yao S H, Lu M H, Chen Y F, Ni Z H, You Y M, Zhang X A, Qin S Q, Shi Y, Hu W D, Xing D Y, Miao F 2016 Nano Lett. 16 2254
Google Scholar
[70] Pezeshki A, Shokouh S H H, Nazari T, Oh K, Im S 2016 Adv. Mater. 28 3216
Google Scholar
[71] Fan S D, Vu Q A, Tran M D, Adhikari S, Lee Y H 2020 2D Mater. 7 022005
Google Scholar
[72] Ye K, Liu L X, Liu Y J, Nie A M, Zhai K, Xiang J Y, Wang B C, Wen F S, Mu C P, Zhao Z S, Gong Y J, Liu Z Y, Tian Y J 2019 Adv. Opt. Mater. 7 1900815
Google Scholar
[73] Vikraman D, Hussain S, Akbar K, Truong L, Kathalingam A, Chun S H, Jung J, Park H J, Kim H S 2018 ACS Sustainable Chem. Eng. 6 8400
Google Scholar
[74] Cui Y, Li B, Li J B, Wei Z M 2017 Sci. China: Phys. Mech. Astron. 61 016801
Google Scholar
[75] Zhang Z P, Ji X J, Shi J P, Zhou X B, Zhang S, Hou Y, Qi Y, Fang Q Y, Ji Q Q, Zhang Y, Hong M, Yang P F, Liu X F, Zhang Q, Liao L, Jin C H, Liu Z F, Zhang Y F 2017 ACS Nano 11 4328
Google Scholar
[76] Tian B, Li J Z, Chen M G, Dong H C, Zhang X X 2022 Adv. Sci. 9 2201324
Google Scholar
[77] Zhang T, Fu L 2018 Chem 4 671
Google Scholar
[78] Liang J Y, Zhu X L, Chen M X, Duan X D, Li D, Pan A L 2022 Acc. Mater. Res. 3 999
Google Scholar
[79] Li M Y, Chen C H, Shi Y, Li L J 2016 Mater. Today 19 322
Google Scholar
[80] Liao M Z, Nicolini P, Du L H, Yuan J H, Wang S P, Yu H, Tang J, Cheng P, Watanabe K, Taniguchi T, Gu L, Claerbout V E P, Silva A, Kramer D, Polcar T, Yang R, Shi D X, Zhang G Y 2022 Nat. Mater. 21 47
Google Scholar
[81] Jiang J F, Meng F Q, Cheng Q L, Wang A Z, Chen Y K, Qiao J, Pang J B, Xu W D, Ji H, Zhang Y, Zhang Q H, Wang S P, Feng X J, Gu L, Liu H, Han L 2020 Small Methods 4 2000238
Google Scholar
[82] Jiang X, Chen F, Zhao S C, Su W T 2021 CrystEngComm 23 8239
Google Scholar
[83] Liu X, Deng C Y, Wei H, Fang M K, Yan B, Zhu T, Luo S F, Peng G, Cai W W, Long M S, Zhang X A 2025 Adv. Funct. Mater. 35 2423102
Google Scholar
[84] Wan X, Xu S J, Gao M L, Huang T H, Duan Y Y, Zhan R Z, Chen K, Gu X F, Xie W, Xu J G 2022 ACS Appl. Nano Mater. 5 15775
Google Scholar
[85] Sheng M Y, Chang X, Mao X J, Gao Y, Xuan X Y, Xie H F, Mu H C, Niu Y P, Gong S Q, Qian M 2024 Adv. Electron. Mater. 10 2300842
Google Scholar
[86] Long Y Y, Wang X, Tan W, Li B W, Li J D, Deng W, Li X M, Guo W L, Yin J 2024 Nano Lett. 24 7572
Google Scholar
[87] Guo H J, Garro-Hernandorena A, Martínez-Galera A J, Gómez-Rodríguez J M 2023 Small 19 2207217
Google Scholar
[88] Jariwala D, Marks T J, Hersam M C 2017 Nat. Mater. 16 170
Google Scholar
[89] Liu Y, Weiss N O, Duan X L, Cheng H C, Huang Y, Duan X F 2016 Nat. Rev. Mater. 1 16042
Google Scholar
[90] Hao G L, Xiao J B, Hao Y L, Zhou G L, Zhu H, Gao H, Xu Z Q, Zhao Z K, Miao L L, Li J, Sun H T, Zhao C J 2023 Mater. Today Phys. 34 101069
Google Scholar
[91] Ma X R, Wang K Y, Fan C, Li X B, Hao Y L, Zhou J, Lu X M, Shu T, Miao L L, Li J, Hao G L 2025 Adv. Opt. Mater. 13 2402434
Google Scholar
[92] Li H N, Li Y, Aljarb A, Shi Y M, Li L J 2018 Chem. Rev. 118 6134
Google Scholar
[93] Wu W H, Zhang Q, Zhou X, Li L, Su J W, Wang F K, Zhai T Y 2018 Nano Energy 51 45
Google Scholar
[94] Chen K, Wan X, Wen J X, Xie W G, Kang Z W, Zeng X L, Chen H J, Xu J B 2015 ACS Nano 9 9868
Google Scholar
[95] Chen K, Wan X, Xie W G, Wen J X, Kang Z W, Zeng X L, Chen H J, Xu J B 2015 Adv. Mater. 27 6431
Google Scholar
[96] Li M Y, Pu J, Huang J K, Miyauchi Y, Matsuda K, Takenobu T, Li L J 2018 Adv. Funct. Mater. 28 1706860
Google Scholar
[97] Chen F, Wang L, Ji X H, Zhang Q Y 2017 ACS Appl. Mater. Interfaces 9 30821
Google Scholar
[98] Liu S H, Qin K, Yang J S, Hu T, Luo H, Wu J S, Cui Z, Li T T, Ding F, Wang X R, Li Y M, Zhai T Y 2025 Natl. Sci. Rev. 12 nwaf119
Google Scholar
[99] Wang Z, Xie Y, Wang H L, Wu R X, Nan T, Zhan Y, Sun J, Jiang T, Zhao Y, Lei Y, Yang M, Wang W D, Zhu Q, Ma X H, Hao Y 2017 Nanotechnology 28 325602
Google Scholar
[100] Yoo Y, Degregorio Z P, Johns J E 2015 J. Am. Chem. Soc. 137 14281
Google Scholar
[101] Sharma A, Mahlouji R, Wu L, Verheijen M A, Vandalon V, Balasubramanyam S, Hofmann J P, Kessels W M M, Bol A A 2020 Nanotechnology 31 255603
Google Scholar
[102] Zhang Y, Yao Y Y, Sendeku M G, Yin L, Zhan X Y, Wang F, Wang Z X, He J 2019 Adv. Mater. 31 1901694
Google Scholar
[103] Xue Y Z, Zhang Y P, Liu Y, Liu H T, Song J C, Sophia J, Liu J Y, Xu Z Q, Xu Q Y, Wang Z Y, Zheng J L, Liu Y Q, Li S J, Bao Q L 2016 ACS Nano 10 573
Google Scholar
[104] Zhang X M, Huangfu L Y, Gu Z J, Xiao S Q, Zhou J D, Nan H Y, Gu X F, Ostrikov K 2021 Small 17 2007312
Google Scholar
[105] Gong Y J, Lei S D, Ye G L, Li B, He Y M, Keyshar K, Zhang X, Wang Q Z, Lou J, Liu Z, Vajtai R, Zhou W, Ajayan P M 2015 Nano Lett. 15 6135
Google Scholar
[106] Chen H L, Wen X W, Zhang J, Wu T M, Gong Y J, Zhang X, Yuan J T, Yi C Y, Lou J, Ajayan P M, Zhuang W, Zhang G Y, Zheng J R 2016 Nat. Commun. 7 12512
Google Scholar
[107] Chen F, Wang Y L, Su W T, Ding S, Fu L 2019 J. Phys. Chem. C 123 30519
Google Scholar
[108] Zhang X Q, Lin C H, Tseng Y W, Huang K H, Lee Y H 2015 Nano Lett. 15 410
Google Scholar
[109] Vashishtha P, Kofler C, Verma A K, et al. 2025 Adv. Funct. Mater. e12962
Google Scholar
[110] Chen T, Hao G L, Kou L Z, Wang C, Zhong J X 2018 Nanotechnology 29 484003
Google Scholar
[111] Trivedi D B, Turgut G, Qin Y, et al. 2020 Adv. Mater. 32 2006320
Google Scholar
[112] Yang H H, Gao F, Dai M J, Jia D C, Zhou Y, Hu P A 2017 J. Semicond. 38 031004
Google Scholar
[113] Xu Z W, Ning C C, Yang Q, Jin Y, Liu F L, Chen X K, Gong X N, Hu B S 2025 Carbon 240 120377
Google Scholar
[114] Shim G W, Yoo K, Seo S B, Shin J, Jung D Y, Kang I S, Ahn C W, Cho B J, Choi S Y 2014 ACS Nano 8 6655
Google Scholar
[115] Zhou X H, Liu M Y, Xue X D, Liu S, Yu G 2025 Adv. Mater. Technol. 10 2400901
Google Scholar
[116] Kim S, Kim Y C, Choi Y J, Woo H J, Song Y J, Kang M S, Lee C, Cho J H 2019 ACS Appl. Mater. Interfaces 11 35444
Google Scholar
[117] Wang M, Jang S K, Jang W J, Kim M, Park S Y, Kim S W, Kahng S J, Choi J Y, Ruoff R S, Song Y J, Lee S 2013 Adv. Mater. 25 2746
Google Scholar
[118] Geng D C, Dong J C, Kee Ang L, Ding F, Yang H Y 2019 NPG Asia Mater. 11 56
Google Scholar
[119] Mishra N, Miseikis V, Convertino D, Gemmi M, Piazza V, Coletti C 2016 Carbon 96 497
Google Scholar
[120] Zhang C H, Zhao S L, Jin C H, Koh A L, Zhou Y, Xu W G, Li Q C, Xiong Q H, Peng H L, Liu Z F 2015 Nat. Commun. 6 6519
Google Scholar
[121] Song X J, Sun J Y, Qi Y, Gao T, Zhang Y F, Liu Z F 2016 Adv. Energy Mater. 6 1600541
Google Scholar
[122] Shin H C, Jang Y, Kim T H, Lee J H, Oh D H, Ahn S J, Lee J H, Moon Y, Park J H, Yoo S J, Park C Y, Whang D, Yang C W, Ahn J R 2015 J. Am. Chem. Soc. 137 6897
Google Scholar
[123] Liu L, Park J, Siegel D A, McCarty K F, Clark K W, Deng W, Basile L, Idrobo J C, Li A P, Gu G 2014 Science 343 163
Google Scholar
[124] Yang Y, Fu Q, Li H B, Wei M M, Xiao J P, Wei W, Bao X H 2015 ACS Nano 9 11589
Google Scholar
[125] Li J, Yang X D, Liu Y, Huang B L, Wu R X, Zhang Z W, Zhao B, Ma H F, Dang W Q, Wei Z, Wang K, Lin Z Y, Yan X X, Sun M Z, Li B, Pan X Q, Luo J, Zhang G Y, Liu Y, Huang Y, Duan X D, Duan X F 2020 Nature 579 368
Google Scholar
[126] Wu R X, Tao Q Y, Dang W Q, Liu Y, Li B, Li J, Zhao B, Zhang Z W, Ma H F, Sun G Z, Duan X D, Duan X F 2019 Adv. Funct. Mater. 29 1806611
Google Scholar
[127] Liu D Y, Hong J H, Li X B, Zhou X, Jin B, Cui Q N, Chen J P, Feng Q L, Xu C X, Zhai T Y, Suenaga K, Xu H 2020 Adv. Funct. Mater. 30 1910169
Google Scholar
[128] Li J X, Chen J R, He Y X, Xiao J Y, Li G Q, Wang W L 2025 Adv. Funct. Mater. 35 2421508
Google Scholar
[129] Baidoo J K, Choi S H, Agyapong-Fordjour F O T, Boandoh S, Yun S J, Adofo L A, Ben-Smith A, Kim Y I, Jin J W, Jung M H, Jeong H Y, Kim Y M, Lee Y H, Kim S M, Kim K K 2022 ACS Nano 16 8851
Google Scholar
[130] Yan B, Ning B, Zhang G X, Zhou D H, Shi X, Wang C X, Zhao H Q 2022 Adv. Opt. Mater. 10 2102413
Google Scholar
[131] Zhou N, Wang R Y, Zhou X, Song H Y, Xiong X, Ding Y, Lü J T, Gan L, Zhai T Y 2018 Small 14 1702731
Google Scholar
[132] Zhang Y, Yin L, Chu J W, Shifa T A, Xia J, Wang F, Wen Y, Zhan X Y, Wang Z X, He J 2018 Adv. Mater. 30 1803665
Google Scholar
[133] Fu Q D, Wang X W, Zhou J D, Xia J, Zeng Q S, Lü D H, Zhu C, Wang X L, Shen Y, Li X M, Hua Y N, Liu F C, Shen Z X, Jin C H, Liu Z 2018 Chem. Mater. 30 4001
Google Scholar
[134] Ding Y, Zhou N, Gan L, Yan X X, Wu R Z, Abidi I H, Waleed A, Pan J, Ou X W, Zhang Q C, Zhuang M H, Wang P, Pan X Q, Fan Z Y, Zhai T Y, Luo Z T 2018 Nano Energy 49 200
Google Scholar
[135] Zhai X K, Xu X, Peng J B, Jing F L, Zhang Q L, Liu H J, Hu Z G 2020 ACS Appl. Mater. Interfaces 12 24093
Google Scholar
[136] Zhao B, Wan Z, Liu Y, Xu J Q, Yang X D, Shen D Y, Zhang Z C, Guo C H, Qian Q, Li J, Wu R X, Lin Z Y, Yan X X, Li B L, Zhang Z W, Ma H F, Li B, Chen X, Qiao Y, Shakir I, Almutairi Z, Wei F, Zhang Y, Pan X Q, Huang Y, Ping Y, Duan X D, Duan X F 2021 Nature 591 385
Google Scholar
[137] Li B, Huang L, Zhong M Z, Li Y, Wang Y, Li J B, Wei Z M 2016 Adv. Electron. Mater. 2 1600298
Google Scholar
[138] Liu H W, Li D, Ma C, Zhang X H, Sun X X, Zhu C G, Zheng B Y, Zou Z X, Luo Z Y, Zhu X L, Wang X, Pan A L 2019 Nano Energy 59 66
Google Scholar
[139] Zhou J D, Kong X H, Sekhar M C, Lin J H, Le Goualher F, Xu R, Wang X W, Chen Y, Zhou Y, Zhu C, Lu W, Liu F C, Tang B J, Guo Z L, Zhu C, Cheng Z H, Yu T, Suenaga K, Sun D, Ji W, Liu Z 2019 ACS Nano 13 10929
Google Scholar
[140] Li L, Zhang Q, Li H, Geng D C 2023 Chem. Commun. 59 14636
Google Scholar
[141] Yuan J, Sun T, Hu Z X, Yu W Z, Ma W L, Zhang K, Sun B Q, Lau S P, Bao Q L, Lin S H, Li S J 2018 ACS Appl. Mater. Interfaces 10 40614
Google Scholar
[142] Shao G L, Yang M Q, Xiang H Y, Luo S, Xue X X, Li H M, Zhang X, Liu S, Zhou Z 2023 Nano Res. 16 1670
Google Scholar
[143] Heo H, Sung J H, Ahn J H, Ghahari F, Taniguchi T, Watanabe K, Kim P, Jo M H 2017 Adv. Electron. Mater. 3 1600375
Google Scholar
[144] Fang X D, Tian Q Q, Sheng Y, Yang G F, Lu N Y, Wang J, Zhang X M, Zhang Y X, Yan X M, Hua B 2018 Superlattice Microst 123 323
Google Scholar
[145] Lee J, Pak S, Lee Y W, Park Y, Jang A R, Hong J, Cho Y, Hou B, Lee S, Jeong H Y, Shin H S, Morris S M, Cha S, Sohn J I, Kim J M 2019 ACS Nano 13 13047
Google Scholar
[146] Zhang S W, Hao Y L, Hao S J, Lu X M, Zhou J, Fan C, Liu J, Hao G L 2025 Nanotechnology 36 232004
Google Scholar
[147] Zhou G L, Gao H, Li J, He X Y, He Y B, Li Y, Hao G L 2022 Nanotechnology 33 175602
Google Scholar
[148] Wang Q, Wang S, Li J Y, Gan Y C, Jin M T, Shi R, Amini A, Wang N, Cheng C 2023 Adv. Sci. 10 2205638
Google Scholar
[149] Wang D, Zhang Z W, Huang B L, Zhang H M, Huang Z W, Liu M M, Duan X D 2022 ACS Nano 16 1198
Google Scholar
[150] Huang C, Wu S, Sanchez A M, Peters J J P, Beanland R, Ross J S, Rivera P, Yao W, Cobden D H, Xu X 2014 Nat. Mater. 13 1096
Google Scholar
[151] Duan X D, Wang C, Shaw J C, Cheng R, Chen Y, Li H L, Wu X P, Tang Y, Zhang Q L, Pan A L, Jiang J H, Yu R Q, Huang Y, Duan X F 2014 Nat. Nanotechnol. 9 1024
Google Scholar
[152] Zhang Q, Xiao X, Zhao R Q, Lü D H, Xu G C, Lu Z X, Sun L F, Lin S Z, Gao X, Zhou J, Jin C H, Ding F, Jiao L Y 2015 Angew. Chem. Int. Ed 54 8957
Google Scholar
[153] Li F, Feng Y X, Li Z W, et al. 2019 Adv. Mater. 31 1901351
Google Scholar
[154] Zhou J D, Tang B J, Lin J H, Lü D H, Shi J, Sun L F, Zeng Q S, Niu L, Liu F C, Wang X W, Liu X F, Suenaga K, Jin C H, Liu Z 2018 Adv. Funct. Mater. 28 1801568
Google Scholar
[155] Seok H, Megra Y T, Kanade C K, Cho J, Kanade V K, Kim M, Lee I, Yoo P J, Kim H U, Suk J W, Kim T 2021 ACS Nano 15 707
Google Scholar
[156] Chen C, Yang Y, Zhou X, Xu W X, Cui Q N, Lu J B, Jing H M, Tian D, Xu C X, Zhai T Y, Xu H 2021 ACS Appl. Nano Mater. 4 5522
Google Scholar
[157] Choudhary N, Park J, Hwang J Y, Chung H S, Dumas K H, Khondaker S I, Choi W, Jung Y 2016 Sci. Rep. 6 25456
Google Scholar
[158] Woods J M, Jung Y, Xie Y, Liu W, Liu Y, Wang H, Cha J J 2016 ACS Nano 10 2004
Google Scholar
[159] Li W, Qin Q Y, Li X, Huangfu Y, Shen D Y, Liu J L, Li J, Li B, Wu R X, Duan X D 2024 Adv. Mater. 36 2408367
Google Scholar
[160] Zou Z X, Liang J W, Zhang X H, Ma C, Xu P, Yang X, Zeng Z X, Sun X X, Zhu C G, Liang D L, Zhuang X J, Li D, Pan A L 2021 ACS Nano 15 10039
Google Scholar
[161] Cai Y H, Xu K, Zhu W J 2018 Mater. Res. Express 5 095904
Google Scholar
[162] Shi J P, Tong R, Zhou X B, Gong Y, Zhang Z P, Ji Q Q, Zhang Y, Fang Q Y, Gu L, Wang X N, Liu Z F, Zhang Y F 2016 Adv. Mater. 28 10664
Google Scholar
[163] Heo H, Sung J H, Jin G, Ahn J H, Kim K, Lee M J, Cha S, Choi H, Jo M H 2015 Adv. Mater. 27 3803
Google Scholar
[164] Lin Y C, Ghosh R K, Addou R, Lu N, Eichfeld S M, Zhu H, Li M Y, Peng X, Kim M J, Li L J, Wallace R M, Datta S, Robinson J A 2015 Nat. Commun. 6 7311
Google Scholar
[165] Li Z P, Zheng J L, Zhang Y P, Zheng C X, Woon W Y, Chuang M C, Tsai H C, Chen C H, Davis A, Xu Z Q, Lin J, Zhang H, Bao Q L 2017 ACS Appl. Mater. Interfaces 9 34204
Google Scholar
[166] Gong Y J, Lin J H, Wang X L, Shi G, Lei S D, Lin Z, Zou X L, Ye G L, Vajtai R, Yakobson B I, Terrones H, Terrones M, Tay Beng K, Lou J, Pantelides S T, Liu Z, Zhou W, Ajayan P M 2014 Nat. Mater. 13 1135
Google Scholar
[167] Cain J D, Hanson E D, Dravid V P 2018 J. Appl. Phys. 123 204304
Google Scholar
[168] Zhang Z W, Chen P, Duan X D, Zang K T, Luo J, Duan X F 2017 Science 357 788
Google Scholar
[169] Zhou Z J, Hou F C, Huang X L, Wang G, Fu Z H, Liu W L, Yuan G W, Xi X X, Xu J, Lin J H, Gao L B 2023 Nature 621 499
Google Scholar
[170] Sahoo P K, Memaran S, Xin Y, Balicas L, Gutiérrez H R 2018 Nature 553 63
Google Scholar
[171] Sahoo P K, Memaran S, Nugera F A, Xin Y, Díaz Márquez T, Lu Z, Zheng W, Zhigadlo N D, Smirnov D, Balicas L, Gutiérrez H R 2019 ACS Nano 13 12372
Google Scholar
[172] Zhang Z P, Gong Y, Zou X L, Liu P R, Yang P F, Shi J P, Zhao L Y, Zhang Q, Gu L, Zhang Y F 2019 ACS Nano 13 885
Google Scholar
[173] Li X, Lin M W, Lin J, et al. 2014 Sci. Adv. 2 e1501882
Google Scholar
[174] Hong Y J, Fukui T 2011 ACS Nano 5 7576
Google Scholar
[175] Zhang S, Hao Y, Gao F, Wu X, Hao S, Qiu M, Zheng X, Wei Y, Hao G 2024 2D Mater. 11 015007
Google Scholar
[176] Li M Y, Shi Y, Cheng C C, Lu L S, Lin Y C, Tang H L, Tsai M L, Chu C W, Wei K H, He J H, Chang W H, Suenaga K, Li L J 2015 Science 349 524
Google Scholar
[177] Suenaga K, Ji H G, Lin Y C, Vincent T, Maruyama M, Aji A S, Shiratsuchi Y, Ding D, Kawahara K, Okada S, Panchal V, Kazakova O, Hibino H, Suenaga K, Ago H 2018 ACS Nano 12 10032
Google Scholar
[178] Zhang T, Jiang B, Xu Z, Mendes R G, Xiao Y, Chen L F, Fang L W, Gemming T, Chen S L, Rümmeli M H, Fu L 2016 Nat. Commun. 7 13911
Google Scholar
[179] Ling X, Lee Y H, Lin Y X, Fang W J, Yu L L, Dresselhaus M S, Kong J 2014 Nano Lett. 14 464
Google Scholar
[180] Ling X, Lin Y X, Ma Q, et al. 2016 Adv. Mater. 28 2322
Google Scholar
[181] Wang L, Yue Q Y, Pei C J, Fan H C, Dai J, Huang X, Li H, Huang W 2020 Nano Res. 13 959
Google Scholar
[182] Duan Z J, Chen T, Shi J W, Li J, Song K, Zhang C, Ding S J, Li B, Wang G, Hu S G, He X Y, He C Y, Xu H, Liu X F, Jin C H, Zhong J X, Hao G L 2020 Sci. Bull. 65 1013
Google Scholar
-
图 1 (a) WO3–x/MoO3–x核壳纳米线及MoS2/WS2 VHS合成的原子结构示意图; (b) WO3–x/MoO3–x核壳纳米线的TEM图像, 其核直径约为100 nm, 壳厚度约为20 nm; (c) WO3–x和MoO3–x界面的HR-TEM图像; (d) CVD生长的MoS2/WS2 VHS OM图像; (e)单独的MoS2/WS2 VHS OM图像; (f) 图(e)中所示VHS的拉曼面扫描图像; (g), (j)单层MoS2, WS2, MoS2/WS2 VHS的拉曼和PL光谱; (h), (i)分别具有1.84 eV (MoS2的A-激子峰)和1.97 eV (WS2的A-激子峰)的MoS2/WS2 VHS PL面扫描图像[152]
Fig. 1. (a) Atomic structure schematic of WO3–x/MoO3–x core-shell nanowires and the synthesis of MoS2/WS2 VHS; (b) TEM image of WO3–x/MoO3–x core-shell nanowires, with a core diameter of ~100 nm and shell thickness of ~20 nm; (c) HR-TEM image of the interface between WO3–x and MoO3–x; (d) OM image of the CVD-grown MoS2/WS2 VHS; (e) OM image of an individual MoS2/WS2 VHS; (f) Raman mapping image of the VHS shown in (e); (g), (j) Raman and PL spectra of monolayer MoS2, WS2, and MoS2/WS2 VHS; (h), (i) PL mapping images of the MoS2/WS2 VHS at 1.84 eV (A-exciton peak of MoS2) and 1.97 eV (A-exciton peak of WS2), respectively[152].
图 2 (a) 磁辅助CVD石英管示意图; (b) 在第1阶段中生长底层MoS2, 再快速冷却和引入Te形成MoTe2/MoS2 VHS; (c) MoTe2/MoS2 VHS的示意性侧视图; (d) MoTe2/MoS2 VHS的OM图像; (e) MoTe2/MoS2 VHS的背散射SEM图像; (f) 图(d)中MoTe2/MoS2 VHS的原子力显微镜AFM表征[134]
Fig. 2. (a) Schematic of the magnetic-field-assisted CVD quartz tube; (b) growth of the bottom-layer MoS2 in the first stage, followed by rapid cooling and introduction of Te to form a MoTe2/MoS2 VHS; (c) schematic side view of the MoTe2/MoS2 VHS; (d) OM image of the MoTe2/MoS2 VHS; (e) backscattered SEM image of the MoTe2/MoS2 VHS; (f) AFM characterization of the MoTe2/MoS2 VHS in panel (d)[134].
图 3 (a1)—(e2) 随着W/Se比例增加, MoS2/WSe2异质结形貌从横向主导、混合模式到垂直主导连续演变的原子结构示意图; (f) 横向生长长度和纵向生长长度随W/Se组成比的变化趋势; (g) 异质结构类型与W前体 (WO3)和Se前体的剂量的关系; (h) 在不同W/Se比下的横向、混合和垂直异质结构的统计; (i) 吸附各种活性团簇W1SeX的横向/垂直MoS2/WSe2异质结构可控生长过程示意图; (j) 不同垂直异质结构的空间分辨的拉曼面扫描图像[153]; (k) 活性团簇在WSe2表面不同位置的结合能; (l) WSe2活性团簇在WSe2表面的扩散行为; (m) WSe2活性团簇在WSe2表面的扩散行为; (n) WSe3活性团簇在WSe2表面的扩散行为; (o) 双层-双层和双层-单层 WS2/WSe2生长过程示意图[149]
Fig. 3. (a1)–(e2) Schematic diagrams illustrating the continuous evolution of the MoS2/WSe2 heterostructure morphology, which transitions from being LHS-dominated to VHS-dominated with an increasing W/Se ratio; (f) the evolution trends of lateral and vertical growth length with composition ratio of W/Se; (g) the relation of heterostructure type with the dosage of W precursor (WO3) and Se precursor; (h) the statistics of LHS, HHS, and VHS at different W/Se ratios; (i) schematic view of controllable growth process of MoS2/WSe2 LHS/VHS with the adsorption of various active clusters W1SeX; (j) spatially resolved Raman mapping image of diverse VHS[153]; (k) binding energies of the active clusters on the different positions of the WSe2 surface; (l) diffusion behavior of the WSe2 active cluster on the WSe2 surface; (m) diffusion behavior of the WSe active cluster on the WSe2 surface; (n) diffusion behavior of the WSe3 active cluster on the WSe2 surface; (o) schematic view of the growth process of bilayer-bilayer and bilayer-monolayer WS2/WSe2[149].
图 4 (a) 通过PECVD在300 ℃下的单步穿透硫化合成MoS2/WS2 VHS的示意图; (b) 随时间相关的等离子体硫化机制的横截面HR-TEM图像; (c) 硫化时间相关条件的拉曼光谱; (d) WS2/MoS2 VHS合成过程的示意图; (e)—(g) 不同金属厚度的穿透H2S等离子体过程, (e) Mo 1 nm/W 2 nm, (f) Mo 2 nm/W 1 nm, (g) Mo 2 nm/W 2 nm[155]; (h) 通过旋涂将Mo溶液前体分散在蓝宝石衬底上的示意图; (i) 通过氢触发一锅法CVD方法合成的MoS2/WS2 LHS的示意图; (j) MoS2/WS2 LHS外延生长过程的原子结构模型[156]
Fig. 4. (a) Schematic illustration of one-step through-plane sulfurization via PECVD at 300 ℃ for synthesizing MoS2/WS2 VHS; (b) cross-sectional HR-TEM images revealing the time-dependent plasma-assisted sulfurization mechanism; (c) Raman spectra under varying sulfurization durations; (d) schematic of the synthesis process for WS2/MoS2 VHS; (e)–(g) through-plane H2S plasma process with different metal thicknesses: (e) Mo 1 nm/W 2 nm, (f) Mo 2 nm/W 1 nm, (g) Mo 2 nm/W 2 nm[155]; (h) schematic showing the dispersion of Mo solution precursor on a sapphire substrate via spin-coating; (i) illustration of one-pot CVD synthesis of MoS2/WS2 LHS triggered by hydrogen; (j) atomic structure model of the epitaxial growth process of a MoS2/WS2 LHS[156].
图 5 (a) 辅助剂复合前驱体CVD工艺示意图; (b)—(f) NH4Cl充足供应时生长的MoS2/WS2 VHS的原子结构、OM、拉曼面扫描和AFM图像; (g)—(k) NH4Cl供应不足时生长的MoS2/WS2 HHS的原子结构图、OM、拉曼面扫描和AFM图像; (i)—(p) 无NH4Cl供应时生长的MoS2/WS2 LHS的原子结构图、OM、拉曼面扫描和AFM图像[159]; (q) 由液态Ga和Ga2Se3粉末的前驱体复合的反应系统以及相应的GaSe/MoS2异质结原子结构; (r)—(u), (v)—(y) 单层MoS2, GaSe/MoS2横向、混合和垂直异质结构的OM和AFM图像[160]
Fig. 5. (a) Schematic diagram of the CVD process using an auxiliary-agent-modified precursor; (b)–(f) atomic structure diagram, OM, Raman mapping, and AFM images of MoS2/WS2 VHS grown with sufficient NH4Cl supply; (g)–(k) atomic structure, OM, Raman mapping, and AFM images of MoS2/WS2 HHS grown under insufficient NH4Cl supply; (i)–(p) atomic structure diagram, OM, Raman mapping, and AFM images of MoS2/WS2 LHS obtained in the absence of NH4Cl[159]; (q) reaction system based on a precursor composite of liquid Ga and Ga2Se3 powder, along with the corresponding atomic structure of a GaSe/MoS2 heterostructure; (r)–(u), (v)–(y) OM and AFM images of monolayer MoS2, GaSe/MoS2 LHS, HHS and VHS[160].
图 6 (a) WS2/MoS2 LHS和VHS的生长系统; (b) WS2/MoS2 LHS的生长示意图; (c) 大面积单层WS2的OM图像; (d) WS2/MoS2 LHS的生长机理图; (e) 单个WS2/MoS2 LHS的OM图像; (f) WS2/MoS2 VHS的生长示意图; (g) 大面积单层MoS2的OM图像; (h) WS2/MoS2 VHS的生长机理图; (i) 单个WS2/MoS2 VHS的OM图像[163]; (j) MoS2/WSe2/EG或WSe2/MoSe2/EG VHS的形成[164]
Fig. 6. (a) Growth system for WS2/MoS2 LHS and VHS; (b) schematic illustration of the growth of a WS2/MoS2 LHS; (c) OM image of a large-area monolayer WS2; (d) growth mechanism diagram of the WS2/MoS2 LHS; (e) OM image of an individual WS2/MoS2 LHS; (f) schematic illustration of the growth of a WS2/MoS2 VHS; (g) OM image of a large-area monolayer MoS2; (h) growth mechanism diagram of the WS2/MoS2 VHS; (i) OM image of an individual WS2/MoS2 VHS[163]; (j) formation of MoS2/WSe2/EG or WSe2/MoSe2/EG VHS[164].
图 7 (a1) 合成WSe2/WS2 LHS的CVD系统示意图; (b1) 第一和第二加热温区温度分布; (c1) WSe2/WS2 LHS的OM图像; (d1) WSe2/WS2 LHS的尺寸和厚度分布; (e1) 拉曼光谱, 其取自WSe2/WS2异质结构的中心和边缘区域; (f1) 中心和边缘处异质结构的PL光谱; (g1), (h1) 异质结中WS2 (g1)和WSe2 $ {E}_{1\mathrm{g}}^{2} $ (h1)振动模式的拉曼面扫描图像; (i1) 异质结构的AFM形貌图像; (j1) 异质结构的相位图像[165]; (a2) 两种异质结构的合成过程示意图; (b2)—(e2) 在850 ℃下合成WS2/MoS2 VHS的示意图、OM和SEM图像, 显示了异质结的特征和高产率; (f2)—(i2) 在650 ℃下生长的WS2/MoS2 LHS的示意图、OM和SEM图像; (h2) WS2和MoS2之间界面的OM图像, 具有增强的颜色对比度, 显示界面处对比度的突变[166]
Fig. 7. (a1) Schematic of the CVD system for synthesizing WSe2/WS2 LHS; (b1) temperature profiles of the first and second heating zones; (c1) OM image of the WSe2/WS2 LHS; (d1) size and thickness distribution of the WSe2/WS2 LHS; (e1) Raman spectra acquired from the center and edge regions of the WSe2/WS2 heterostructure; (f1) PL spectra of the heterostructure at the center and edge regions; (g1), (h1) Raman mapping images of the WS2 (g1) and WSe2 $ {E}_{1\mathrm{g}}^{2} $ (h1) vibration modes in the heterostructure; (i1) AFM topographic image of the heterostructure; (j1) phase image of the heterostructure[165]; (a2) schematic illustration of the synthesis process for the two types of heterostructures; (b2)–(e2) schematic diagram, OM, and SEM images of WS2/MoS2 VHS synthesized at 850 ℃, demonstrating the characteristics and high yield of the heterostructures; (f2)–(i2) schematic diagram, OM, and SEM images of WS2/MoS2 LHS grown at 650 ℃; (h2) OM image of the interface between WS2 and MoS2 with enhanced color contrast, showing an abrupt change in contrast at the boundary[166].
图 8 (a)—(d) 异质结和合金的晶体结构示意图; (e)—(h) MoS2-WS2 VH、RH、HH和合金的OM图像, 分别对应它们的最终生长温度; (i) MoS2-WS2系统TTA图; (j) MoSe2-WSe2系统TTA图[167]
Fig. 8. (a)–(d) Schematic diagrams of the crystal structures of heterostructures and alloys; (e)–(h) OM images of MoS2/WS2 VHS, LHS, HHS, and alloys, corresponding to their respective final growth temperatures; (i) TTA diagram of the MoS2/WS2 system; (j) TTA diagram of the MoSe2/WSe2 system[167].
图 9 (a) 改进逆流CVD系统的示意图; (b1) WS2/WSe2横向异质结的OM图像; (b2) WS2/WSe2横向异质结的拉曼面扫描图像; (b3), (b4) WS2/WSe2横向异质结PL面扫描图像; (c1), (c2) WSe2/MoS2横向异质结构的OM图像和PL面扫描图像; (d1), (d2) WS2/MoS2横向异质结的OM图像和PL面扫描图像; (e1), (e2) WSe2/MoSe2横向异质结的OM图像和PL面扫描图像; (f1), (f2) WS2/MoSe2横向异质结的OM图像和PL面扫描图像; (g1)—(j5) 二维超晶格和多异质结的拉曼和PL面扫描图像[168]
Fig. 9. (a) Schematic diagram of the modified counter-flow CVD system; (b1) OM image of the WS2/WSe2 LHS; (b2) Raman mapping image of the WS2/WSe2 LHS; (b3), (b4) PL mapping images of the WS2/WSe2 LHS; (c1), (c2) OM image and PL mapping image of the WSe2/MoS2 LHS; (d1), (d2) OM image and PL mapping image of the WS2/MoS2 LHS; (e1), (e2) OM image and PL mapping image of the WSe2/MoSe2 LHS; (f1), (f2) OM image and PL mapping image of the WS2/MoSe2 LHS; (g1)–(j5) Raman and PL mapping image of two-dimensional superlattices and multi-heterostructures[168].
图 10 (a) 通过4个两步气相沉积循环的晶圆级四层异质结生长的示意图, 每个循环组合金属膜涂层和TMDC膜; (b) TMDC物质的排列遵循高温到低温策略, 从WS2开始, 因为这需要最高的温度. 石墨烯和hBN被显示用于比较, 这里制造的TMDC薄膜包含2D超导体、调谐超导体和邻近诱导超导体, 颜色条显示了过程中每个部分所需的温度方向[169]
Fig. 10. (a) Schematic showing the growth of a wafer-scale four-block vdWSH through four cycles of two-step vapour deposition, each combining a metal film coating and a TMDC film; (b) the arrangement of TMDC species follows the high-to-low temperature strategy, starting with WS2, as that requires the highest temperature, graphene and hBN are shown for comparison, the TMDC films fabricated here contain 2D superconductors, tuned superconductors and proximity-induced superconductors, as indicated, the colour bar shows the direction of temperature required for each part of the process[169].
图 11 (a) 改进的化学气相沉积系统的示意图, 该系统允许交替切换载气, 载气通过鼓泡器而引入水蒸气, 载气通过放置在石英管入口处的三通阀来选择; (b) 原子球模型, 以横截面和平面视图显示异质结上的材料分布; (c) 三结异质结的OM图像; (d), (e) 五结异质结构的OM图像; (f) 七结异质结构的OM图像; (g), (h) 拉曼(g)和PL (h)光谱在(c)位置的1, 2, 3和4上; (i), (j) WSe2 (1.6 eV, 顶部)和MoSe2 (1.52 eV, 底部)的PL面扫描图以及(d)中异质结构的复合PL图(j); (k), (l) 三结(k)和五结(l)异质结构的归一化PL强度的等高线彩色图[170]
Fig. 11. (a) Schematic diagram of the modified chemical vapor deposition system, which allows alternate switching of carrier gas. The carrier gas introduces water vapor via a bubbler and is selected using a three-way valve positioned at the inlet of the quartz tube; (b) atomic ball-and-stick model showing the material distribution in the heterostructure, in both cross-sectional and planar views; (c) OM image of a triple-junction heterostructure; (d), (e) OM images of a five-junction heterostructure; (f) OM image of a seven-junction heterostructure; (g), (h) Raman (g) and PL (h) spectra taken at positions 1, 2, 3, and 4 marked in (c); (i), (j) PL maps of WSe2 (1.6 eV, top)and MoSe2 (1.52 eV, bottom), and the composite PL map (j) of the heterostructure in (d); (k), (l) Contour-colored maps of normalized PL intensity for the triple-junction (k) and five-junction (l) heterostructures[170].
图 12 (a) 用于合成MoS2/WS2LHS的CVD装置的示意图; (b) MoS2结构、(c) WS2结构和(d)用于多结LHS生长的机制示意图; (e) MoS2/WS2 LHS的OM图像, 以及(f)相应的放大图像和(g)多结异质结, 显示存在MoS2和WS2的明确畴; (h) Kn+/Kn–作为温度的函数, 随着温度的升高, 生长从横向生长变为横向和垂直生长的组合[171]
Fig. 12. (a) Schematic diagram of the CVD setup used for synthesizing MoS2/WS2 LHS; (b) MoS2 structure, (c) WS2 structure, and (d) mechanism illustration for the growth of multi-junction LHS; (e) OM image of a MoS2/WS2 LHS, along with (f) corresponding magnified view and (g) multi-junction heterostructure, showing distinct domains of MoS2 and WS2; (h) Kn+/Kn– as a function of temperature, indicating a transition from purely lateral growth to a combination of LHS and VHS growth with increasing temperature[171].
图 13 (a) 通过一锅CVD法合成WS2/ReS2 LHS的示意图; (b) 异质结的氢触发一锅生长过程的原子模型; (c) 在Ar条件下生长的ReS2和(d) 在Ar + H2条件下生长的WS2的SEM图像; (e), (f) 在第1阶段的Ar条件下和在第2阶段的Ar+H2条件下生长的WS2/ReS2 LHS的SEM图像和对应的AFM图像; (g) WS2/ReS2横向异质结的OM图像; (h) WS2/ReS2异质结的拉曼光谱; (i) 在异质结的这3个区域获得的相应PL光谱; (j)—(m) 在418, 355, 161和213 cm–1处获得的拉曼面扫描图像; (n) 由213和418 cm–1处的两个不同的拉曼峰组成的复合拉曼面扫描图像[127]
Fig. 13. (a) Schematic illustration of the one-pot CVD synthesis of WS2/ReS2 LHS; (b) atomic model of the hydrogen-triggered one-pot growth process for the heterostructure; (c) SEM image of ReS2 grown under Ar atmosphere; (d) SEM image of WS2 grown under Ar+H2 atmosphere; (e), (f) SEM and corresponding AFM images of WS2/ReS2 LHS grown first under Ar atmosphere and then under Ar+H2 atmosphere; (g) OM image of the WS2/ReS2 LHS; (h) Raman spectrum of the WS2/ReS2 heterostructure; (i) corresponding PL spectra obtained from the three marked regions of the heterostructure; (j)–(m) Raman mapping images acquired at 418, 355, 161, and 213 cm–1; (n) composite Raman mapping image formed by integrating two distinct Raman peaks at 213 and 418 cm–1[127].
图 14 (a) MoS2/石墨烯面LHS的合成示意图; (b) 在蓝宝石衬底上生长的LHS的CLSM和(c) SEM图像; (d) 当使用SiO2代替蓝宝石作为衬底时获得的MoS2/石墨烯VHS结构的SEM图像[177]
Fig. 14. (a) Schematic of the synthesis of a MoS2/graphene LHS; (b) CLSM and (c) SEM images of the LHS grown on a sapphire substrate; (d) SEM image of a MoS2/graphene VHS obtained when SiO2 was used as a substrate instead of sapphire[177].
图 15 (a) 在Au(111)表面生长ReS2/WS2 异质结的示意图; (b)—(d) 模拟的Re原子(b)和W原子(c)在Au(111)表面以及Re原子在WS2(001)面上的侧视图吸附情况; (e)—(g) 以W箔(e)、Re箔(f)和W-Re合金箔(g)作为支撑基底在Au上生长的示意图[178]
Fig. 15. (a) Schematic illustration of the growth process of ReS2/WS2 heterostructures on the Au(111) surface; (b)–(d) side views of the simulated adsorption configurations of Re atoms (b) and W atoms (c) on the Au(111) surface, and of Re atoms on the WS2(001) surface (d); (e)–(g) schematics of growth on Au using W foil (e), Re foil (f), and W-Re alloy foil (g) as support substrates[178].
图 16 (a) SiO2/Si衬底上的Sb2Te3/Bi2Te3叠层的顺序两步堆叠生长的示意图; (b) SiO2/Si衬底上底层Bi2Te3的生长示意图; (c) SiO2/Si衬底上的Sb2Te3/Bi2Te3 VHS的OM图像和AFM图像; (d) h-BN衬底上的Sb2Te3/Bi2Te3 VHS的生长示意图; (e) h-BN衬底上底层Bi2Te3的生长示意图; (f) h-BN衬底上的Sb2Te3/Bi2Te3 VHS的OM图像和AFM图像[143]
Fig. 16. (a) Schematic diagram of the sequential two-step stacking growth of Sb2Te3/Bi2Te3 on SiO2/Si substrate; (b) schematic illustration of the bottom-layer Bi2Te3 growth on SiO2/Si substrate; (c) OM and AFM images of the Sb2Te3/Bi2Te3 VHS on SiO2/Si substrate; (d) schematic diagram of the growth of Sb2Te3/Bi2Te3 VHS on h-BN substrate; (e) schematic illustration of the bottom-layer Bi2Te3 growth on h-BN substrate; (f) OM and AFM images of the Sb2Te3/Bi2Te3 VHS on h-BN substrate[143].
图 17 (a) CVD装置和平行缝合2D-TMD异质结构的合成过程的示意图; (b), (d), (f)石墨烯/MoS2 (b), WS2/MoS2 (d)和hBN/MoS2 (f)的平行缝合异质结构的示意图; (c), (e), (g)对应于图(b), (d), (f)的光学图像和PL面扫描图像[180]
Fig. 17. (a) Schematic of the CVD setup and the synthesis process of laterally stitched 2D-TMD heterostructures; (b), (d), (f) illustrations of laterally stitched heterostructures of graphene/MoS2 (b), WS2/MoS2 (d), and hBN/MoS2 (f); (c), (e), (g) optical images and corresponding PL mapping images of the structures shown in panels (b), (d), and (f), respectively[180].
-
[1] Sheng C M, Dong X Q, Zhu Y X, Wang X Y, Chen X Y, Xia Y, Xu Z H, Zhou P, Wan J, Bao W Z 2023 Adv. Funct. Mater. 33 2304778
Google Scholar
[2] Huang X H, Liu C S, Zhou P 2022 npj 2D Mater. Appl. 6 51
Google Scholar
[3] Yin L, Cheng R Q, Ding J H, Jiang J, Hou Y T, Feng X Q, Wen Y, He J 2024 ACS Nano 18 7739
Google Scholar
[4] Ahn S J, Moon P, Kim T H, Kim H W, Shin H C, Kim E H, Cha H W, Kahng S J, Kim P, Koshino M, Son Y W, Yang C W, Ahn J R 2018 Science 361 782
Google Scholar
[5] Malko D, Neiss C, Viñes F, Görling A 2012 Phys. Rev. Lett. 108 086804
Google Scholar
[6] Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H L 2008 Solid State Commun. 146 351
Google Scholar
[7] Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R, Geim A K 2008 Science 320 1308
Google Scholar
[8] Papageorgiou D G, Kinloch I A, Young R J 2017 Prog. Mater. Sci. 90 75
Google Scholar
[9] Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau C N 2008 Nano Lett. 8 902
Google Scholar
[10] Dutta T, Yadav N, Wu Y, Cheng G J, Liang X, Ramakrishna S, Sbai A, Gupta R, Mondal A, Hongyu Z, Yadav A 2024 Nano Mater. Sci. 6 1
Google Scholar
[11] Xie Z X, Zhao T X, Yu X C, Wang J J 2024 Small 20 2311621
Google Scholar
[12] Guo B, Xiao Q L, Wang S H, Zhang H 2019 Laser Photonics Rev. 13 1800327
Google Scholar
[13] Dai C Y, He P, Luo L X, Zhan P X, Guan B, Zheng J 2023 Sci. China Mater. 66 859
Google Scholar
[14] 肖寒, 弭孟娟, 王以林 2021 70 127503
Google Scholar
Xiao H, Mi M J, Wang Y L 2021 Acta Phys. Sin. 70 127503
Google Scholar
[15] Qiao S X, Han Y L, Jiao N, Zheng M M, Lu H Y, Zhang P 2025 Phys. Rev. B 111 L041404
Google Scholar
[16] Lee M H, Wu W 2022 Adv. Mater. Technol. 7 2101623
Google Scholar
[17] Kaul A B 2014 J. Mater. Res. 29 348
Google Scholar
[18] Ma H X, Xing Y H, Cui B Y, Han J, Wang B H, Zeng Z M 2022 Chin. Phys. B 31 108502
Google Scholar
[19] Xia F N, Wang H, Xiao D, Dubey M, Ramasubramaniam A 2014 Nat. Photonics 8 899
Google Scholar
[20] Tan T, Jiang X T, Wang C, Yao B C, Zhang H 2020 Adv. Sci. 7 2000058
Google Scholar
[21] Das S, Kim M, Lee J W, Choi W 2014 Crit. Rev. Solid State Mater. Sci. 39 231
Google Scholar
[22] Liu A H, Zhang X W, Liu Z Y, Li Y N, Peng X Y, Li X, Qin Y, Hu C, Qiu Y Q, Jiang H, Wang Y, Li Y F, Tang J, Liu J, Guo H, Deng T, Peng S G, Tian H, Ren T L 2024 Nano-Micro Lett. 16 119
Google Scholar
[23] Aftab S, Hussain S, Al-Kahtani A A 2023 Adv. Mater. 35 2301280
Google Scholar
[24] Hoang A T, Hu L, Katiyar A K, Ahn J H 2022 Matter 5 4116
Google Scholar
[25] Wang S K, Hung N T, Sun M L 2025 Molecules 30 741
Google Scholar
[26] Arora H, Fekri Z, Vekariya Y N, Chava P, Watanabe K, Taniguchi T, Helm M, Erbe A 2023 Adv. Mater. Technol. 8 2200546
Google Scholar
[27] Xiao Z C, Guo R J, Zhang C M, Liu Y Y 2024 ACS Nano 18 8511
Google Scholar
[28] Chen Y, Lu D L, Kong L G, Tao Q Y, Ma L K, Liu L K, Lu Z Y, Li Z, W Wu R X, Duan X D, Liao L, Liu Y 2023 ACS Nano 17 14954
Google Scholar
[29] Balog R, Jørgensen B, Nilsson L, Andersen M, Rienks E, Bianchi M, Fanetti M, Lægsgaard E, Baraldi A, Lizzit S, Sljivancanin Z, Besenbacher F, Hammer B, Pedersen T G, Hofmann P, Hornekær L 2010 Nat. Mater. 9 315
Google Scholar
[30] Sahu S, Rout G C 2017 Int. Nano Lett. 7 81
Google Scholar
[31] Liu W J, Yu Y Y, Peng M, Zheng Z H, Jian P C, Wang Y, Zou Y C, Zhao Y M, Wang F, Wu F, Chen C Q, Dai J N, Wang P, Hu W D 2023 InfoMat 5 e12470
Google Scholar
[32] Wang J W, Li Z Q, Chen H Y, Deng G W, Niu X B 2019 Nano-Micro Lett. 11 48
Google Scholar
[33] Zhang S H, Liu H, Zhang F, Zheng X M, Zhang X Z, Zhang B H, Zhang T, Ao Z K, Zhang X Y, Lan X, Yang X D, Zhong M Z, Li J, Li B, Ma H F, Duan X D, He J, Zhang Z W 2024 ACS Nano 18 30321
Google Scholar
[34] Chen K, Wan X, Xu J B 2017 Adv. Funct. Mater. 27 1603884
Google Scholar
[35] Hu W, Yang J L 2017 J. Mater. Chem. C 5 12289
Google Scholar
[36] Novoselov K S, Mishchenko A, Carvalho A, Castro Neto A H 2016 Science 353 aac9439
Google Scholar
[37] Zhou X, Hu X Z, Yu J, Liu S Y, Shu Z W, Zhang Q, Li H Q, Ma Y, Xu H, Zhai T Y 2023 Adv. Funct. Mater. 33 2302474
Google Scholar
[38] Yao J D, Yang G W 2022 J. Appl. Phys. 131 161101
Google Scholar
[39] Hao Y L, Zhang S W, Fan C, Liu J, Hao S J, Lu X M, Zhou J, Qiu M C, Li J, Hao G L 2025 Appl. Phys. Lett. 126 031904
Google Scholar
[40] Liang S J, Cheng B, Cui X, Miao F 2020 Adv. Mater. 32 1903800
Google Scholar
[41] Chakraborty S K, Kundu B, Nayak B, Dash S P, Sahoo P K 2022 iScience 25 103942
Google Scholar
[42] Zhu Y T, Wu X L 2023 Prog. Mater. Sci. 131 101019
Google Scholar
[43] Li Z Q, Wang Q B, Xu Q Q, Han Z H, Cheng T, Yin J Z 2024 CrystEngComm 26 3694
Google Scholar
[44] Chen D X, Lian Z, Huang X, Su Y, Rashetnia M, Ma L, Yan L, Blei M, Xiang L, Taniguchi T, Watanabe K, Tongay S, Smirnov D, Wang Z H, Zhang C W, Cui Y T, Shi S F 2022 Nat. Phys. 18 1171
Google Scholar
[45] Fang H, Battaglia C, Carraro C, Nemsak S, Ozdol B, Kang J S, Bechtel H A, Desai S B, Kronast F, Unal A A, Conti G, Conlon C, Palsson G K, Martin M C, Minor A M, Fadley C S, Yablonovitch E, Maboudian R, Javey A 2014 Proc. Natl. Acad. Sci. 111 6198
Google Scholar
[46] Liang Z F, Zhang J S, Hua C Q, Wang Y, Song F 2024 Phys. Rev. B 110 085110
Google Scholar
[47] Guo D L, Fu Q, Zhang G T, Cui Y Y, Liu K Y, Zhang X Y, Yu Y L, Zhao W W, Zheng T, Long H R, Zeng P Y, Han X, Zhou J, Xin K Y, Gu T C, Wang W H, Zhang Q, Hu Z L, Zhang J L, Chen Q, Wei Z M, Zhao B, Lu J P, Ni Z H 2024 Adv. Mater. 36 2400060
Google Scholar
[48] 高琦璇, 钟浩源, 周树云 2022 物理 51 310
Google Scholar
Gao Q X, Zhong H Y, Zhou S Y 2022 Physics 51 310
Google Scholar
[49] Miao S G, Wang T M, Huang X, Chen D X, Lian Z, Wang C, Blei M, Taniguchi T, Watanabe K, Tongay S, Wang Z H, Xiao D, Cui Y T, Shi S F 2021 Nat. Commun. 12 3608
Google Scholar
[50] Ren W J, Lu S, Yu C Q, He J, Zhang Z W, Chen J, Zhang G 2023 Appl. Phys. Rev. 10 041404
Google Scholar
[51] Xiao Y, Liu J L, Fu L 2020 Matter 3 1142
Google Scholar
[52] Meng Z M, Wang L W, Han W, Liu F D, Wen K, Gao C, Wang P J, Chin C, Zhang J 2023 Nature 615 231
Google Scholar
[53] Liu S B, Tian C K, Fang Y Q, Rong H T, Cao L, Wei X J, Cui H, Chen M T, Chen D, Song Y J, Cui J, Li J K, Guan S Y, Jia S, Chen C Y, He W Y, Huang F Q, Jiang Y H, Mao J H, Xie X C, Law K T, Chen J H 2024 Nat. Commun. 15 7569
Google Scholar
[54] Nie J H, Xie T, Chen G, Zhang W H, Fu Y S 2023 Nano Lett. 23 8370
Google Scholar
[55] Kezilebieke S, Huda M N, Vaňo V, Aapro M, Ganguli S C, Silveira O J, Głodzik S, Foster A S, Ojanen T, Liljeroth P 2020 Nature 588 424
Google Scholar
[56] Tilak N, Altvater M, Hung S H, Won C J, Li G, Kaleem T, Cheong S W, Chung C H, Jeng H T, Andrei E Y 2024 Nat. Commun. 15 8056
Google Scholar
[57] Feng R F, Zhang Y, Li J H, Li Q, Bao C H, Zhang H Y, Chen W Y, Tang X, Yaegashi K, Sugawara K, Sato T, Duan W H, Yu P, Zhou S Y 2025 Nat. Commun. 16 2667
Google Scholar
[58] Zhang W L, Wang J, Zhang T T, Shao B, Zuo X 2025 J. Materiomics 11 100986
Google Scholar
[59] Zhang Y L, Zhao W M, Zhang C C, Wang P, Wang T, Li S C, Xing Z W, Xing D Y 2022 Adv. Mater. 34 2107799
Google Scholar
[60] He J D, Ding Y F, Teng B L, Dong P, Li Y F, Zhang Y W, Wu Y S, Wang J H, Zhou X, Wang Z, Li J 2021 Prog. Phys. 41 113
Google Scholar
[61] Xu R H, Song L Y, Li X H, Du Z, Xiao C X, Sun H, Peng Y N, Huang L, Jiang Y L, Li Y N, Li Y H, He J, Shi J P 2025 ACS Nano 19 25870
Google Scholar
[62] Jadwiszczak J, Sherman J, Lynall D, Liu Y, Penkov B, Young E, Keneipp R, Drndić M, Hone J C, Shepard K L 2022 ACS Nano 16 1639
Google Scholar
[63] Liu B L, Ma Y Q, Zhang A Y, Chen L, Abbas A N, Liu Y H, Shen C F, Wan H C, Zhou C W 2016 ACS Nano 10 5153
Google Scholar
[64] Lim D U, Jo S B, Kang J, Cho J H 2021 Adv. Mater. 33 2101243
Google Scholar
[65] Shao Y, Pala M, Tang H, Wang B, Li J, Esseni D, del Alamo J A 2025 Nat. Electron. 8 157
Google Scholar
[66] Li J, Ding Y, Wei Zhang D, Zhou P 2019 Acta Phys. Chim. Sin. 35 1058
Google Scholar
[67] Luo J Y, Selopal G S, Tong X, Wang Z M 2024 Electron 2 e30
Google Scholar
[68] Zhu Y F, Liu R Z, Yi A L, Wang X D, Qin Y H, Zhao Z H, Zhao J Y, Chen B W, Zhang X Q, Song S N, Huo Y H, Ou X, Zhang J X 2025 Light: Sci. Appl. 14 86
Google Scholar
[69] Long M S, Liu E F, Wang P, Gao A Y, Xia H, Luo W, Wang B G, Zeng J W, Fu Y J, Xu K, Zhou W, Lü Y Y, Yao S H, Lu M H, Chen Y F, Ni Z H, You Y M, Zhang X A, Qin S Q, Shi Y, Hu W D, Xing D Y, Miao F 2016 Nano Lett. 16 2254
Google Scholar
[70] Pezeshki A, Shokouh S H H, Nazari T, Oh K, Im S 2016 Adv. Mater. 28 3216
Google Scholar
[71] Fan S D, Vu Q A, Tran M D, Adhikari S, Lee Y H 2020 2D Mater. 7 022005
Google Scholar
[72] Ye K, Liu L X, Liu Y J, Nie A M, Zhai K, Xiang J Y, Wang B C, Wen F S, Mu C P, Zhao Z S, Gong Y J, Liu Z Y, Tian Y J 2019 Adv. Opt. Mater. 7 1900815
Google Scholar
[73] Vikraman D, Hussain S, Akbar K, Truong L, Kathalingam A, Chun S H, Jung J, Park H J, Kim H S 2018 ACS Sustainable Chem. Eng. 6 8400
Google Scholar
[74] Cui Y, Li B, Li J B, Wei Z M 2017 Sci. China: Phys. Mech. Astron. 61 016801
Google Scholar
[75] Zhang Z P, Ji X J, Shi J P, Zhou X B, Zhang S, Hou Y, Qi Y, Fang Q Y, Ji Q Q, Zhang Y, Hong M, Yang P F, Liu X F, Zhang Q, Liao L, Jin C H, Liu Z F, Zhang Y F 2017 ACS Nano 11 4328
Google Scholar
[76] Tian B, Li J Z, Chen M G, Dong H C, Zhang X X 2022 Adv. Sci. 9 2201324
Google Scholar
[77] Zhang T, Fu L 2018 Chem 4 671
Google Scholar
[78] Liang J Y, Zhu X L, Chen M X, Duan X D, Li D, Pan A L 2022 Acc. Mater. Res. 3 999
Google Scholar
[79] Li M Y, Chen C H, Shi Y, Li L J 2016 Mater. Today 19 322
Google Scholar
[80] Liao M Z, Nicolini P, Du L H, Yuan J H, Wang S P, Yu H, Tang J, Cheng P, Watanabe K, Taniguchi T, Gu L, Claerbout V E P, Silva A, Kramer D, Polcar T, Yang R, Shi D X, Zhang G Y 2022 Nat. Mater. 21 47
Google Scholar
[81] Jiang J F, Meng F Q, Cheng Q L, Wang A Z, Chen Y K, Qiao J, Pang J B, Xu W D, Ji H, Zhang Y, Zhang Q H, Wang S P, Feng X J, Gu L, Liu H, Han L 2020 Small Methods 4 2000238
Google Scholar
[82] Jiang X, Chen F, Zhao S C, Su W T 2021 CrystEngComm 23 8239
Google Scholar
[83] Liu X, Deng C Y, Wei H, Fang M K, Yan B, Zhu T, Luo S F, Peng G, Cai W W, Long M S, Zhang X A 2025 Adv. Funct. Mater. 35 2423102
Google Scholar
[84] Wan X, Xu S J, Gao M L, Huang T H, Duan Y Y, Zhan R Z, Chen K, Gu X F, Xie W, Xu J G 2022 ACS Appl. Nano Mater. 5 15775
Google Scholar
[85] Sheng M Y, Chang X, Mao X J, Gao Y, Xuan X Y, Xie H F, Mu H C, Niu Y P, Gong S Q, Qian M 2024 Adv. Electron. Mater. 10 2300842
Google Scholar
[86] Long Y Y, Wang X, Tan W, Li B W, Li J D, Deng W, Li X M, Guo W L, Yin J 2024 Nano Lett. 24 7572
Google Scholar
[87] Guo H J, Garro-Hernandorena A, Martínez-Galera A J, Gómez-Rodríguez J M 2023 Small 19 2207217
Google Scholar
[88] Jariwala D, Marks T J, Hersam M C 2017 Nat. Mater. 16 170
Google Scholar
[89] Liu Y, Weiss N O, Duan X L, Cheng H C, Huang Y, Duan X F 2016 Nat. Rev. Mater. 1 16042
Google Scholar
[90] Hao G L, Xiao J B, Hao Y L, Zhou G L, Zhu H, Gao H, Xu Z Q, Zhao Z K, Miao L L, Li J, Sun H T, Zhao C J 2023 Mater. Today Phys. 34 101069
Google Scholar
[91] Ma X R, Wang K Y, Fan C, Li X B, Hao Y L, Zhou J, Lu X M, Shu T, Miao L L, Li J, Hao G L 2025 Adv. Opt. Mater. 13 2402434
Google Scholar
[92] Li H N, Li Y, Aljarb A, Shi Y M, Li L J 2018 Chem. Rev. 118 6134
Google Scholar
[93] Wu W H, Zhang Q, Zhou X, Li L, Su J W, Wang F K, Zhai T Y 2018 Nano Energy 51 45
Google Scholar
[94] Chen K, Wan X, Wen J X, Xie W G, Kang Z W, Zeng X L, Chen H J, Xu J B 2015 ACS Nano 9 9868
Google Scholar
[95] Chen K, Wan X, Xie W G, Wen J X, Kang Z W, Zeng X L, Chen H J, Xu J B 2015 Adv. Mater. 27 6431
Google Scholar
[96] Li M Y, Pu J, Huang J K, Miyauchi Y, Matsuda K, Takenobu T, Li L J 2018 Adv. Funct. Mater. 28 1706860
Google Scholar
[97] Chen F, Wang L, Ji X H, Zhang Q Y 2017 ACS Appl. Mater. Interfaces 9 30821
Google Scholar
[98] Liu S H, Qin K, Yang J S, Hu T, Luo H, Wu J S, Cui Z, Li T T, Ding F, Wang X R, Li Y M, Zhai T Y 2025 Natl. Sci. Rev. 12 nwaf119
Google Scholar
[99] Wang Z, Xie Y, Wang H L, Wu R X, Nan T, Zhan Y, Sun J, Jiang T, Zhao Y, Lei Y, Yang M, Wang W D, Zhu Q, Ma X H, Hao Y 2017 Nanotechnology 28 325602
Google Scholar
[100] Yoo Y, Degregorio Z P, Johns J E 2015 J. Am. Chem. Soc. 137 14281
Google Scholar
[101] Sharma A, Mahlouji R, Wu L, Verheijen M A, Vandalon V, Balasubramanyam S, Hofmann J P, Kessels W M M, Bol A A 2020 Nanotechnology 31 255603
Google Scholar
[102] Zhang Y, Yao Y Y, Sendeku M G, Yin L, Zhan X Y, Wang F, Wang Z X, He J 2019 Adv. Mater. 31 1901694
Google Scholar
[103] Xue Y Z, Zhang Y P, Liu Y, Liu H T, Song J C, Sophia J, Liu J Y, Xu Z Q, Xu Q Y, Wang Z Y, Zheng J L, Liu Y Q, Li S J, Bao Q L 2016 ACS Nano 10 573
Google Scholar
[104] Zhang X M, Huangfu L Y, Gu Z J, Xiao S Q, Zhou J D, Nan H Y, Gu X F, Ostrikov K 2021 Small 17 2007312
Google Scholar
[105] Gong Y J, Lei S D, Ye G L, Li B, He Y M, Keyshar K, Zhang X, Wang Q Z, Lou J, Liu Z, Vajtai R, Zhou W, Ajayan P M 2015 Nano Lett. 15 6135
Google Scholar
[106] Chen H L, Wen X W, Zhang J, Wu T M, Gong Y J, Zhang X, Yuan J T, Yi C Y, Lou J, Ajayan P M, Zhuang W, Zhang G Y, Zheng J R 2016 Nat. Commun. 7 12512
Google Scholar
[107] Chen F, Wang Y L, Su W T, Ding S, Fu L 2019 J. Phys. Chem. C 123 30519
Google Scholar
[108] Zhang X Q, Lin C H, Tseng Y W, Huang K H, Lee Y H 2015 Nano Lett. 15 410
Google Scholar
[109] Vashishtha P, Kofler C, Verma A K, et al. 2025 Adv. Funct. Mater. e12962
Google Scholar
[110] Chen T, Hao G L, Kou L Z, Wang C, Zhong J X 2018 Nanotechnology 29 484003
Google Scholar
[111] Trivedi D B, Turgut G, Qin Y, et al. 2020 Adv. Mater. 32 2006320
Google Scholar
[112] Yang H H, Gao F, Dai M J, Jia D C, Zhou Y, Hu P A 2017 J. Semicond. 38 031004
Google Scholar
[113] Xu Z W, Ning C C, Yang Q, Jin Y, Liu F L, Chen X K, Gong X N, Hu B S 2025 Carbon 240 120377
Google Scholar
[114] Shim G W, Yoo K, Seo S B, Shin J, Jung D Y, Kang I S, Ahn C W, Cho B J, Choi S Y 2014 ACS Nano 8 6655
Google Scholar
[115] Zhou X H, Liu M Y, Xue X D, Liu S, Yu G 2025 Adv. Mater. Technol. 10 2400901
Google Scholar
[116] Kim S, Kim Y C, Choi Y J, Woo H J, Song Y J, Kang M S, Lee C, Cho J H 2019 ACS Appl. Mater. Interfaces 11 35444
Google Scholar
[117] Wang M, Jang S K, Jang W J, Kim M, Park S Y, Kim S W, Kahng S J, Choi J Y, Ruoff R S, Song Y J, Lee S 2013 Adv. Mater. 25 2746
Google Scholar
[118] Geng D C, Dong J C, Kee Ang L, Ding F, Yang H Y 2019 NPG Asia Mater. 11 56
Google Scholar
[119] Mishra N, Miseikis V, Convertino D, Gemmi M, Piazza V, Coletti C 2016 Carbon 96 497
Google Scholar
[120] Zhang C H, Zhao S L, Jin C H, Koh A L, Zhou Y, Xu W G, Li Q C, Xiong Q H, Peng H L, Liu Z F 2015 Nat. Commun. 6 6519
Google Scholar
[121] Song X J, Sun J Y, Qi Y, Gao T, Zhang Y F, Liu Z F 2016 Adv. Energy Mater. 6 1600541
Google Scholar
[122] Shin H C, Jang Y, Kim T H, Lee J H, Oh D H, Ahn S J, Lee J H, Moon Y, Park J H, Yoo S J, Park C Y, Whang D, Yang C W, Ahn J R 2015 J. Am. Chem. Soc. 137 6897
Google Scholar
[123] Liu L, Park J, Siegel D A, McCarty K F, Clark K W, Deng W, Basile L, Idrobo J C, Li A P, Gu G 2014 Science 343 163
Google Scholar
[124] Yang Y, Fu Q, Li H B, Wei M M, Xiao J P, Wei W, Bao X H 2015 ACS Nano 9 11589
Google Scholar
[125] Li J, Yang X D, Liu Y, Huang B L, Wu R X, Zhang Z W, Zhao B, Ma H F, Dang W Q, Wei Z, Wang K, Lin Z Y, Yan X X, Sun M Z, Li B, Pan X Q, Luo J, Zhang G Y, Liu Y, Huang Y, Duan X D, Duan X F 2020 Nature 579 368
Google Scholar
[126] Wu R X, Tao Q Y, Dang W Q, Liu Y, Li B, Li J, Zhao B, Zhang Z W, Ma H F, Sun G Z, Duan X D, Duan X F 2019 Adv. Funct. Mater. 29 1806611
Google Scholar
[127] Liu D Y, Hong J H, Li X B, Zhou X, Jin B, Cui Q N, Chen J P, Feng Q L, Xu C X, Zhai T Y, Suenaga K, Xu H 2020 Adv. Funct. Mater. 30 1910169
Google Scholar
[128] Li J X, Chen J R, He Y X, Xiao J Y, Li G Q, Wang W L 2025 Adv. Funct. Mater. 35 2421508
Google Scholar
[129] Baidoo J K, Choi S H, Agyapong-Fordjour F O T, Boandoh S, Yun S J, Adofo L A, Ben-Smith A, Kim Y I, Jin J W, Jung M H, Jeong H Y, Kim Y M, Lee Y H, Kim S M, Kim K K 2022 ACS Nano 16 8851
Google Scholar
[130] Yan B, Ning B, Zhang G X, Zhou D H, Shi X, Wang C X, Zhao H Q 2022 Adv. Opt. Mater. 10 2102413
Google Scholar
[131] Zhou N, Wang R Y, Zhou X, Song H Y, Xiong X, Ding Y, Lü J T, Gan L, Zhai T Y 2018 Small 14 1702731
Google Scholar
[132] Zhang Y, Yin L, Chu J W, Shifa T A, Xia J, Wang F, Wen Y, Zhan X Y, Wang Z X, He J 2018 Adv. Mater. 30 1803665
Google Scholar
[133] Fu Q D, Wang X W, Zhou J D, Xia J, Zeng Q S, Lü D H, Zhu C, Wang X L, Shen Y, Li X M, Hua Y N, Liu F C, Shen Z X, Jin C H, Liu Z 2018 Chem. Mater. 30 4001
Google Scholar
[134] Ding Y, Zhou N, Gan L, Yan X X, Wu R Z, Abidi I H, Waleed A, Pan J, Ou X W, Zhang Q C, Zhuang M H, Wang P, Pan X Q, Fan Z Y, Zhai T Y, Luo Z T 2018 Nano Energy 49 200
Google Scholar
[135] Zhai X K, Xu X, Peng J B, Jing F L, Zhang Q L, Liu H J, Hu Z G 2020 ACS Appl. Mater. Interfaces 12 24093
Google Scholar
[136] Zhao B, Wan Z, Liu Y, Xu J Q, Yang X D, Shen D Y, Zhang Z C, Guo C H, Qian Q, Li J, Wu R X, Lin Z Y, Yan X X, Li B L, Zhang Z W, Ma H F, Li B, Chen X, Qiao Y, Shakir I, Almutairi Z, Wei F, Zhang Y, Pan X Q, Huang Y, Ping Y, Duan X D, Duan X F 2021 Nature 591 385
Google Scholar
[137] Li B, Huang L, Zhong M Z, Li Y, Wang Y, Li J B, Wei Z M 2016 Adv. Electron. Mater. 2 1600298
Google Scholar
[138] Liu H W, Li D, Ma C, Zhang X H, Sun X X, Zhu C G, Zheng B Y, Zou Z X, Luo Z Y, Zhu X L, Wang X, Pan A L 2019 Nano Energy 59 66
Google Scholar
[139] Zhou J D, Kong X H, Sekhar M C, Lin J H, Le Goualher F, Xu R, Wang X W, Chen Y, Zhou Y, Zhu C, Lu W, Liu F C, Tang B J, Guo Z L, Zhu C, Cheng Z H, Yu T, Suenaga K, Sun D, Ji W, Liu Z 2019 ACS Nano 13 10929
Google Scholar
[140] Li L, Zhang Q, Li H, Geng D C 2023 Chem. Commun. 59 14636
Google Scholar
[141] Yuan J, Sun T, Hu Z X, Yu W Z, Ma W L, Zhang K, Sun B Q, Lau S P, Bao Q L, Lin S H, Li S J 2018 ACS Appl. Mater. Interfaces 10 40614
Google Scholar
[142] Shao G L, Yang M Q, Xiang H Y, Luo S, Xue X X, Li H M, Zhang X, Liu S, Zhou Z 2023 Nano Res. 16 1670
Google Scholar
[143] Heo H, Sung J H, Ahn J H, Ghahari F, Taniguchi T, Watanabe K, Kim P, Jo M H 2017 Adv. Electron. Mater. 3 1600375
Google Scholar
[144] Fang X D, Tian Q Q, Sheng Y, Yang G F, Lu N Y, Wang J, Zhang X M, Zhang Y X, Yan X M, Hua B 2018 Superlattice Microst 123 323
Google Scholar
[145] Lee J, Pak S, Lee Y W, Park Y, Jang A R, Hong J, Cho Y, Hou B, Lee S, Jeong H Y, Shin H S, Morris S M, Cha S, Sohn J I, Kim J M 2019 ACS Nano 13 13047
Google Scholar
[146] Zhang S W, Hao Y L, Hao S J, Lu X M, Zhou J, Fan C, Liu J, Hao G L 2025 Nanotechnology 36 232004
Google Scholar
[147] Zhou G L, Gao H, Li J, He X Y, He Y B, Li Y, Hao G L 2022 Nanotechnology 33 175602
Google Scholar
[148] Wang Q, Wang S, Li J Y, Gan Y C, Jin M T, Shi R, Amini A, Wang N, Cheng C 2023 Adv. Sci. 10 2205638
Google Scholar
[149] Wang D, Zhang Z W, Huang B L, Zhang H M, Huang Z W, Liu M M, Duan X D 2022 ACS Nano 16 1198
Google Scholar
[150] Huang C, Wu S, Sanchez A M, Peters J J P, Beanland R, Ross J S, Rivera P, Yao W, Cobden D H, Xu X 2014 Nat. Mater. 13 1096
Google Scholar
[151] Duan X D, Wang C, Shaw J C, Cheng R, Chen Y, Li H L, Wu X P, Tang Y, Zhang Q L, Pan A L, Jiang J H, Yu R Q, Huang Y, Duan X F 2014 Nat. Nanotechnol. 9 1024
Google Scholar
[152] Zhang Q, Xiao X, Zhao R Q, Lü D H, Xu G C, Lu Z X, Sun L F, Lin S Z, Gao X, Zhou J, Jin C H, Ding F, Jiao L Y 2015 Angew. Chem. Int. Ed 54 8957
Google Scholar
[153] Li F, Feng Y X, Li Z W, et al. 2019 Adv. Mater. 31 1901351
Google Scholar
[154] Zhou J D, Tang B J, Lin J H, Lü D H, Shi J, Sun L F, Zeng Q S, Niu L, Liu F C, Wang X W, Liu X F, Suenaga K, Jin C H, Liu Z 2018 Adv. Funct. Mater. 28 1801568
Google Scholar
[155] Seok H, Megra Y T, Kanade C K, Cho J, Kanade V K, Kim M, Lee I, Yoo P J, Kim H U, Suk J W, Kim T 2021 ACS Nano 15 707
Google Scholar
[156] Chen C, Yang Y, Zhou X, Xu W X, Cui Q N, Lu J B, Jing H M, Tian D, Xu C X, Zhai T Y, Xu H 2021 ACS Appl. Nano Mater. 4 5522
Google Scholar
[157] Choudhary N, Park J, Hwang J Y, Chung H S, Dumas K H, Khondaker S I, Choi W, Jung Y 2016 Sci. Rep. 6 25456
Google Scholar
[158] Woods J M, Jung Y, Xie Y, Liu W, Liu Y, Wang H, Cha J J 2016 ACS Nano 10 2004
Google Scholar
[159] Li W, Qin Q Y, Li X, Huangfu Y, Shen D Y, Liu J L, Li J, Li B, Wu R X, Duan X D 2024 Adv. Mater. 36 2408367
Google Scholar
[160] Zou Z X, Liang J W, Zhang X H, Ma C, Xu P, Yang X, Zeng Z X, Sun X X, Zhu C G, Liang D L, Zhuang X J, Li D, Pan A L 2021 ACS Nano 15 10039
Google Scholar
[161] Cai Y H, Xu K, Zhu W J 2018 Mater. Res. Express 5 095904
Google Scholar
[162] Shi J P, Tong R, Zhou X B, Gong Y, Zhang Z P, Ji Q Q, Zhang Y, Fang Q Y, Gu L, Wang X N, Liu Z F, Zhang Y F 2016 Adv. Mater. 28 10664
Google Scholar
[163] Heo H, Sung J H, Jin G, Ahn J H, Kim K, Lee M J, Cha S, Choi H, Jo M H 2015 Adv. Mater. 27 3803
Google Scholar
[164] Lin Y C, Ghosh R K, Addou R, Lu N, Eichfeld S M, Zhu H, Li M Y, Peng X, Kim M J, Li L J, Wallace R M, Datta S, Robinson J A 2015 Nat. Commun. 6 7311
Google Scholar
[165] Li Z P, Zheng J L, Zhang Y P, Zheng C X, Woon W Y, Chuang M C, Tsai H C, Chen C H, Davis A, Xu Z Q, Lin J, Zhang H, Bao Q L 2017 ACS Appl. Mater. Interfaces 9 34204
Google Scholar
[166] Gong Y J, Lin J H, Wang X L, Shi G, Lei S D, Lin Z, Zou X L, Ye G L, Vajtai R, Yakobson B I, Terrones H, Terrones M, Tay Beng K, Lou J, Pantelides S T, Liu Z, Zhou W, Ajayan P M 2014 Nat. Mater. 13 1135
Google Scholar
[167] Cain J D, Hanson E D, Dravid V P 2018 J. Appl. Phys. 123 204304
Google Scholar
[168] Zhang Z W, Chen P, Duan X D, Zang K T, Luo J, Duan X F 2017 Science 357 788
Google Scholar
[169] Zhou Z J, Hou F C, Huang X L, Wang G, Fu Z H, Liu W L, Yuan G W, Xi X X, Xu J, Lin J H, Gao L B 2023 Nature 621 499
Google Scholar
[170] Sahoo P K, Memaran S, Xin Y, Balicas L, Gutiérrez H R 2018 Nature 553 63
Google Scholar
[171] Sahoo P K, Memaran S, Nugera F A, Xin Y, Díaz Márquez T, Lu Z, Zheng W, Zhigadlo N D, Smirnov D, Balicas L, Gutiérrez H R 2019 ACS Nano 13 12372
Google Scholar
[172] Zhang Z P, Gong Y, Zou X L, Liu P R, Yang P F, Shi J P, Zhao L Y, Zhang Q, Gu L, Zhang Y F 2019 ACS Nano 13 885
Google Scholar
[173] Li X, Lin M W, Lin J, et al. 2014 Sci. Adv. 2 e1501882
Google Scholar
[174] Hong Y J, Fukui T 2011 ACS Nano 5 7576
Google Scholar
[175] Zhang S, Hao Y, Gao F, Wu X, Hao S, Qiu M, Zheng X, Wei Y, Hao G 2024 2D Mater. 11 015007
Google Scholar
[176] Li M Y, Shi Y, Cheng C C, Lu L S, Lin Y C, Tang H L, Tsai M L, Chu C W, Wei K H, He J H, Chang W H, Suenaga K, Li L J 2015 Science 349 524
Google Scholar
[177] Suenaga K, Ji H G, Lin Y C, Vincent T, Maruyama M, Aji A S, Shiratsuchi Y, Ding D, Kawahara K, Okada S, Panchal V, Kazakova O, Hibino H, Suenaga K, Ago H 2018 ACS Nano 12 10032
Google Scholar
[178] Zhang T, Jiang B, Xu Z, Mendes R G, Xiao Y, Chen L F, Fang L W, Gemming T, Chen S L, Rümmeli M H, Fu L 2016 Nat. Commun. 7 13911
Google Scholar
[179] Ling X, Lee Y H, Lin Y X, Fang W J, Yu L L, Dresselhaus M S, Kong J 2014 Nano Lett. 14 464
Google Scholar
[180] Ling X, Lin Y X, Ma Q, et al. 2016 Adv. Mater. 28 2322
Google Scholar
[181] Wang L, Yue Q Y, Pei C J, Fan H C, Dai J, Huang X, Li H, Huang W 2020 Nano Res. 13 959
Google Scholar
[182] Duan Z J, Chen T, Shi J W, Li J, Song K, Zhang C, Ding S J, Li B, Wang G, Hu S G, He X Y, He C Y, Xu H, Liu X F, Jin C H, Zhong J X, Hao G L 2020 Sci. Bull. 65 1013
Google Scholar
计量
- 文章访问数: 333
- PDF下载量: 24
- 被引次数: 0








下载: