搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

集体耗散诱导下里德伯原子气体的非平衡相变

张亚鹏 郑宇杰 汤婧雯 施帅 周艳丽 刘伟涛

引用本文:
Citation:

集体耗散诱导下里德伯原子气体的非平衡相变

张亚鹏, 郑宇杰, 汤婧雯, 施帅, 周艳丽, 刘伟涛

Nonequilibrium phase transitions of Rydberg atom gases under collective dissipation

ZHANG Yapeng, ZHENG Yujie, TANG Jingwen, SHI Shuai, ZHOU Yanli, LIU Weitao
cstr: 32037.14.aps.74.20251237
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 本文研究具有集体耗散的里德伯原子系统中的非平衡相变. 结合平均场理论与刘维尔谱分析, 发现集体耗散可诱导原子间关联, 并引发一种新型双稳态: 系统或收敛于某不动点或保持自激周期性振荡, 区别于传统相互作用导致的双稳态. 结果表明刘维尔(Liouville)能谱方法在有限维系统中提取的非平衡相变特征与热力学极限下的平均场结果基本一致. 该研究不仅能解释里德伯原子实验中观测到的自激振荡现象, 还预言了新的相结构, 也验证了刘维尔能谱方法在量子多体研究中的有效性, 为探索耗散系统中的非平衡相变提供了理论框架.
    This work investigates nonequilibrium phase transitions in a Rydberg atomic system under collective dissipation. By combining mean-field theory and Liouvillian spectral analysis, we reveal novel nonequilibrium phases induced by collective dissipation and compare the results from both approaches. Our findings indicate that collective dissipation not only generates interatomic correlations but also sustains persistent periodic oscillations and a unique bistable form, in which the system may evolve to a steady state or sustain self-consistent oscillatory dynamics. This study highlights the rich nonequilibrium phenomena present in quantum many-body systems and provides an extensible spectral framework for exploring dissipative phases in Rydberg and related systems.Recent experiments have reported persistent oscillations in thermal Rydberg atomic ensembles, yet the theoretical consensus on their origin remains elusive. Motivated by these observations, we introduce a collective dissipation mechanism and employ both mean-field approximations and the Liouvillian spectrum method to systematically explore nonequilibrium phase transitions. Our results show that the collective dissipation effectively induces interatomic correlations and sustains persistent periodic oscillations, in which under the same parameters, independent dissipation leads the system to relax to a stationary state. Furthermore, the nonlinear effects arising from collective dissipation give rise to a novel type of bistability, in which the system can converge to a fixed point or maintain self-consistent periodic oscillations. This mechanism is clearly different from the traditional bistability induced by Rydberg interactions, which involves two steady states. Moreover, the Liouvillian spectral method, based on the quantum master equation, successfully captures the features of nonequilibrium phase transitions even in finite-dimensional systems, and the results accord well with those obtained from mean-field approximation in the thermodynamic limit.Our work not only provides a theoretical explanation for recently observed oscillatory phenomena but also predicts novel bistable states and rich nonequilibrium phase structures. It further verifies the effectiveness of the Liouvillian spectroscopic method in studying quantum many-body systems, making significant contributions to understanding the microscopic mechanisms underlying nonequilibrium phase transitions.
      通信作者: 周艳丽, ylzhou@nudt.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12574553, 62275270)、湖南省自然科学基金(批准号: 2023JJ30626)、湖南省科技创新项目(批准号: 2025ZYJ001)和国防科技大学基石基金(批准号: JS24-01)资助的课题.
      Corresponding author: ZHOU Yanli, ylzhou@nudt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12574553, 62275270), the Natural Science Foundation of Hunan Province, China (Grant No. 2023JJ30626), the Science and Technology Innovation Program of Hunan Province, China (Grant No. 2025ZYJ001), and the Cornerstone Foundation of National University of Defense Technology, China (Grant No. JS24-01).
    [1]

    Mari A, Farace A, Didier N, Giovannetti V, Fazio R 2013 Phys. Rev. Lett. 111 103605Google Scholar

    [2]

    Witthaut D, Wimberger S, Burioni R, Timme M 2017 Nat. Commun. 8 14829Google Scholar

    [3]

    Biondi M, Blatter G, Türeci H E, Schmidt S 2017 Phys. Rev. A 96 043809Google Scholar

    [4]

    Carmichael H J 2015 Phys. Rev. X 5 031028

    [5]

    Chan C K, Lee T E, Gopalakrishnan S 2015 Phys. Rev. A 91 051601Google Scholar

    [6]

    Wilczek F 2012 Phys. Rev. Lett. 109 160401Google Scholar

    [7]

    Greilich A, Kopteva N E, Korenev V L, Haude P A, Bayer M 2025 Nat. Commun. 16 2936Google Scholar

    [8]

    Liu T, Ou J Y, MacDonald K F, Zheludev N I 2023 Nat. Phys. 19 986Google Scholar

    [9]

    Wang Z, Gao R, Wu X, Buča B, Mølmer K, You L, Yang F 2025 arXiv: 2503.20761 [quant-ph]

    [10]

    Wu X L, Wang Z Q, Yang F, Gao R C, Liang C, Tey M K, Li X L, Pohl T, You L 2024 Nat. Phys. 20 1389Google Scholar

    [11]

    Ding D S, Bai Z Y, Liu Z K, Shi B S, Guo G C, Li W B, Adams C S 2024 Sci. Adv. 10 eadl5893Google Scholar

    [12]

    Wadenpfuhl K, Adams C S 2023 Phys. Rev. Lett. 131 143002Google Scholar

    [13]

    Jiao Y C, Jiang W L, Zhang Y, Bai J X, He Y H, Shen H, Zhao J M, Jia S T 2025 Nat. Commun. 16 8767Google Scholar

    [14]

    Lee T E, Häffner H, Cross M C 2012 Phys. Rev. Lett. 108 023602Google Scholar

    [15]

    Lee T E, Chan C K, Yelin S F 2014 Phys. Rev. A 90 052109Google Scholar

    [16]

    Dicke R H 1954 Phys. Rev. 93 99Google Scholar

    [17]

    Bohnet J G, Chen Z, Weiner J M, Meiser D, Holland M J, Thompson J K 2012 Nature 484 78Google Scholar

    [18]

    Ferioli G, Glicenstein A, Ferrier-Barbut I, Browaeys A 2023 Nat. Phys. 19 1345Google Scholar

    [19]

    Lei M, Fukumori R, Rochman J, Zhu B, Endres M, Choi J, Faraon A 2023 Nature 617 271Google Scholar

    [20]

    Gross M, Haroche S 1982 Phys. Rep. 93 301Google Scholar

    [21]

    Prazeres L F D, Souza L D S, Iemini F 2021 Phys. Rev. B 103 184308Google Scholar

    [22]

    Prazeres L F D, Souza L D S, Iemini F 2021 Phys. Rev. B 104 014307Google Scholar

    [23]

    Macieszczak K, Guţă M, Lesanovsky I, Garrahan J P 2016 Phys. Rev. Lett. 116 240404Google Scholar

    [24]

    Žnidarič M 2015 Phys. Rev. E 92 042143Google Scholar

    [25]

    Minganti F, Biella A, Bartolo N, Ciuti C 2018 Phys. Rev. A 98 042118Google Scholar

    [26]

    Huybrechts D, Minganti F, Nori F, Wouters M, Shammah N 2020 Phys. Rev. B 101 214302Google Scholar

    [27]

    Mori T, Shirai T 2020 Phys. Rev. Lett. 125 230604Google Scholar

    [28]

    Minganti F, Biella A, Bartolo N, Ciuti C 2017 Phys. Rev. A 95 012128Google Scholar

    [29]

    Zhang J, Xia G, Wu C W, Chen T, Zhang Q, Xie Y, Su W B, Wu W, Qiu C W, Chen P X, Li W B, Jing H, Zhou Y L 2025 Nat. Commun. 16 301Google Scholar

    [30]

    Zhou Y L, Yu X D, Wu C W, Li X Q, Zhang J, Li W, Chen P X 2023 Phys. Rev. Res. 5 043036Google Scholar

    [31]

    Macieszczak K, Zhou Y L, Hofferberth S, Garrahan J P, Li W, Lesanovsky I 2017 Phys. Rev. A 96 043860Google Scholar

    [32]

    Iemini F, Russomanno A, Keeling J, Schirò M, Dalmonte M, Fazio R 2018 Phys. Rev. Lett. 121 035301Google Scholar

    [33]

    Stiesdal N, Busche H, Kumlin J, Kleinbeck K, Büchler H P, Hofferberth S 2020 Phys. Rev. Res. 2 043339Google Scholar

    [34]

    Bonifacio R, Lugiato L A 1975 Phys. Rev. A 11 1507Google Scholar

    [35]

    Lindblad G 1976 Commun. Math. Phys. 48 119Google Scholar

    [36]

    Gorini V, Kossakowski A, Sudarshan E C G 1976 J. Math. Phys. 17 821Google Scholar

    [37]

    Li Y, Wang C, Tang Y, Liu Y C 2024 Phys. Rev. Lett. 132 183803Google Scholar

    [38]

    Weimer H, Kshetrimayum A, Orús R 2021 Rev. Mod. Phys. 93 015008Google Scholar

    [39]

    Baumann K, Guerlin C, Brennecke F, Esslinger T 2010 Nature 464 1301Google Scholar

    [40]

    Emary C, Brandes T 2003 Phys. Rev. E 67 066203Google Scholar

    [41]

    Mivehvar F 2024 Phys. Rev. Lett. 132 073602Google Scholar

    [42]

    Burgstahler S 1983 College Math. J. 14 203Google Scholar

    [43]

    Lee T E, Häffner H, Cross M C 2011 Phys. Rev. A 84 031402Google Scholar

    [44]

    Ikeda K 1979 Opt. Commun. 30 257Google Scholar

    [45]

    Gibbs H M, McCall S L, Venkatesan T N C 1976 Phys. Rev. Lett. 36 1135Google Scholar

    [46]

    Wang H, Goorskey D J, Xiao M 2001 Phys. Rev. A 65 011801Google Scholar

    [47]

    Marcuzzi M, Levi E, Diehl S, Garrahan J P, Lesanovsky I 2014 Phys. Rev. Lett. 113 210401Google Scholar

    [48]

    Šibalić N, Wade C G, Adams C S, Weatherill K J, Pohl T 2016 Phys. Rev. A 94 011401Google Scholar

    [49]

    Zhang L, Fei Y, Cao T, Cao Y, Xu Q, Chen S 2013 Phys. Rev. A 87 053805Google Scholar

    [50]

    Takemura N, Takiguchi M, Sumikura H, Kuramochi E, Shinya A, Notomi M 2020 Phys. Rev. A 102 011501Google Scholar

    [51]

    Shetewy A E, Catuneanu M T, He M, Jamshidi K 2024 Sci. Rep. 14 23823Google Scholar

    [52]

    Arakelyan S M 1987 Sov. Phys. Uspek. 30 1041Google Scholar

    [53]

    Jiles D C, Atherton D L 1986 J. Magn. Magn. Mater. 61 48Google Scholar

    [54]

    Zhang J, Li E Z, Wang Y J, Liu B, Zhang L H, Zhang Z Y, Shao S Y, Li Q, Chen H C, Ma Y, Han T Y, Wang Q F, Nan J D, Yin Y M, Zhu D Y, Guo G C, Ding D S, Shi B S 2025 Nat. Commun. 16 3511Google Scholar

    [55]

    Breuer H P, Petruccione F 2007 The Theory of Open Quantum Systems (Oxford University Press

  • 图 1  原子能级结构, 黄色和灰色的实心小球分别表示处在里德伯态和基态的原子. 外界存在稳定的激光来驱动系统远离平衡态, 激光与单个原子耦合的拉比频率为Ω, 失谐量为Δ, V表示处在里德伯态的原子之间的相互作用强度, Γ表示原子系统集体耗散速率, γ表示原子的独立耗散速率

    Fig. 1.  Atomic energy level structure, the yellow and gray solid spheres represent atoms in the Rydberg state and the ground state, respectively. The atoms are driven by a laser with the Rabi frequency Ω and the detuning Δ, V represents the interaction strength between atoms in the Rydberg state, Γ is collective dissipation rate and γ is independent dissipation rate.

    图 2  稳态时系统的吸收性质 (a) 不考虑相互作用和集体耗散时系统的吸收谱($ V=0 $, $ \varGamma=0 $), 呈现单原子时的单峰结构; (b) 原子相互作用对光谱的影响($ V\ne0 $, $ \varGamma=0 $), 相互作用引起谱线发生不对称弯曲. 当相互作用足够强时, 系统出现一般意义下的双稳态(图中虚线对应不稳定的解); (c) 考虑集体耗散时的吸收谱($ V=0 $, $ \varGamma\ne0 $). 随着系统集体耗散速率的增加, 原子光谱逐渐展宽且出现对称的双峰结构; (d) 相互作用和集体耗散同时存在时的原子光谱(固定$ \varGamma/\gamma=3 $), 相互作用使双峰结构变得不对称; 图(b)—(d)中对应的$ \varOmega/(\gamma+\varGamma)=2 $, 这里的参数设置均以$ \gamma+\varGamma $为量纲, 下同

    Fig. 2.  Absorption properties of the system in the stationary state: (a) Absorption spectrum of the system without interactions and collective dissipation ($ V=0 $, $ \varGamma=0 $), showing a single-peak structure as in the single-atom case; (b) effect of atomic interactions on the spectrum ($ V \ne 0 $, $ \varGamma=0 $), the interaction causes asymmetric bending of the spectral line, when the interaction is sufficiently strong, the system exhibits bistability (the dashed line corresponds to the unstable solution); (c) absorption spectrum with collective dissipation ($ V=0 $, $ \varGamma \ne 0 $), as the collective dissipation rate increases, the atomic spectrum broadens and develops a symmetric two-peak structure; (d) atomic spectrum when both interactions and collective dissipation are present (with fixed $ \varGamma/\gamma=3 $), the interactions cause the two-peak structure to become asymmetric; in panels (b)—(d), the corresponding value of $ \varOmega/(\gamma+\varGamma)=2 $. All parameters here are normalized by $ \gamma+\varGamma $, and the same applies hereafter.

    图 3  (a) 平均场近似下的相图, 单稳相(SP)表示系统终止于不动点, 即唯一的稳定状态, 特殊双稳相(SP/OSC)表示系统可终止于不动点, 亦可自洽维持周期性振荡. 周期性振荡相(OSC)表示系统稳定后仍然处于持续振荡; (b) $ V=3\varGamma $时, 系统在平均场近似下的稳态解$ \langle \sigma_{x, y, z}\rangle $随Ω的变化

    Fig. 3.  (a) Phase diagram under the mean-field approximation, the stationary state phase (SP) indicates that the system reaches a fixed point, i.e., a unique stationary state, the unique bistable phase (SP/OSC) indicates that the system may either converge to a fixed point or self-consistently sustain periodic oscillations. The oscillatory (OSC) indicates that the system sustains self-consistent periodic oscillations; (b) the stationary state solutions $ \langle \sigma_{x, y, z}\rangle $ as function of Ω for $ V = 3\varGamma $.

    图 4  3种不同相区间下, 系统的动力学轨迹 (a) SP相($ \varOmega=0.2\varGamma $), 不同初始态都会到达一个不随时间变化的稳态; (b) SP/OSC相($ \varOmega=1.5\varGamma $), 一部分初始态会形成周期性振荡, 而一部分初始态会到达稳态上; (c) OSC相($ \varOmega=4\varGamma $), 任意初始态均会形成周期性的振荡, 本文固定$ V=3\varGamma $

    Fig. 4.  Dynamical trajectories of the system under three different phase regimes: (a) SP phase (for $ \varOmega = 0.2\varGamma $), trajectories from different initial states all converge to a time-independent stationary state; (b) SP/OSC phase (for $ \varOmega = 1.5\varGamma $), some initial states evolve into periodic oscillations, while others converge to a stationary state; (c) OSC phase (for $ \varOmega = 4\varGamma $), all initial states develop periodic oscillations, here, we set $ V = 3\varGamma $.

    图 5  (a) 对有限维量子系统, 刘维尔能谱方法求解的$ \langle\sigma_z\rangle $稳态结果, 虚线为平均场近似的结果; (b) 刘维尔能谱的最慢模式本征值实部$ {\mathrm{Re}}(\lambda_{1}) $随Ω的变化; 两图对应$ V=3\varGamma $

    Fig. 5.  (a) Steady-state expectation value $ \langle\sigma_z\rangle $ for a finite-dimensional quantum system, obtained via the Liouvillian spectral method, the dashed line shows the mean-field approximation result; (b) real part of the slowest mode eigenvalue $ {\rm{Re}}(\lambda_{1}) $ of the Liouvillian spectrum as a function of Ω; both panels are for $ V=3\varGamma $.

    图 6  不同相对应的参数下, 有限维的量子系统与平均场近似下的动力学演化 (a), (b)分别表示处在SP和OSC参数下系统的动力学演化; (c), (d)相同参数(SP/OSC)下, 不同初始态对应的动力学演化

    Fig. 6.  Dynamical evolution of a finite-dimensional quantum system compared to its mean-field approximation under varying parameters: (a), (b) Depict the system’s dynamics in the single-particle (SP) and oscillatory (OSC) parameter regimes, respectively; (c), (d) the corresponding dynamical evolution for different initial states, utilizing the same SP and OSC parameters as in panels (a), (b), respectively.

    图 7  刘维尔能谱结构图 (a), (b)分别对应$ \varOmega=0.2\varGamma $(SP相), $ 1\varGamma $(SP/OSC相)的刘维尔能谱($ N=20 $); (c), (d)相应的能谱$ \lambda_{i}(i=0,1,2, \cdots9) $实部绝对值随粒子数的变化, 这里以$ \left | {\mathrm{Re}}(\lambda_{i}) \right | $升序排列; 可见在SP相(a), (c), 能谱并不会随着系统维度而收敛至零, 而在OSC相(b), (d)存在的参数区间, 能谱随N的增大而逐渐收敛至零, 即热力学极限下的能隙闭合

    Fig. 7.  (a), (b) Liouville spectra for $ \varOmega=0.2\varGamma $ and $ \varOmega=1\varGamma $, respectively, in a system with $ N=20 $, the spectral gap in (b) is significantly smaller than that in (a); (c), (d) finite size scaling for the real part of the Liouvillian eigenvalues in the SP phase (c) and SP/OSC phase (d), the index i labels the eigenvalues, the Liouvillian eigenvalues $ \lambda_i $ are ordered as a function of their real part ($ |{\mathrm{Re}}(\lambda_i)|\le |{\mathrm{Re}}(\lambda_{i+1})| $ and $ i=0 $ has zero real part), in SP phase, convergence of the Liouvillian gap to zero does not occur with increasing N, while in OSC phase they scale to zero as system size increase.

    Baidu
  • [1]

    Mari A, Farace A, Didier N, Giovannetti V, Fazio R 2013 Phys. Rev. Lett. 111 103605Google Scholar

    [2]

    Witthaut D, Wimberger S, Burioni R, Timme M 2017 Nat. Commun. 8 14829Google Scholar

    [3]

    Biondi M, Blatter G, Türeci H E, Schmidt S 2017 Phys. Rev. A 96 043809Google Scholar

    [4]

    Carmichael H J 2015 Phys. Rev. X 5 031028

    [5]

    Chan C K, Lee T E, Gopalakrishnan S 2015 Phys. Rev. A 91 051601Google Scholar

    [6]

    Wilczek F 2012 Phys. Rev. Lett. 109 160401Google Scholar

    [7]

    Greilich A, Kopteva N E, Korenev V L, Haude P A, Bayer M 2025 Nat. Commun. 16 2936Google Scholar

    [8]

    Liu T, Ou J Y, MacDonald K F, Zheludev N I 2023 Nat. Phys. 19 986Google Scholar

    [9]

    Wang Z, Gao R, Wu X, Buča B, Mølmer K, You L, Yang F 2025 arXiv: 2503.20761 [quant-ph]

    [10]

    Wu X L, Wang Z Q, Yang F, Gao R C, Liang C, Tey M K, Li X L, Pohl T, You L 2024 Nat. Phys. 20 1389Google Scholar

    [11]

    Ding D S, Bai Z Y, Liu Z K, Shi B S, Guo G C, Li W B, Adams C S 2024 Sci. Adv. 10 eadl5893Google Scholar

    [12]

    Wadenpfuhl K, Adams C S 2023 Phys. Rev. Lett. 131 143002Google Scholar

    [13]

    Jiao Y C, Jiang W L, Zhang Y, Bai J X, He Y H, Shen H, Zhao J M, Jia S T 2025 Nat. Commun. 16 8767Google Scholar

    [14]

    Lee T E, Häffner H, Cross M C 2012 Phys. Rev. Lett. 108 023602Google Scholar

    [15]

    Lee T E, Chan C K, Yelin S F 2014 Phys. Rev. A 90 052109Google Scholar

    [16]

    Dicke R H 1954 Phys. Rev. 93 99Google Scholar

    [17]

    Bohnet J G, Chen Z, Weiner J M, Meiser D, Holland M J, Thompson J K 2012 Nature 484 78Google Scholar

    [18]

    Ferioli G, Glicenstein A, Ferrier-Barbut I, Browaeys A 2023 Nat. Phys. 19 1345Google Scholar

    [19]

    Lei M, Fukumori R, Rochman J, Zhu B, Endres M, Choi J, Faraon A 2023 Nature 617 271Google Scholar

    [20]

    Gross M, Haroche S 1982 Phys. Rep. 93 301Google Scholar

    [21]

    Prazeres L F D, Souza L D S, Iemini F 2021 Phys. Rev. B 103 184308Google Scholar

    [22]

    Prazeres L F D, Souza L D S, Iemini F 2021 Phys. Rev. B 104 014307Google Scholar

    [23]

    Macieszczak K, Guţă M, Lesanovsky I, Garrahan J P 2016 Phys. Rev. Lett. 116 240404Google Scholar

    [24]

    Žnidarič M 2015 Phys. Rev. E 92 042143Google Scholar

    [25]

    Minganti F, Biella A, Bartolo N, Ciuti C 2018 Phys. Rev. A 98 042118Google Scholar

    [26]

    Huybrechts D, Minganti F, Nori F, Wouters M, Shammah N 2020 Phys. Rev. B 101 214302Google Scholar

    [27]

    Mori T, Shirai T 2020 Phys. Rev. Lett. 125 230604Google Scholar

    [28]

    Minganti F, Biella A, Bartolo N, Ciuti C 2017 Phys. Rev. A 95 012128Google Scholar

    [29]

    Zhang J, Xia G, Wu C W, Chen T, Zhang Q, Xie Y, Su W B, Wu W, Qiu C W, Chen P X, Li W B, Jing H, Zhou Y L 2025 Nat. Commun. 16 301Google Scholar

    [30]

    Zhou Y L, Yu X D, Wu C W, Li X Q, Zhang J, Li W, Chen P X 2023 Phys. Rev. Res. 5 043036Google Scholar

    [31]

    Macieszczak K, Zhou Y L, Hofferberth S, Garrahan J P, Li W, Lesanovsky I 2017 Phys. Rev. A 96 043860Google Scholar

    [32]

    Iemini F, Russomanno A, Keeling J, Schirò M, Dalmonte M, Fazio R 2018 Phys. Rev. Lett. 121 035301Google Scholar

    [33]

    Stiesdal N, Busche H, Kumlin J, Kleinbeck K, Büchler H P, Hofferberth S 2020 Phys. Rev. Res. 2 043339Google Scholar

    [34]

    Bonifacio R, Lugiato L A 1975 Phys. Rev. A 11 1507Google Scholar

    [35]

    Lindblad G 1976 Commun. Math. Phys. 48 119Google Scholar

    [36]

    Gorini V, Kossakowski A, Sudarshan E C G 1976 J. Math. Phys. 17 821Google Scholar

    [37]

    Li Y, Wang C, Tang Y, Liu Y C 2024 Phys. Rev. Lett. 132 183803Google Scholar

    [38]

    Weimer H, Kshetrimayum A, Orús R 2021 Rev. Mod. Phys. 93 015008Google Scholar

    [39]

    Baumann K, Guerlin C, Brennecke F, Esslinger T 2010 Nature 464 1301Google Scholar

    [40]

    Emary C, Brandes T 2003 Phys. Rev. E 67 066203Google Scholar

    [41]

    Mivehvar F 2024 Phys. Rev. Lett. 132 073602Google Scholar

    [42]

    Burgstahler S 1983 College Math. J. 14 203Google Scholar

    [43]

    Lee T E, Häffner H, Cross M C 2011 Phys. Rev. A 84 031402Google Scholar

    [44]

    Ikeda K 1979 Opt. Commun. 30 257Google Scholar

    [45]

    Gibbs H M, McCall S L, Venkatesan T N C 1976 Phys. Rev. Lett. 36 1135Google Scholar

    [46]

    Wang H, Goorskey D J, Xiao M 2001 Phys. Rev. A 65 011801Google Scholar

    [47]

    Marcuzzi M, Levi E, Diehl S, Garrahan J P, Lesanovsky I 2014 Phys. Rev. Lett. 113 210401Google Scholar

    [48]

    Šibalić N, Wade C G, Adams C S, Weatherill K J, Pohl T 2016 Phys. Rev. A 94 011401Google Scholar

    [49]

    Zhang L, Fei Y, Cao T, Cao Y, Xu Q, Chen S 2013 Phys. Rev. A 87 053805Google Scholar

    [50]

    Takemura N, Takiguchi M, Sumikura H, Kuramochi E, Shinya A, Notomi M 2020 Phys. Rev. A 102 011501Google Scholar

    [51]

    Shetewy A E, Catuneanu M T, He M, Jamshidi K 2024 Sci. Rep. 14 23823Google Scholar

    [52]

    Arakelyan S M 1987 Sov. Phys. Uspek. 30 1041Google Scholar

    [53]

    Jiles D C, Atherton D L 1986 J. Magn. Magn. Mater. 61 48Google Scholar

    [54]

    Zhang J, Li E Z, Wang Y J, Liu B, Zhang L H, Zhang Z Y, Shao S Y, Li Q, Chen H C, Ma Y, Han T Y, Wang Q F, Nan J D, Yin Y M, Zhu D Y, Guo G C, Ding D S, Shi B S 2025 Nat. Commun. 16 3511Google Scholar

    [55]

    Breuer H P, Petruccione F 2007 The Theory of Open Quantum Systems (Oxford University Press

  • [1] 李芳. 基于室温里德伯原子四波混频的微波-光波转换特性.  , 2025, 74(16): 164209. doi: 10.7498/aps.74.20250706
    [2] 蔡婷, 何军, 刘智慧, 刘瑶, 苏楠, 史鹏飞, 靳刚, 成永杰, 王军民. 基于纳秒光脉冲激发的里德伯原子光谱.  , 2025, 74(1): 013201. doi: 10.7498/aps.74.20240900
    [3] 丁超, 胡珊珊, 邓松, 宋宏天, 张英, 王保帅, 阎晟, 肖冬萍, 张淮清. 基于里德伯原子电场量子测量方法及激光偏振影响分析.  , 2025, 74(4): 043201. doi: 10.7498/aps.74.20241362
    [4] 张学超, 乔佳慧, 刘瑶, 苏楠, 刘智慧, 蔡婷, 何军, 赵延霆, 王军民. 基于里德伯原子天线的低频电场波形测量.  , 2024, 73(7): 070201. doi: 10.7498/aps.73.20231778
    [5] 刘智慧, 刘逍娜, 何军, 刘瑶, 苏楠, 蔡婷, 杜艺杰, 王杰英, 裴栋梁, 王军民. 里德伯原子幻零波长.  , 2024, 73(13): 130701. doi: 10.7498/aps.73.20240397
    [6] 王鑫, 任飞帆, 韩嵩, 韩海燕, 严冬. 里德伯原子辅助光力系统的完美光力诱导透明及慢光效应.  , 2023, 72(9): 094203. doi: 10.7498/aps.72.20222264
    [7] 刘瑶, 何军, 苏楠, 蔡婷, 刘智慧, 刁文婷, 王军民. 用于铯原子里德伯态激发的509 nm波长脉冲激光系统.  , 2023, 72(6): 060303. doi: 10.7498/aps.72.20222286
    [8] 王勤霞, 王志辉, 刘岩鑫, 管世军, 何军, 张鹏飞, 李刚, 张天才. 腔增强热里德伯原子光谱.  , 2023, 72(8): 087801. doi: 10.7498/aps.72.20230039
    [9] 白健男, 韩嵩, 陈建弟, 韩海燕, 严冬. 超级里德伯原子间的稳态关联集体激发与量子纠缠.  , 2023, 72(12): 124202. doi: 10.7498/aps.72.20222030
    [10] 高洁, 杭超. 里德伯原子中非厄米电磁诱导光栅引起的弱光孤子偏折及其操控.  , 2022, 71(13): 133202. doi: 10.7498/aps.71.20220456
    [11] 吴逢川, 林沂, 武博, 付云起. 里德伯原子的射频脉冲响应特性.  , 2022, 71(20): 207402. doi: 10.7498/aps.71.20220972
    [12] 金钊, 李芮, 公卫江, 祁阳, 张寿, 苏石磊. 基于共振里德伯偶极-偶极相互作用的双反阻塞机制及量子逻辑门的实现.  , 2021, 70(13): 134202. doi: 10.7498/aps.70.20210059
    [13] 赵嘉栋, 张好, 杨文广, 赵婧华, 景明勇, 张临杰. 基于里德伯原子电磁诱导透明效应的光脉冲减速.  , 2021, 70(10): 103201. doi: 10.7498/aps.70.20210102
    [14] 高小苹, 梁景睿, 刘堂昆, 李宏, 刘继兵. 巨梯型四能级里德伯原子系统透射光谱性质的调控.  , 2021, 70(11): 113201. doi: 10.7498/aps.70.20202077
    [15] 严冬, 王彬彬, 白文杰, 刘兵, 杜秀国, 任春年. 里德伯电磁感应透明中的相位.  , 2019, 68(8): 084203. doi: 10.7498/aps.68.20181938
    [16] 刘瑞芬, 惠治鑫, 熊科诏, 曾春华. 表面催化反应模型中关联噪声诱导非平衡相变.  , 2018, 67(16): 160501. doi: 10.7498/aps.67.20180250
    [17] 张秦榕, 王彬彬, 张孟龙, 严冬. 稀薄里德伯原子气体中的两体纠缠.  , 2018, 67(3): 034202. doi: 10.7498/aps.67.20172052
    [18] 申雅君, 郭永峰, 袭蓓. 关联高斯与非高斯噪声激励的FHN神经元系统的稳态分析.  , 2016, 65(12): 120501. doi: 10.7498/aps.65.120501
    [19] 赵建明, 张临杰, 李昌勇, 贾锁堂. 里德伯原子向超冷等离子体的自发转化.  , 2008, 57(5): 2895-2898. doi: 10.7498/aps.57.2895
    [20] 闫桂沈, 李贺军, 郝志彪. 热解碳化学气相沉积中的多重定态和非平衡相变的研究.  , 2002, 51(2): 326-331. doi: 10.7498/aps.51.326
计量
  • 文章访问数:  461
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-09-10
  • 修回日期:  2025-09-21
  • 上网日期:  2025-09-30
  • 刊出日期:  2025-11-20

/

返回文章
返回
Baidu
map