搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微牛级会切霍尔推力器模式转换

吴嘉浩 曾明 刘辉 于达仁

引用本文:
Citation:

微牛级会切霍尔推力器模式转换

吴嘉浩, 曾明, 刘辉, 于达仁

Research on mode transition of micro-newton-level cusped field Hall thruster

WU Jiahao, ZENG Ming, LIU Hui, YU Daren
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 微牛级会切霍尔推力器是一种微波辅助电离调控的电推进装置, 作为无拖曳控制系统的执行机构, 通过宽范围连续调节推力来保障控制精度与稳定性. 但调节过程中会发生模式转换导致阳极电流突变, 降低控制精度和稳定性. 因此, 有必要对模式转换发生的规律进行研究. 本文通过探针诊断等方式, 研究了微波模式转换前后推力器内部等离子体参数与放电特性的变化规律. 实验结果显示, 模式转换前, 等离子体亮区主要集中于阳极前端约1—3 mm处的电子回旋共振区域; 转换后, 亮区向上游移动, 近阳极区等离子体密度超过截止密度, 沿轴向急剧下降. 等离子体密度变化改变基本波的传输特性是电子加热方式发生改变的根本原因. 等离子体密度上升至截止密度时, 驱动电离的R波与O波迅速衰减或被反射. 此时R波无法到达共振面, 主导的电子回旋共振(ECR)电离失效. R波-O波主导电离变为O波主导电离, 电子加热机制从体加热向表面波加热过渡. 本文研究将为后续优化推力器微波传输、降低模式转换发生的阈值提供依据.
    The micro-newton-level cusped field Hall thruster is an electric propulsion device that employs microwave-assisted ionization control. It serves as an actuator in drag-free control systems, ensuring control accuracy and stability by providing continuously adjustable thrust over a wide range. However, a mode transition occurring in the regulation process can lead to a sudden change in anode current, thereby degrading control precision and stability. Therefore, it is necessary to investigate the underlying patterns of mode transition. This study examines the variations in internal plasma parameters and discharge characteristics of the thruster before and after microwave mode transition, primarily through probe diagnostics. Experimental results indicate that prior to mode transition, the plasma luminous region is primarily concentrated within the electron cyclotron resonance (ECR) area, approximately 1—3 mm upstream of the anode. After the transition, the luminous region moves further upstream, and the plasma density near the anode exceeds the cutoff density, dropping sharply along the axial direction. The fundamental cause of the change in electron heating mechanism is the alteration in the propagation characteristics of fundamental waves due to this plasma density variation. When the plasma density rises to the cutoff density, the R-wave and O-wave, which drive ionization, are rapidly attenuated or reflected. At this point, the R-wave cannot reach the resonance layer, causing the dominant ECR ionization to become ineffective. The ionization mechanism shifts from being dominated by the R-wave and O-wave to being dominated primarily by the O-wave. Consequently, the electron heating mechanism shifts from volume heating to surface wave heating. This research will provide a basis for subsequently optimizing microwave transmission in the thruster and for reducing the threshold at which mode transition occurs.
  • 图 1  微波调节中的模式转换

    Fig. 1.  Mode transition during microwave regulation.

    图 2  推力器示意图 (a) 推力器结构; (b) 推力器磁场分布

    Fig. 2.  Schematic of the thruster: (a) Structure; (b) magnetic field distribution.

    图 3  Faraday探针、Langmuir探针测量系统

    Fig. 3.  Schematic of the Faraday probe and Langmuir probe measurement system.

    图 4  阳极电压、微波功率调节结果 (a) 4 W微波功率下调控阳极电压300—700 V, 阳极电流变化结果; (b) 500 V阳极电压下调控微波功率1—5 W, 阳极电流变化结果

    Fig. 4.  Results of anode voltage and microwave power regulation: (a) Variation of anode current with anode voltage regulated from 300 to 700 V at a fixed microwave power of 4 W; (b) variation of anode current with microwave power regulated from 1 to 5 W at a fixed anode voltage of 500 V.

    图 5  两种不同工况下等离子体亮区的分布 (a) 0.3 sccm/2 W工况在等离子体亮区阳极前端; (b) 0.4 sccm/4 W工况等离子体亮区退至阳极端面后

    Fig. 5.  Distribution of the plasma luminous region under two different operating conditions: (a) Distribution of the plasma luminous region upstream of the anode under the condition of 0.3 sccm and 2 W; (b) plasma luminous region recedes downstream beyond the anode end-face under the condition of 0.4 sccm and 4 W.

    图 6  电压调控下两种典型工况阳极电流与驻波比/反射系数的结果

    Fig. 6.  Anode current and VSWR/reflection coefficient results under two typical operating conditions with voltage regulation.

    图 7  无直流电压下驻波比与反射系数随着调控参数而发生突变 (a) 1—5 W微波功率变化下驻波比与反射系数显著增大; (b) 0.1—0.5 sccm工质流量下驻波比与反射系数显著增大

    Fig. 7.  Abrupt changes in VSWR and reflection coefficient with control parameters in the absence of a DC voltage: (a) Significant increase in VSWR and reflection coefficient with microwave power varied from 1 to 5 W; (b) sharp rise in VSWR and reflection coefficient with propellant flow rate adjusted from 0.1 to 0.5 sccm.

    图 8  2 W/0.3 sccm(模式转换前)和4 W/0.4 sccm(模式转换后)羽流离子电流分布

    Fig. 8.  Plume ion current distribution at 2 W/0.3 sccm (before mode transition) and 4 W/0.4 sccm (after mode transition).

    图 9  模式转换前后测量点的I-V曲线 (a) 模式转换前X = –1—4 mm的I-V曲线; (b) 模式转换后X = –1—4 mm处的I-V曲线

    Fig. 9.  I-V curves at the measurement points before and after mode transition: (a) I-V curves at positions from X = –1 to 4 mm before mode transition; (b) I-V curves at positions from X = –1 to 4 mm after mode transition.

    图 10  模式转换前后I-V曲线的一阶导数分布 (a) 模式转换前X = –1—4 mm I-V曲线的一阶导数分布; (b) 模式转换后X = –1—4 mm I-V曲线的一阶导数分布

    Fig. 10.  Profiles of the first derivative of the I-V curves before and after mode transition: (a) Distribution of the first derivative for I-V curves at X = –1 to 4 mm before mode transition; (b) distribution of the first derivative for I-V curves at X = –1 to 4 mm after mode transition.

    图 11  模式转换前后电子温度拟合曲线 (a) 模式转换前X = –1—4 mm测点处电子温度拟合直线; (b) 模式转换后X = –1—4 mm测点处电子温度拟合直线

    Fig. 11.  Fitting curves for electron temperature before and after mode transition: (a) Linear fits to the electron temperature at measurement points from X = –1 to 4 mm before mode transition; (b) linear fits to the electron temperature at measurement points from X = –1 to 4 mm after mode transition.

    图 12  模式转换过程中推力器通道内等离子体参数的变化 (a) 模式转换前通道内各测点的电子温度及等离子体密度; (b) 模式转换后通道内各测点的电子温度及等离子体密度

    Fig. 12.  Evolution of plasma parameters within the thruster channel during the mode transition process: (a) Electron temperature and plasma density at various measurement locations within the channel before mode transition; (b) electron temperature and plasma density at various measurement locations within the channel after mode transition.

    图 13  R波和O波在磁化等离子体中的传播特性

    Fig. 13.  Propagation characteristics of R-wave and O-wave in magnetized plasma.

    Baidu
  • [1]

    Kawamura S, Nakamura T, Ando M, I–II–et al. 2006 Classical Quantum Gravity 23 S125Google Scholar

    [2]

    Cornelisse J W 1996 Classical Quantum Gravity 13 A251Google Scholar

    [3]

    Vetrugno D 2017 Int. J. Mod. Phys. D 26 1741023Google Scholar

    [4]

    Mueller G 2024 Optics and Photonics for Advanced Dimensional Metrology III Strasbourg, FRANCE 2024 p27

    [5]

    Sala L 2025 IL Nuovo Cimento C 48 103

    [6]

    Cui K, Liu H, Jiang W, Yu D 2020 Microgravity Sci. Technol. 32 189Google Scholar

    [7]

    Liu H, Zeng M, Niu X, Huang H Y, Yu D R 2021 Appl. Sci. -Basel 11 6549Google Scholar

    [8]

    Liu H, Niu X, Zeng M, Wang S S, Cui K, Yu D R 2022 Acta Astronaut. 193 496Google Scholar

    [9]

    Chen Y, Wu J, Shen Y, Cao S 2024 Aerospace 11 329Google Scholar

    [10]

    Liu H, Zeng M, Chen Z, Qiao L, Huang H, Yu D 2021 Plasma Sources Sci. Technol. 30 09LT01Google Scholar

    [11]

    Zeng M, Liu H, Chen Z, Huang H, Yu D 2021 Vacuum 192 110486Google Scholar

    [12]

    Zeng M, Liu H, Chen Y, Wu J, Wang S, Huang H, Yu D 2022 Vacuum 205 111486Google Scholar

    [13]

    Zeng M, Liu H, Huang H, Yu D 2023 J. Phys. D: Appl. Phys. 56 215203Google Scholar

    [14]

    Fukuda T, Ueda S, Ohnishi Y, Inomoto M, Abe T 2008 RARIFIED GAS DYNAMICS: Proceedings of the 26th International Symposium on Rarified Gas Dynamics Kyoto (Japan), June 20-July 25, 2008 pp923−928

    [15]

    Tsukizaki R, Ise T, Koizumi H, Togo H, Nishiyama K, Kuninaka H 2014 J. Propul. Power 30 1383Google Scholar

    [16]

    Tani Y, Tsukizaki R, Koda D, Nishiyama K, Kuninaka H 2019 Acta Astronaut. 157 425Google Scholar

    [17]

    Tani Y, Yamashita Y, Tsukizaki R, Nishiyama K, Kuninaka H 2020 Acta Astronaut. 176 77Google Scholar

    [18]

    Yamashita Y, Tsukizaki R, Daiki K, Tani Y, Shirakawa R, Hattori K, Nishiyama K 2021 Acta Astronaut. 185 179Google Scholar

    [19]

    Yamashita Y, Tsukizaki R, Nishiyama K 2021 Plasma Sources Sci. Technol. 30 095023Google Scholar

    [20]

    Gao Y, Fan W, Hu P, Liu H, Yu D 2020 Plasma Sources Sci. Technol. 29 095021Google Scholar

    [21]

    Yang Y R, Fu S H, Ding Z F 2022 AIP Adv. 12 055325Google Scholar

    [22]

    Li J, Fu S, Yang Y, Ding Z 2021 Plasma Sci. Technol. 23 085506Google Scholar

    [23]

    Fu S H, Ding Z F 2021 Phys. Plasmas 28 033510Google Scholar

    [24]

    Fu S H, Ding Z F 2021 Plasma Sources Sci. Technol. 30 125004Google Scholar

    [25]

    Ding Z F, Yang Y R, Fu S H 2023 AIP Adv. 13 095007Google Scholar

    [26]

    Fu S H, Tian L C, Ding Z F 2022 Plasma Sources Sci. Technol. 31 025004Google Scholar

    [27]

    Zeng M, Liu H, Huang H, Yu D 2023 Plasma Sources Sci. Technol. 32 095014Google Scholar

    [28]

    Chen F F, Arnush D 2001 Phys. Plasmas 8 5051Google Scholar

    [29]

    Sugai H, Ghanashev I, Mizuno K 2000 Appl. Phys. Lett. 77 3523Google Scholar

    [30]

    Bittencourt J A 2004 Fundamentals of Plasma Physics (New York: Springer New York) pp400−452

    [31]

    李鑫, 曾明, 刘辉, 宁中喜, 于达仁 2023 72 225202Google Scholar

    Li X, Zeng M, Liu H, Ning Z X, Yu D R 2023 Acta Phys. Sin. 72 225202Google Scholar

  • [1] 吴嘉浩, 曾明, 刘辉, 于达仁. 微牛级会切霍尔推力器模式转换研究.  , doi: 10.7498/aps.75.20251214
    [2] 梁远毅, 方振松, 贺亚峰, 李庆, 何寿杰. 微空心阴极自脉冲放电微观动力学过程.  , doi: 10.7498/aps.74.20241586
    [3] 吕宇曦, 王晨, 段添期, 赵彤, 常朋发, 王安帮. 级联声光器件与回音壁模式微腔实现非对称传输.  , doi: 10.7498/aps.73.20230653
    [4] 智文强, 费宏明, 韩雨辉, 武敏, 张明达, 刘欣, 曹斌照, 杨毅彪. 漏斗型完全光子带隙光波导单向传输.  , doi: 10.7498/aps.71.20211299
    [5] 杨家濠, 张傲岩, 夏长明, 邓志鹏, 刘建涛, 黄卓元, 康嘉健, 曾浩然, 蒋仁杰, 莫志峰, 侯峙云, 周桂耀. 窄带空芯反谐振光纤的制备及其模式转换应用研究.  , doi: 10.7498/aps.70.20212194
    [6] 智文强, 费宏明, 韩雨辉, 武敏, 张明达, 刘欣, 曹斌照, 杨毅彪. 漏斗型完全光子带隙光波导单向传输研究.  , doi: 10.7498/aps.70.20211299
    [7] 周瑜, 操礼阳, 马晓萍, 邓丽丽, 辛煜. 脉冲射频容性耦合氩等离子体的发射探针诊断.  , doi: 10.7498/aps.69.20191864
    [8] 刘辉, 蒋文嘉, 宁中喜, 崔凯, 曾明, 曹希峰, 于达仁. 使用不同工质的会切磁场等离子体推力器.  , doi: 10.7498/aps.67.20180366
    [9] 王琛, 安红海, 贾果, 方智恒, 王伟, 孟祥富, 谢志勇, 王世绩. 软X射线激光探针诊断高Z材料等离子体.  , doi: 10.7498/aps.63.215203
    [10] 卿绍伟, 鄂鹏, 段萍. 电子温度各向异性对霍尔推力器中等离子体与壁面相互作用的影响.  , doi: 10.7498/aps.61.205202
    [11] 郝鹏, 吴一辉, 张平. 纳米金表面修饰与表面等离子体共振传感器的相互作用研究.  , doi: 10.7498/aps.59.6532
    [12] 牛田野, 曹金祥, 刘 磊, 刘金英, 王 艳, 王 亮, 吕 铀, 王 舸, 朱 颖. 低温氩等离子体中的单探针和发射光谱诊断技术.  , doi: 10.7498/aps.56.2330
    [13] 徐妙华, 梁天骄, 张 杰. 利用韧致辐射诊断激光等离子体相互作用产生的超热电子.  , doi: 10.7498/aps.55.2357
    [14] 池凌飞, 林揆训, 姚若河, 林璇英, 余楚迎, 余云鹏. Langmuir单探针诊断射频辉光放电等离子体及其数据处理.  , doi: 10.7498/aps.50.1313
    [15] 姚若河, 池凌飞, 林璇英, 石旺舟, 林揆训. 射频辉光放电等离子体的电探针诊断及数据处理.  , doi: 10.7498/aps.49.922
    [16] 余玮, 徐至展, 马锦秀, 陈荣清. 等离子体拍频波加速器中三波相互作用的时间发展.  , doi: 10.7498/aps.42.431
    [17] 朱文浩, 朱南强, 陈跃山. 射频低压等离子体电子能量分布函数的探针诊断.  , doi: 10.7498/aps.38.236
    [18] 江志明, 徐至展, 陈时胜, 林礼煌, 张伟清, 钱爱娣. 利用多分幅光学探针诊断系统研究激光等离子体.  , doi: 10.7498/aps.37.1658
    [19] 余玮, 徐至展, 陈泽尊. 磁化不均匀等离子体中的两种模式转换.  , doi: 10.7498/aps.36.382
    [20] 朱文浩, 吴毅锋, 陈跃山. 高频电场对双探针法诊断低压等离子体的影响.  , doi: 10.7498/aps.35.1426
计量
  • 文章访问数:  29
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-09-05
  • 修回日期:  2025-10-15
  • 上网日期:  2025-11-20

/

返回文章
返回
Baidu
map