搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

等离子体沉积和刻蚀中离子与中性基团协同作用和表面形貌研究

宋柳琴 董婉 张逸凡 宋远红

引用本文:
Citation:

等离子体沉积和刻蚀中离子与中性基团协同作用和表面形貌研究

宋柳琴, 董婉, 张逸凡, 宋远红

Investigation of the synergistic effect of ions and neutrals in plasma deposition/etching processes and on surface profiles evolution

Song Liuqin, Dong Wan, Zhang Yifan, Song Yuanhong
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 低温等离子体沉积与刻蚀技术在芯片制造、平板显示器和光伏等等离子体辅助制造领域中具有至关重要的作用。而等离子体与材料之间的物理、化学相互作用机理,是揭示工艺过程本质、优化制程参数、提升器件性能与可靠性的重要科学基础。本工作基于流体混合模型并耦合表面形貌演化模型自洽模拟了不同放电参数下的等离子体放电特性以及沉积/刻蚀表面形貌,并给出了一些研究实例的模拟结果与讨论。在非晶硅薄膜沉积过程研究中发现,等离子体放电过程所产生的电子密度径向分布不均匀,会导致基片表面中性基团和离子通量分布乃至膜厚或膜质的不均匀。其中,离子能量分布还会影响薄膜中各元素的含量和成键情况,进而影响薄膜质量和性能。而在碳氟混合气体放电刻蚀SiO2研究中,发现在裁剪波形的驱动下通过调节电极间距、谐波相位以及谐波次数,可实现对离子与中性基团的灵活控制,从而筛选出更优的放电参数以改善刻蚀效果。在感性耦合氯混合气体刻蚀Si的过程中,采用裁剪偏压波形会使离子能量主要分布在高能区,这能显著提高刻蚀效率。综上,通过混合模拟可以实现等离子体放电与沉积/刻蚀过程的自洽耦合,总结离子与中性基团协同作用的本质规律,为工艺与设备的优化提供参考。
    Low-temperature plasma deposition and etching technologies play a vital role in plasma-assisted manufacturing fields such as semiconductor chip fabrication, flat-panel displays, and photovoltaic devices. The physical and chemical interaction mechanisms between plasma and materials form the fundamental scientific basis for elucidating the nature of process dynamics, optimizing processing parameters, and improving device performance and reliability.
    In this work, based on a fluid hybrid model coupled with a surface profile evolution model, the plasma discharge characteristics and the deposition/etching surface profile under different discharge parameters are self-consistently simulated. It also presents the simulation results and discussions of some research cases.
    During amorphous silicon thin-film deposition, it was found that the radial distribution of electron density generated during the plasma discharge process is non-uniform, which can lead to the non-uniform distribution of neutral and ion fluxes on the substrate surface, as well as the non-uniformity of film thickness or film quality. Moreover, the ion energy distribution strongly influences the composition and bonding configurations in the film, thereby affecting its quality and performance.
    In studies of SiO2 etching using fluorocarbon mixed-gas discharges, it has been found that, under voltage waveform tailoring, adjusting the electrode gap, phase, and harmonic number enables flexible control of ion and neutral fluxes. This allows for the optimization of discharge parameters to improve etching performance. During Si etching with inductively coupled Ar/Cl2 plasmas, the application of tailored bias waveform causes the ion energy to concentrate predominantly in the high-energy range, which can significantly enhance etching efficiency.
    In summary, this work systematically investigates that the self-consistent coupling between plasma discharge and deposition/etching processes can be achieved by the hybrid simulation, while further elucidating the essential synergistic roles of ions and neutral radicals. It is hoped that these findings will serve as valuable references for the optimization of plasma processes and equipment.
  • [1]

    Chabert P, Braithwait N Physics of Radio-Frequency Plasmas (Beijing: Science Press) (in Chinese)[帕斯卡·夏伯特,尼古拉斯·布雷斯韦著 (王友年,徐军,宋远红译) 2015 射频等离子体物理学(北京:科学出版社)]

    [2]

    Lieberman M A, Lichtenberg A J Principles of Plasma Discharges and Material Processing New York: Wiley (Beijing: Science Press) (in Chinese)[力伯曼,里登伯格著 (蒲以康译) 2007 等离子体放电原理与材料处理(北京:科学出版社)]

    [3]

    Vossen J L, Kern W 1991 Thin Film Processes II (Academic Press) p525

    [4]

    Yu C, Gao K, Peng C W, He C R, Wang S B, Shi W, Allen V, Zhang J T, Wang D Z, Tian G Y, Zhang Y F, Jia W Z, Song Y H, Hu Y Z, Colwell J, Xing C F, Ma Q, Wu H T, Guo L Y, Dong G Q, Jiang H, Wu H H, Wang X Y, Xu D C, Li K, Peng J, Liu W Z, Chen D, Lennon A, Cao X M, De Wolf S, Zhou J, Yang X B, Zhang X H 2023 Nature Energy 8 1375

    [5]

    Huang S, Huard C, Shim S, Nam S K, Song I-C, Lu S Q, Kushner M J 2019 Journal of Vacuum Science & Technology A 37 031304

    [6]

    Ma X Q, Zhang S Q, Dai Z L, Wang Y N 2017 Plasma Sci. Technol. 19 085502

    [7]

    Huard C M, Sriraman S, Paterson A, Kushner M J 2018 Journal of Vacuum Science & Technology A 36 06B101

    [8]

    Huard C M, Zhang Y T, Sriraman S, Paterson A, Kanarik K J, Kushner M J 2017 Journal of Vacuum Science & Technology A 35 031306

    [9]

    Huard C M 2018 Ph. D. Dissertation (University of Michigan)

    [10]

    Adinath M Funde 2011 Ph. D. Dissertation (Pune University)

    [11]

    Matsuda A, Goto T 1989 MRS Online Proceedings Library 164 3-14

    [12]

    Matsuda A 1983 Journal of Non-Crystalline Solids 59 767-774

    [13]

    Matsuda A 2004 Journal of Non-Crystalline Solids 338 1-12

    [14]

    Crose M G 2018 Ph. D. Dissertation (University of California)

    [15]

    Tinck S, Bogaerts A 2012 Plasma Processes and Polymers 9 522-539

    [16]

    Kim H J 2021 Plasma Sources Science and Technology 30 065001

    [17]

    Kim H J, Lee K, Park H 2023 Plasma Sources Science and Technology 32 115008

    [18]

    Kim H J, Kim J S, Lee H J 2019 J. Appl. Phys. 126 173301

    [19]

    Kim H J, Lee H J 2016 Plasma Sources Science and Technology 25 065006

    [20]

    Donkó Z, Schulze J, Heil B G, Czarnetzki U 2009 J. Phys. D. Appl. Phys. 42 025205

    [21]

    Schulze J, Schungel E, Czarnetzki U 2009 J. Phys. D: Appl. Phys. 42 092005

    [22]

    Czarnetzki U, Heil B J, Schulze J, Donkó Z, Mussenbrock T, Brinkmann R P, 2009 Journal of Physics: Conference Series 162 012010

    [23]

    Schulze J, Schungel E, Czarnetzki U 2011 Plasma Sources Sci. Technol. 20 015017

    [24]

    Schulze J, Derzsi A, Donkó Z 2011 Plasma Sources Sci. Technol. 20 045008

    [25]

    Bruneau B, Lafleur T, Gans T, Connell D O’, Greb A, Korolov I, Derzsi A, Donkó Z, Brandt S, Schüngel E, Schulze J, Diomede P, Economou D J, Longo S, Johnson E V, Booth J P 2016 Plasma Sources Sci. Technol. 25 01LT02

    [26]

    Bruneau B, Novikova T, Lafleur T, Booth J P, Johnson E V 2014 Plasma Sources Sci. Technol. 23 065010

    [27]

    Ju Shin-Pon, Weng Cheng-I, Chang Jee-Gong, Hwang Chi-Chuan 2002 American Vacuum Society 20 946

    [28]

    Zhai S M, Liao H S, Zhou N G, Huang H B, Zhou L 2020 Acta Phys. Sin. 69 076801 (in Chinese) [翟世铭, 廖黄盛, 周耐根, 黄海宾, 周浪 2020 69 076801]

    [29]

    Ruan C, Sun X M, Song Y X 2014 Acta Phys. Sin. 64 038201 (in Chinese) [阮聪, 孙晓民, 宋亦旭 2014 64 038201]

    [30]

    Jia W Z 2018 Ph. D. Dissertation (Dalian: Dalian University of Technology) (in Chinese) [贾文柱 2018 博士学位论文(大连:大连理工大学)]

    [31]

    Dong W 2022 Ph. D. Dissertation (Dalian: Dalian University of Technology) (in Chinese) [董婉 2022 博士学位论文(大连:大连理工大学)]

    [32]

    Zhang Y F, Dong W, Jia W Z, Song Y H 2025 Plasma Sources Sci. Technol. 34 065011

    [33]

    Zhang Y F 2025 Ph. D. Dissertation (Dalian: Dalian University of Technology) (in Chinese) [张逸凡 2025 博士学位论文(大连:大连理工大学)]

    [34]

    Dong W, Zhang Y F, Dai Z L, Schulze J, Song Y H, Wang Y N 2022 Plasma Sources Sci. Technol. 31 025006

    [35]

    Dong W, Song L Q, Zhang Y F, Wang L, Song Y H, Schulze J 2025 Plasma Processes and Polymers 22 70026

    [36]

    Song L Q, Jia W Z, Dong W, Zhang Y F, Dai Z L, Song Y H 2022 Acta Phys. Sin. 71 170201 (in Chinese) [宋柳琴, 贾文柱, 董婉, 张逸凡, 戴忠玲, 宋远红 2022 71 170201]

    [37]

    Qu C Hi, Sakiyama Yukinori, Agarwal Pulkit, Kushner Mark J 2021 J. Vac. Sci. Technol. A 39 052403

    [38]

    MA Z Q 2007 International Journal of Modern Physics B 21 4299

    [39]

    Amanatides E, Stamou S, Mataras D 2001 J. Appl. Phys. 90 5786

    [40]

    Kessels W M M, van de Sanden M C M, Severens R J, Schram D C 2000 J. Appl. Phys. 87 3313

    [41]

    Fukawa Makoto, Suzuki Susumu, Guo L H, Kondo Michio, Matsuda Akihisa 2001 Solar Energy Materials & Solar Cells 66 217

    [42]

    Abe Yusuke, Ishikawa Kenji, Takeda Keigo, Tsutsumi Takayoshi, Fukushima Atsushi, Kondo Hiroki, Sekine Makoto, Hori Masaru 2017 Appl. Phys. Lett. 110 043902

  • [1] 宋柳琴, 贾文柱, 董婉, 张逸凡, 戴忠玲, 宋远红. 容性耦合放电等离子体增强氧化硅薄膜沉积模拟研究.  , doi: 10.7498/aps.71.20220493
    [2] 谭再上, 吴小蒙, 范仲勇, 丁士进. 热退火对等离子体增强化学气相沉积SiCOH薄膜结构与性能的影响.  , doi: 10.7498/aps.64.107701
    [3] 何素明, 戴珊珊, 罗向东, 张波, 王金斌. 等离子体增强化学气相沉积工艺制备SiON膜及对硅的钝化.  , doi: 10.7498/aps.63.128102
    [4] 吴俊, 马志斌, 沈武林, 严垒, 潘鑫, 汪建华. CVD金刚石中的氮对等离子体刻蚀的影响.  , doi: 10.7498/aps.62.075202
    [5] 杨宏军, 宋亦旭, 郑树琳, 贾培发. 基于压缩表示的离子刻蚀仿真三维表面演化方法.  , doi: 10.7498/aps.62.208201
    [6] 侯国付, 薛俊明, 袁育杰, 张晓丹, 孙建, 陈新亮, 耿新华, 赵颖. 高压射频等离子体增强化学气相沉积制备高效率硅薄膜电池的若干关键问题研究.  , doi: 10.7498/aps.61.058403
    [7] 李宇杰, 谢凯, 李效东, 许静, 韩喻, 杜盼盼. 低温等离子体增强化学气相沉积法制备Ge反opal三维光子晶体及其光学性能.  , doi: 10.7498/aps.59.1839
    [8] 丁艳丽, 朱志立, 谷锦华, 史新伟, 杨仕娥, 郜小勇, 陈永生, 卢景霄. 沉积速率对甚高频等离子体增强化学气相沉积制备微晶硅薄膜生长标度行为的影响.  , doi: 10.7498/aps.59.1190
    [9] 张晓丹, 孙福和, 许盛之, 王光红, 魏长春, 孙建, 侯国付, 耿新华, 熊绍珍, 赵颖. 单室沉积p-i-n型微晶硅薄膜太阳电池性能优化的研究.  , doi: 10.7498/aps.59.1344
    [10] 袁贺, 孙长征, 徐建明, 武庆, 熊兵, 罗毅. 基于等离子体增强化学气相沉积技术的光电子器件多层抗反膜的设计和制作.  , doi: 10.7498/aps.59.7239
    [11] 吕 玲, 龚 欣, 郝 跃. 感应耦合等离子体刻蚀p-GaN的表面特性.  , doi: 10.7498/aps.57.1128
    [12] 葛 洪, 张晓丹, 岳 强, 赵 静, 赵 颖. 甚高频等离子体增强化学气相沉积大面积平行板电极间真空电势差分布研究.  , doi: 10.7498/aps.57.5105
    [13] 杨杭生. 等离子体增强化学气相沉积法制备立方氮化硼薄膜过程中的表面生长机理.  , doi: 10.7498/aps.55.4238
    [14] 张晓丹, 赵 颖, 高艳涛, 朱 锋, 魏长春, 孙 建, 王 岩, 耿新华, 熊绍珍. 甚高频等离子体增强化学气相沉积制备微晶硅太阳电池的研究.  , doi: 10.7498/aps.54.1899
    [15] 王 淼, 李振华, 竹川仁士, 齐藤弥八. 利用微波等离子体增强化学气相沉积法定向生长纳米碳管的研究.  , doi: 10.7498/aps.53.888
    [16] 曾湘波, 廖显伯, 王 博, 刁宏伟, 戴松涛, 向贤碧, 常秀兰, 徐艳月, 胡志华, 郝会颖, 孔光临. 等离子体增强化学气相沉积法实现硅纳米线掺硼.  , doi: 10.7498/aps.53.4410
    [17] 杨恢东, 吴春亚, 赵 颖, 薛俊明, 耿新华, 熊绍珍. 甚高频等离子体增强化学气相沉积法沉积μc-Si∶H薄膜中氧污染的初步研究.  , doi: 10.7498/aps.52.2865
    [18] 于 威, 刘丽辉, 侯海虹, 丁学成, 韩 理, 傅广生. 螺旋波等离子体增强化学气相沉积氮化硅薄膜.  , doi: 10.7498/aps.52.687
    [19] 叶超, 宁兆元, 程珊华, 康健. 微波电子回旋共振等离子体增强化学气相沉积法沉积氟化非晶碳薄膜的研究.  , doi: 10.7498/aps.50.784
    [20] 宁兆元, 程珊华, 叶超. 电子回旋共振等离子体增强化学气相沉积a-CFx薄膜的化学键结构.  , doi: 10.7498/aps.50.566
计量
  • 文章访问数:  22
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2025-10-31

/

返回文章
返回
Baidu
map