搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低温化学气相沉积法可控合成二维铁电α-In2Se3

汪成阳 李月鑫 何沿沿 李美 钟轮 接文静

引用本文:
Citation:

低温化学气相沉积法可控合成二维铁电α-In2Se3

汪成阳, 李月鑫, 何沿沿, 李美, 钟轮, 接文静

Controllable synthesis of two-dimensional ferroelectric α-in2Se3 by low-temperature chemical vapor deposition

WANG Chengyang, LI Yuexin, HE Yanyan, LI Mei, ZHONG Lun, JIE Wenjing
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 二维铁电半导体α-In2Se3在新型电子器件中具有重要应用前景. 然而采用化学气相沉积法(CVD), 该材料通常需要高于650 ℃的高温. 本研究提出一种低温合成策略, 通过引入KCl/LiCl/NH4Cl三元催化剂体系, 在400—460 ℃(优化条件440 ℃)制备α-In2Se3薄膜, 该工艺较传统方法降低温度200 ℃以上. 扫描电子显微镜(SEM)表征显示材料形貌可通过温度与气体流速协同调控, 从六边形薄片转变为连续均匀薄膜; 能量色散谱仪(EDS)分析表明元素比例接近理想化学计量比(In∶Se = 36.38∶63.62); 拉曼光谱(特征峰103/180/195 cm–1) 与X射线光电子能谱(XPS) (In∶Se = 1.92∶3.00) 共同证实材料为纯α相、化学计量比接近理想值. 基于此材料构建的阻变器件表现出模拟阻变的特性, 模拟了生物突触的长时程增强/抑制行为. 在人工神经网络仿真中, 对MNIST数据集的图像识别准确率均在90%以上. 该低温合成工艺突破高温限制, 为α-In2Se3在硅基神经形态计算芯片中的规模化集成提供可行路径.
    Two-dimensional ferroelectric α-In2Se3 possesses many fascinating physical properties. However, chemical-vapor-deposited ferroelectric α-In2Se3 typically requires high temperatures (>650 ℃). In this work, α-In2Se3 is synthesized at 400 to 460 ℃ by introducing a KCl/LiCl/NH4Cl ternary catalyst, resulting in a 200 ℃ reduction in growth temperature compared with ferroelectric α-In2Se3 synthesized by the traditional chemical vapor deposition (CVD) method. The surface morphology of the as-prepared material is controlled by temperature and gas flow rate. As the growth temperature increases from 400 to 460 ℃, the synthesized α-In2Se3 is changed from discrete hexagonal flakes to a continuous and uniform thin film, which is confirmed by the scanning electron microscope. Raman spectroscopy shows that the characteristic peaks of In2Se3 are located at 103, 180, and 195 cm–1, respectively, indicating that the CVD-grown In2Se3 is α-phase. Furthermore, energy dispersive spectrometer and X-ray photoelectron spectroscopy indicate that the elemental composition is close to the ideal stoichiometric ratio, confirming the successful synthesis of the α-In2Se3. Then, the as-prepared α-In2Se3 is transferred onto Si/SiO2 substrate for device fabrication. Atomic force microscope indicates that the film is uniform, with an approximate thickness of 63 nm. The fabricated two-terminal memristors exhibit analogous resistive switching behaviors. And such memristors are used to achieve synaptic functions of long-term potentiation/long-term depression. For artificial neural network simulations based on the synaptic memristors, the recognition accuracy for hand-written digit image exceeds 90%. This work provides a practical method for growing two-dimensional ferroelectric α-In2Se3 at low temperatures for applications in synaptic devices and neuromorphic computing.
  • 图 1  CVD 法制备二维α-In2Se3材料的示意图

    Fig. 1.  Schematic diagram of the CVD synthesis of two-dimensional α-In2Se3 material.

    图 2  不同生长温度下制备得到的α-In2Se3的拉曼光谱图

    Fig. 2.  Raman spectra of α-In2Se3 synthesized at different growth temperatures.

    图 3  (a)—(d) 在20 sccm气体流量、不同生长温度下, 生长的In2Se3薄片光学显微图; (e)—(h) 在440 ℃、不同气体流量(标准状况)下, 生长的In2Se3薄片光学显微图

    Fig. 3.  (a)–(d) Optical images of In2Se3 flakes grown at gas flow rate of 20 sccm and different growth temperature; (e)–(h) optical images of In2Se3 flakes grown at 440 ℃ and different gas flow rate (standard condition).

    图 4  (a)—(d) 各个温度生长的In2Se3的SEM图; (e) 各元素百分比含量

    Fig. 4.  (a)–(d) SEM images of In2Se3 grown at various temperatures; (e) percentage content of each element.

    图 5  (a) In 3d3/2和In 3d5/2的XPS能谱; (b) Se 3d3/2和Se 3d5/2的XPS能谱; (c) 合成α-In2Se3的XPS能谱; (d) α-In2Se3 AFM图像及对应的高度剖面图

    Fig. 5.  (a) XPS spectra of In 3d3/2 and In 3d5/2; (b) XPS spectra of Se 3d3/2 and Se 3d5/2; (c) XPS spectrum of synthesized α-In2Se3; (d) AFM image of the α-In2Se3 and corresponding height profile.

    图 6  Au/α-In2Se3/Au忆阻器的10个循环周期的I-V特性曲线(插图为器件结构示意图)

    Fig. 6.  I-V characteristic curves of the Au/α-In2Se3/Au memristor for 10 cycles (inset shows a schematic diagram of the device structure).

    图 7  20组重复的相同大小的电脉冲诱导的LTP/LTD行为

    Fig. 7.  LTP/LTD behavior induced by 20 sets of repetitive identical-sized electrical pulses.

    图 8  (a) 3层ANN示意图; (b) 8×8像素的识别精度; (c) 28×28像素的识别精度

    Fig. 8.  (a) Schematic Structure of three-layer neural network ANN structure; (b) recognition accuracy of 8×8 pixels; (c) recognition accuracy of 28×28 pixels.

    表 1  不同条件合成α-In2Se3

    Table 1.  Synthesis of α-In2Se3 under different conditions.

    In源 Se源 催化剂 衬底 参考文献
    In2O3
    (650—750 ℃)
    Se粉(300 ℃) mica [17]
    In2O3
    (680—750 ℃)
    Se粉(250 ℃) mica [23]
    In2O3
    (700—900 ℃)
    Se粉 mica [24]
    In2O3
    (630 ℃)
    Se粉(250 ℃) mica [25]
    In2O3
    (850 ℃)
    Se粉(270 ℃) SiO2/Si [14]
    In2O3
    (550/650 ℃)
    Se粉(270 ℃) SiO2/Si [26]
    In2O3
    (670 ℃)
    Se粉(250 ℃) mica [27]
    In2O3
    (850 ℃)
    SiO2/Si [28]
    In2O3
    (660 ℃)
    Se粉(350 ℃) mica [29]
    In2O3
    (660 ℃)
    Se粉(300 ℃) mica [30]
    InCl3
    (400—460 ℃)
    Se粉(300 ℃) KCl/NaCl/
    NH4Cl
    SiO2/Si 本工作
    下载: 导出CSV
    Baidu
  • [1]

    Wu J B, Chen H Y, Yang N, Cao J, Yan X D, Liu F X, Sun Q B, Ling X, Guo J, Wang H 2020 Nat. Electron. 3 466Google Scholar

    [2]

    Wang S Y, Liu L, Gan L R, Chen H W, Hou X, Ding Y, Ma S L, Zhang D W, Zhou P 2021 Nat. Commun. 12 53Google Scholar

    [3]

    Wang X W, Zhu C, Deng Y, Duan R H, Chen J Q, Zeng Q S, Zhou J D, Fu Q D, You L, Liu S, Edgar J H, Yu P, Liu Z 2021 Nat. Commun. 12 1109Google Scholar

    [4]

    Dai M J, Wang Z G, Wang F K, Qiu Y F, Zhang J, Xu C Y, Zhai T Y, Cao W W, Fu Y Q, Jia D C, Zhou Y, Hu P A 2019 Nano Lett. 19 5410Google Scholar

    [5]

    Zhou Y, Wu D, Zhu Y H, Cho Y J, He Q, Yang X, Herrera K, Chu Z D, Han Y, Downer M C, Peng H L, Lai K J 2017 Nano Lett. 17 5508Google Scholar

    [6]

    Chang K, Liu J W, Lin H C, Wang N, Zhao K, Zhang A M, Jin F, Zhong Y, Hu X P, Duan W H, Zhang Q M, Fu L, Xue Q K, Chen X, Ji S H 2016 Science 353 274Google Scholar

    [7]

    Li M D, He Y Y, Wang C Y, Io W F, Guo F, Jie W J, Hao J H 2025 Small 10.1002/smll. 202412314

    [8]

    Si M W, Saha A K, Gao S J, Qiu G, Qin J K, Duan Y Q, Jian J, Niu C, Wang H Y, Wu W Z, Gupta S K, Ye P D 2019 Nat. Electron. 2 580Google Scholar

    [9]

    Popović S, Čelustka B, Bidjin D 1971 Physica Status Solidi (a) 6 301Google Scholar

    [10]

    Osamura K, Murakami Y, Tomiie Y 1966 J. Phys. Soc. Jpn. 21 1848Google Scholar

    [11]

    Ding W J, Zhu J B, Wang Z, Gao Y F, Xiao D, Gu Y, Zhang Z Y, Zhu W G 2017 Nat. Commun. 8 14956Google Scholar

    [12]

    Cui C J, Hu W J, Yan X X, Addiego C, Gao W P, Wang Y, Wang Z, Li L Z, Cheng Y C, Li P, Zhang X X, Alshareef H N, Wu T, Zhu W G, Pan X Q, Li L J 2018 Nano Lett. 18 1253Google Scholar

    [13]

    Han W, Zheng X D, Yang K, Tsang C S, Zheng F Y, Wong L W, Lai K H, Yang T F, Wei Q, Li M J, Io W F, Guo F, Cai Y, Wang N, Hao J H, Lau S P, Lee C S, Ly T H, Yang M, Zhao J 2023 Nat. Nanotechnol. 18 55Google Scholar

    [14]

    Liu L X, Dong J Y, Huang J Q, Nie A M, Zhai K, Xiang J Y, Wang B C, Wen F S, Mu C P, Zhao Z S, Gong Y J, Tian Y J, Liu Z Y 2019 Chem. Mater. 31 10143Google Scholar

    [15]

    Li J, Wang X T, Ma Y, Han W, Li K X, Li J T, Wu Y, Zhao Y H, Yan T, Liu X, Shi H L, Chen X Q, Zhang Y Z 2025 ACS Nano 19 13220Google Scholar

    [16]

    Jiang Y X, Ning X K, Liu R H, Song K P, Ali S, Deng H Y, Li Y Z, Huang B H, Qiu J H, Zhu X F, Fan Z, Li Q K, Qin C B, Xue F, Yang T, Li B, Liu G, Hu W J, Li L J, Zhang Z D 2025 Nat. Commun. 16 7364Google Scholar

    [17]

    Xu L, Wu Z H, Han Y T, Wang M Z, Li J, Chen C, Wang L, Yuan Y K, Shi L, Redwing J M, Zhang X T 2025 Nano Lett. 25 8423Google Scholar

    [18]

    Sangster J, Pelton A D 1987 J. Phys. Chem. Ref. Data 16 509Google Scholar

    [19]

    Li Z L, Zhou J Y, Wang Z P, Gu J H, Zhang Y W, Wei Y X 2012 Adv. Mater. Res. 567 41Google Scholar

    [20]

    Won Y S, Kim Y S, Kryliouk O, Anderson T 2008 Physica Status Solidi c 5 1633Google Scholar

    [21]

    Yang K M, Wang J P, Wu L, Yan Y F, Tang X, Gan W, Li L, Li Y, Han H, Li H 2023 Results Phys. 51 106643Google Scholar

    [22]

    Kim J H, Kim S H, Yu H Y 2024 Small 20 2405459Google Scholar

    [23]

    He Q M, Tang Z Y, Dai M Z, Shan H L, Yang H, Zhang Y, Luo X 2023 Nano Lett. 23 3098Google Scholar

    [24]

    Zhou S Y, Liao L C, Chen J H, Yu Y Y, Lv Z Q, Yang M, Yao B W, Zhang S, Peng G, Huang Z Y, Liu Y Y, Qi X, Wang G 2023 ACS Appl. Mater. Interfaces 15 23613Google Scholar

    [25]

    Mukherjee S, Dutta D, Mohapatra P K, Dezanashvili L, Ismach A, Koren E 2020 ACS Nano 14 17543Google Scholar

    [26]

    Zhang Z, Shi L, Wang B, Qu J Y, Wang X L, Wang T, Jiang Q T, Xue W H, Xu X H 2025 Chin. Chem. Lett. 36 109687Google Scholar

    [27]

    He Q M, Jiang B, Ma J Y, Chen W J, Luo X, Zheng Y 2025 Small Methods 9 2401549Google Scholar

    [28]

    Zhou J D, Zeng Q S, Lv D H, Sun L F, Niu L, Fu W, Liu F C, Shen Z X, Jin C H, Liu Z 2015 Nano Lett. 15 6400Google Scholar

    [29]

    Feng W, Zheng W, Gao F, Chen X S, Liu G B, Hasan T, Cao W W, Hu P A 2016 Chem. Mater. 28 4278Google Scholar

    [30]

    Io W F, Yuan S, Pang S Y, Wong L W, Zhao J, Hao J 2020 Nano Res. 13 1897Google Scholar

    [31]

    Wang D, Yin J, Li Y, Li H, Wang M, Guo F, Jie W, Song F, Hao J 2025 Aggregate 10.1002/agt2.70099

    [32]

    Zhong Y N, Wang T, Gao X, Xu J L, Wang S D 2018 Adv. Funct. Mater. 28 1800854Google Scholar

    [33]

    Guo F, Song M L, Wong M C, Ding R, Io W F, Pang S Y, Jie W J, Hao J H 2022 Adv. Funct. Mater. 32 2108014Google Scholar

  • [1] 刘怀远, 肖建飞, 吕昭征, 吕力, 屈凡明. Bi2O2Se纳米线的生长及其超导量子干涉器件.  , doi: 10.7498/aps.73.20231600
    [2] 王璇, 杜健嵘, 李志军, 马铭磷, 李春来. 串扰忆阻突触异质离散神经网络的共存放电与同步行为.  , doi: 10.7498/aps.73.20231972
    [3] 费翔, 张秀梅, 付泉桂, 蔡正阳, 南海燕, 顾晓峰, 肖少庆. 基于熔融玻璃的预沉积法生长毫米级单晶MoS2及WS2-MoS2异质结.  , doi: 10.7498/aps.71.20211735
    [4] 邓文, 汪礼胜, 刘嘉宁, 余雪玲, 陈凤翔. 光电协控多层MoS2记忆晶体管的阻变行为与机理研究.  , doi: 10.7498/aps.70.20210750
    [5] 史晨阳, 闵光宗, 刘向阳. 蛋白质基忆阻器研究进展.  , doi: 10.7498/aps.69.20200617
    [6] 冯秋菊, 石博, 李昀铮, 王德煜, 高冲, 董增杰, 解金珠, 梁红伟. 单根Sb掺杂ZnO微米线非平衡电桥式气敏传感器的制作与性能.  , doi: 10.7498/aps.69.20191530
    [7] 李丹阳, 韩旭, 徐光远, 刘筱, 赵枭钧, 李庚伟, 郝会颖, 董敬敬, 刘昊, 邢杰. 低功耗、高灵敏的Bi2O2Se光电导探测器.  , doi: 10.7498/aps.69.20201044
    [8] 邵楠, 张盛兵, 邵舒渊. 具有感觉记忆的忆阻器模型.  , doi: 10.7498/aps.68.20181577
    [9] 邵楠, 张盛兵, 邵舒渊. 具有经验学习特性的忆阻器模型分析.  , doi: 10.7498/aps.68.20190808
    [10] 张晓波, 青芳竹, 李雪松. 化学气相沉积石墨烯薄膜的洁净转移.  , doi: 10.7498/aps.68.20190279
    [11] 陈义豪, 徐威, 王钰琪, 万相, 李岳峰, 梁定康, 陆立群, 刘鑫伟, 连晓娟, 胡二涛, 郭宇锋, 许剑光, 童祎, 肖建. 基于二维材料MXene的仿神经突触忆阻器的制备和长/短时程突触可塑性的实现.  , doi: 10.7498/aps.68.20182306
    [12] 刘益春, 林亚, 王中强, 徐海阳. 氧化物基忆阻型神经突触器件.  , doi: 10.7498/aps.68.20191262
    [13] 冯秋菊, 李芳, 李彤彤, 李昀铮, 石博, 李梦轲, 梁红伟. 外电场辅助化学气相沉积方法制备网格状β-Ga2O3纳米线及其特性研究.  , doi: 10.7498/aps.67.20180805
    [14] 余志强, 刘敏丽, 郎建勋, 钱楷, 张昌华. 基于Au/TiO2/FTO结构忆阻器的开关特性与机理研究.  , doi: 10.7498/aps.67.20180425
    [15] 王彬, 冯雅辉, 王秋实, 张伟, 张丽娜, 马晋文, 张浩然, 于广辉, 王桂强. 化学气相沉积法制备的石墨烯晶畴的氢气刻蚀.  , doi: 10.7498/aps.65.098101
    [16] 邵楠, 张盛兵, 邵舒渊. 具有突触特性忆阻模型的改进与模型经验学习特性机理.  , doi: 10.7498/aps.65.128503
    [17] 孟凡一, 段书凯, 王丽丹, 胡小方, 董哲康. 一种改进的WOx忆阻器模型及其突触特性分析.  , doi: 10.7498/aps.64.148501
    [18] 王浪, 冯伟, 杨连乔, 张建华. 化学气相沉积法制备石墨烯的铜衬底预处理研究.  , doi: 10.7498/aps.63.176801
    [19] 刘东青, 程海峰, 朱玄, 王楠楠, 张朝阳. 忆阻器及其阻变机理研究进展.  , doi: 10.7498/aps.63.187301
    [20] 贾林楠, 黄安平, 郑晓虎, 肖志松, 王玫. 界面效应调制忆阻器研究进展.  , doi: 10.7498/aps.61.217306
计量
  • 文章访问数:  254
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-08-08
  • 修回日期:  2025-09-12
  • 上网日期:  2025-09-30

/

返回文章
返回
Baidu
map